
Phalcon PHP Framework
Documentation

Release 1.3.0

Phalcon Team

October 14, 2015





Contents

1 What is Phalcon? 3

2 Table of Contents 5
2.1 Our motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Framework Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Tutorial 1: Let’s learn by example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Tutorial 2: Explaining INVO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6 Tutorial 3: Creating a Simple REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.7 List of examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8 Dependency Injection/Service Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.9 The MVC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.10 Using Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.11 Working with Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.12 Phalcon Query Language (PHQL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.13 Caching in the ORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2.14 ODM (Object-Document Mapper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
2.15 Using Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2.16 View Helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
2.17 Assets Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2.18 Volt: Template Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
2.19 MVC Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.20 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2.21 Dispatching Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
2.22 Micro Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
2.23 Working with Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
2.24 Events Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
2.25 Request Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
2.26 Returning Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
2.27 Cookies Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
2.28 Generating URLs and Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
2.29 Flashing Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
2.30 Storing data in Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
2.31 Filtering and Sanitizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
2.32 Contextual Escaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
2.33 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
2.34 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
2.35 Reading Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

i



2.36 Pagination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
2.37 Improving Performance with Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
2.38 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
2.39 Encryption/Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
2.40 Access Control Lists ACL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
2.41 Multi-lingual Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
2.42 Universal Class Loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
2.43 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.44 Annotations Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
2.45 Command Line Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
2.46 Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
2.47 Database Abstraction Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
2.48 Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
2.49 Database Migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
2.50 Debugging Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
2.51 Phalcon Developer Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
2.52 Increasing Performance: What’s next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
2.53 Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
2.54 API Indice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
2.55 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

3 Other formats 885

ii



Phalcon PHP Framework Documentation, Release 1.3.0

Welcome to Phalcon framework, a new approach on PHP frameworks. Our mission is to give you an advanced tool
for developing web sites and applications without worrying about performance.

Contents 1



Phalcon PHP Framework Documentation, Release 1.3.0

2 Contents



CHAPTER 1

What is Phalcon?

Phalcon is an open source, full stack framework for PHP 5 written as a C-extension, optimized for high performance.
You don’t need to learn or use the C language, since the functionality is exposed as PHP classes ready for you to
use. Phalcon also is loosely coupled, allowing you to use its objects as glue components based on the needs of your
application.

Phalcon is not only about performance, our goal is to make it robust, rich in features and easy to use!

3



Phalcon PHP Framework Documentation, Release 1.3.0

4 Chapter 1. What is Phalcon?



CHAPTER 2

Table of Contents

2.1 Our motivation

There are many PHP frameworks nowadays, but none of them is like Phalcon (Really, trust us on this one).

Almost all programmers prefer to use a framework. This is primarily because it provides a lot of functionality that is
already tested and ready to use, therefore keeping code DRY (Don’t Repeat Yourself). However, the framework itself
demands a lot of file inclusions and hundreds of lines of code to be interpreted and executed on each request from the
actual application. Object-Oriented frameworks also add a lot of overhead to execution making complex application
slow. All these operations slows the application down and subsequently impacts the end user experience.

2.1.1 The Question

Why can’t we have a robust framework with all of its advantages but with none or very few disadvantages?

This is why Phalcon was born!

During the last few months, we have extensively researched PHP’s behavior, investigating areas for significant op-
timizations (big or small). Through this understanding, we managed to remove unnecessary validations, compacted
code, performed optimizations and generated low-level solutions so as to achieve maximum performance from Phal-
con.

2.1.2 Why?

• The use of frameworks has become mandatory in professional development with PHP

• Frameworks offer a structured philosophy to easily maintain projects writing less code and making work more
fun

• We love PHP and we think it can be used to create larger and more ambitious projects

2.1.3 Inner workings of PHP?

• PHP has dynamic and weak variable types. Every time a binary operation is made (ex. 2 + “2”), PHP checks
the operand types to perform potential conversions

• PHP is interpreted and not compiled. The major disadvantage is performance loss

• Every time a script is requested it must be first interpreted

• If a bytecode cache (like APC) isn’t used, syntax checking is performed every time for every file in the request

5



Phalcon PHP Framework Documentation, Release 1.3.0

2.1.4 How do traditional PHP frameworks work?

• Many files with classes and functions are read on every request made. Disk reading is expensive in terms of
performance, especially when the file structure includes deep folders

• Modern frameworks use lazy loading (autoload) to increase performance (for load and execute only the code
needed)

• Some of these classes contain methods that aren’t used in every request but they’re loaded always consuming
memory

• Continuous loading or interpreting is expensive and impacts performance

• The framework code does not change very often, and yet an application needs to load and interpret it every time
a request is made

2.1.5 How does a PHP C-extension work?

• C extensions are loaded together with PHP one time on the web server’s daemon start process

• Classes and functions provided by the extension are ready to use for any application

• The code isn’t interpreted because is already compiled to a specific platform and processor

2.1.6 How does Phalcon work?

• Components are loosely coupled. With Phalcon, nothing is imposed on you: you’re free to use the full frame-
work, or just some parts of it as a glue components.

• Low-level optimizations provides the lowest overhead for MVC-based applications

• Interact with databases with maximum performance by using a C-language ORM for PHP

• Phalcon directly accesses internal PHP structures optimizing execution in that way as well

2.1.7 Why do I need Phalcon?

Each application requirements and tasks are different than another’s. Some for instance are designed to do a set of
tasks and generate content that rarely changes. These applications can be created with any programming language
or framework. Using a front-end cache usually makes such an application, no matter how poorly designed or slow it
might be, perform very fast.

Other applications generate content almost immediately that changes from request to request. In this case, PHP is used
to address all requests and generate the content. These applications can be APIs, discussion forums with high traffic
loads, blogs with a high number of comments and contributors, statistic applications, admin dashboards, enterprise
resource planners (ERP), business-intelligence software dealing with real time data and more.

An application will be as slow as its slowest component/process. Phalcon offers a very fast yet feature rich framework
that allows developers to concentrate on making their applications/code faster. Following proper coding processes,
Phalcon can deliver a lot more functionality/requests with less memory consumption and processing cycles.

2.1.8 Conclusion

Phalcon is an effort to build the fastest framework for PHP. You now have an even easier and robust way to develop
applications with a framework implemented with the philosophy “Performance Really Matters”! Enjoy!

6 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.2 Framework Benchmarks

In the past, performance was not considered one of the top priorities when developing web applications. Reasonable
hardware was able to compensate for that. However when Google decided to take site speed into account in the search
rankings, performance became one of the top priorities alongside functionality. This is yet another way in which
improving web performance will have a positive impact on a website.

The benchmarks below, show how efficient Phalcon is when compared with other traditional PHP frameworks. These
benchmarks are updated as stable versions are released from any of the frameworks mentioned or Phalcon itself.

We encourage programmers to clone the test suite that we are using for our benchmarks. If you have any additional
optimizations or comments please write us. Check out source at Github

2.2.1 What was the test environment?

APC intermediate code cache was enabled for all frameworks. Any Apache mod-rewrite feature was disabled when
possible to avoid potentially additional overheads.

The testing hardware environment is as follows:

• Operating System: Mac OS X Lion 10.7.4

• Web Server: Apache httpd 2.2.22

• PHP: 5.3.15

• CPU: 2.04 Ghz Intel Core i5

• Main Memory: 4GB 1333 MHz DDR3

• Hard Drive: 500GB SATA Disk

PHP version and info:

APC settings:

2.2.2 List of Benchmarks

Hello World Benchmark

How the benchmarks were performed?

We created a “Hello World” benchmark seeking to identify the smallest load overhead of each framework. Many
people don’t like this kind of benchmark because real-world applications require more complex features or structures.
However, these tests identify the minimum time spent by each framework to perform a simple task. Such a task
represents the mimimum requirement for every framework to process a single request.

More specifically, the benchmark only measures the time it takes for a framework to start, run an action and free up
resources at the end of the request. Any PHP application based on an MVC architecture will require this time. Due to
the simplicity of the benchmark, we ensure that the time needed for a more complex request will be higher.

A controller and a view have been created for each framework. The controller “say” and action “hello”. The action
only sends data to the view which displays it (“Hello!”). Using the “ab” benchmark tool we sent 2000 requests using
10 concurrent connections to each framework.

2.2. Framework Benchmarks 7

http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
https://github.com/phalcon/framework-bench
https://github.com/phalcon/framework-bench
http://php.net/manual/en/book.apc.php


Phalcon PHP Framework Documentation, Release 1.3.0

8 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.2. Framework Benchmarks 9



Phalcon PHP Framework Documentation, Release 1.3.0

What measurements were recorded?

These were the measurements we record to identify the overall performance of each framework:

• Requests per second

• Time across all concurrent requests

• Number of included PHP files on a single request (measured using function get_included_files.

• Memory Usage per request (measured using function memory_get_usage.

Participant Frameworks

• Yii (YII_DEBUG=false) (yii-1.1.13)

• Symfony (2.0.11)

• Zend Framework (1.11.11)

• Kohana (3.2.0)

• FuelPHP (1.2.1)

• CakePHP (2.1.3)

• Laravel 3.2.5

• CodeIgniter (2.1.0)

Results

Yii (YII_DEBUG=false) Version yii-1.1.13
# ab -n 2000 -c 10 http://localhost/bench/helloworld/yii/index.php?r=say/hello
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/helloworld/yii/index.php?r=say/hello
Document Length: 61 bytes

Concurrency Level: 10
Time taken for tests: 2.081 seconds
Complete requests: 2000
Failed requests: 0
Write errors: 0
Total transferred: 508000 bytes
HTML transferred: 122000 bytes
Requests per second: 961.28 [#/sec] (mean)
Time per request: 10.403 [ms] (mean)
Time per request: 1.040 [ms] (mean, across all concurrent requests)
Transfer rate: 238.44 [Kbytes/sec] received

10 Chapter 2. Table of Contents

http://www.php.net/manual/en/function.get-included-files.php
http://php.net/manual/en/function.memory-get-usage.php
http://www.yiiframework.com/
http://symfony.com/
http://framework.zend.com
http://kohanaframework.org/index
http://fuelphp.com/
http://cakephp.org/
http://www.laravel.com/
http://codeigniter.com/


Phalcon PHP Framework Documentation, Release 1.3.0

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 10 4.3 9 42
Processing: 0 0 1.0 0 24
Waiting: 0 0 0.8 0 17
Total: 3 10 4.3 9 42

Percentage of the requests served within a certain time (ms)
50% 9
66% 11
75% 13
80% 14
90% 15
95% 17
98% 21
99% 26

100% 42 (longest request)

Symfony Version 2.1.6
# ab -n 2000 -c 10 http://localhost/bench/Symfony/web/app.php/say/hello/
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/Symfony/web/app.php/say/hello/
Document Length: 16 bytes

Concurrency Level: 5
Time taken for tests: 1.848 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 249000 bytes
HTML transferred: 16000 bytes
Requests per second: 541.01 [#/sec] (mean)
Time per request: 9.242 [ms] (mean)
Time per request: 1.848 [ms] (mean, across all concurrent requests)
Transfer rate: 131.55 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 9 4.8 8 61
Processing: 0 0 0.6 0 15
Waiting: 0 0 0.6 0 15
Total: 4 9 4.8 8 61

Percentage of the requests served within a certain time (ms)
50% 8
66% 9

2.2. Framework Benchmarks 11



Phalcon PHP Framework Documentation, Release 1.3.0

75% 11
80% 12
90% 15
95% 18
98% 22
99% 30

100% 61 (longest request)

CodeIgniter 2.1.0
# ab -n 2000 -c 10 http://localhost/bench/codeigniter/index.php/say/hello
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/helloworld/codeigniter/index.php/say/hello
Document Length: 16 bytes

Concurrency Level: 10
Time taken for tests: 1.888 seconds
Complete requests: 2000
Failed requests: 0
Write errors: 0
Total transferred: 418000 bytes
HTML transferred: 32000 bytes
Requests per second: 1059.05 [#/sec] (mean)
Time per request: 9.442 [ms] (mean)
Time per request: 0.944 [ms] (mean, across all concurrent requests)
Transfer rate: 216.15 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 9 4.1 9 33
Processing: 0 0 0.8 0 19
Waiting: 0 0 0.7 0 16
Total: 3 9 4.2 9 33

Percentage of the requests served within a certain time (ms)
50% 9
66% 10
75% 11
80% 12
90% 14
95% 16
98% 21
99% 24

100% 33 (longest request)

Kohana 3.2.0

12 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

# ab -n 2000 -c 10 http://localhost/bench/helloworld/kohana/index.php/say/hello
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/helloworld/kohana/index.php/say/hello
Document Length: 15 bytes

Concurrency Level: 10
Time taken for tests: 2.324 seconds
Complete requests: 2000
Failed requests: 0
Write errors: 0
Total transferred: 446446 bytes
HTML transferred: 30030 bytes
Requests per second: 860.59 [#/sec] (mean)
Time per request: 11.620 [ms] (mean)
Time per request: 1.162 [ms] (mean, across all concurrent requests)
Transfer rate: 187.60 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 11 5.1 10 64
Processing: 0 0 1.9 0 39
Waiting: 0 0 1.4 0 35
Total: 3 11 5.3 11 64

Percentage of the requests served within a certain time (ms)
50% 11
66% 13
75% 15
80% 15
90% 17
95% 18
98% 24
99% 31

100% 64 (longest request)

Fuel 1.2.1
# ab -n 2000 -c 10 http://localhost/bench/helloworld/fuel/public/say/hello
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

2.2. Framework Benchmarks 13



Phalcon PHP Framework Documentation, Release 1.3.0

Document Path: /bench/helloworld/fuel/public/say/hello
Document Length: 16 bytes

Concurrency Level: 10
Time taken for tests: 2.742 seconds
Complete requests: 2000
Failed requests: 0
Write errors: 0
Total transferred: 418000 bytes
HTML transferred: 32000 bytes
Requests per second: 729.42 [#/sec] (mean)
Time per request: 13.709 [ms] (mean)
Time per request: 1.371 [ms] (mean, across all concurrent requests)
Transfer rate: 148.88 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 13 6.0 12 79
Processing: 0 0 1.3 0 22
Waiting: 0 0 0.8 0 21
Total: 4 14 6.1 13 80

Percentage of the requests served within a certain time (ms)
50% 13
66% 15
75% 17
80% 17
90% 19
95% 24
98% 30
99% 38

100% 80 (longest request)

Cake 2.1.3
# ab -n 10 -c 5 http://localhost/bench/cake/say/hello
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient).....done

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/cake/say/hello
Document Length: 16 bytes

Concurrency Level: 5
Time taken for tests: 30.051 seconds
Complete requests: 10
Failed requests: 0
Write errors: 0
Total transferred: 1680 bytes
HTML transferred: 160 bytes

14 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Requests per second: 0.33 [#/sec] (mean)
Time per request: 15025.635 [ms] (mean)
Time per request: 3005.127 [ms] (mean, across all concurrent requests)
Transfer rate: 0.05 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 2 3.6 0 11
Processing: 15009 15020 9.8 15019 15040
Waiting: 9 21 7.9 25 33
Total: 15009 15022 8.9 15021 15040

Percentage of the requests served within a certain time (ms)
50% 15021
66% 15024
75% 15024
80% 15032
90% 15040
95% 15040
98% 15040
99% 15040

100% 15040 (longest request)

Zend Framework 1.11.11
# ab -n 2000 -c 10 http://localhost/bench/helloworld/zendfw/public/index.php
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/helloworld/zendfw/public/index.php
Document Length: 16 bytes

Concurrency Level: 10
Time taken for tests: 5.641 seconds
Complete requests: 2000
Failed requests: 0
Write errors: 0
Total transferred: 418000 bytes
HTML transferred: 32000 bytes
Requests per second: 354.55 [#/sec] (mean)
Time per request: 28.205 [ms] (mean)
Time per request: 2.820 [ms] (mean, across all concurrent requests)
Transfer rate: 72.36 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 27 9.6 25 89
Processing: 0 1 3.0 0 70
Waiting: 0 0 2.9 0 70
Total: 9 28 9.6 26 90

2.2. Framework Benchmarks 15



Phalcon PHP Framework Documentation, Release 1.3.0

Percentage of the requests served within a certain time (ms)
50% 26
66% 28
75% 32
80% 34
90% 41
95% 46
98% 55
99% 62

100% 90 (longest request)

Laravel 3.2.5
# ab -n 2000 -c 10 http://localhost/bench/helloworld/laravel/public/say/hello

This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/helloworld/laravel/public/say/hello
Document Length: 15 bytes

Concurrency Level: 10
Time taken for tests: 4.090 seconds
Complete requests: 2000
Failed requests: 0
Write errors: 0
Total transferred: 1665162 bytes
HTML transferred: 30045 bytes
Requests per second: 489.03 [#/sec] (mean)
Time per request: 20.449 [ms] (mean)
Time per request: 2.045 [ms] (mean, across all concurrent requests)
Transfer rate: 397.61 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 20 7.6 19 92
Processing: 0 0 2.5 0 53
Waiting: 0 0 2.5 0 53
Total: 6 20 7.6 19 93

Percentage of the requests served within a certain time (ms)
50% 19
66% 21
75% 23
80% 24
90% 29
95% 34
98% 42
99% 48

16 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

100% 93 (longest request)

Phalcon Version 0.8.0
# ab -n 2000 -c 10 http://localhost/bench/helloworld/phalcon/index.php?_url=/say/hello
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/helloworld/phalcon/index.php?_url=/say/hello
Document Length: 16 bytes

Concurrency Level: 10
Time taken for tests: 0.789 seconds
Complete requests: 2000
Failed requests: 0
Write errors: 0
Total transferred: 418000 bytes
HTML transferred: 32000 bytes
Requests per second: 2535.82 [#/sec] (mean)
Time per request: 3.943 [ms] (mean)
Time per request: 0.394 [ms] (mean, across all concurrent requests)
Transfer rate: 517.56 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 4 1.7 3 23
Processing: 0 0 0.2 0 6
Waiting: 0 0 0.2 0 6
Total: 2 4 1.7 3 23

Percentage of the requests served within a certain time (ms)
50% 3
66% 4
75% 4
80% 4
90% 5
95% 6
98% 8
99% 14

100% 23 (longest request)

Graphs The first graph shows how many requests per second each framework was able to accept. The second shows
the average time across all concurrent requests.

2.2. Framework Benchmarks 17



Phalcon PHP Framework Documentation, Release 1.3.0

Conclusion

The compiled nature of Phalcon offers extraordinary performance that outperforms all other frameworks measured in
these benchmarks.

Micro Benchmark

How the benchmarks were performed?

We created a “Hello World” benchmark seeking to identify the smallest load overhead of each framework. Similar to
the benchmark made with Frameworks.

Using a route for the HTTP method ‘GET’ we pass a parameter to a handler returning a “Hello $name” response.

What measurements were recorded?

These were the measurements we record to identify the overall performance of each framework:

• Requests per second

• Time across all concurrent requests

• Number of included PHP files on a single request (measured using function get_included_files.

• Memory Usage per request (measured using function memory_get_usage.

Participant Frameworks

• Slim

• Silex

Results

Slim Framework
# ab -n 1000 -c 5 http://localhost/bench/micro/slim/say/hello/Sonny
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/micro/slim/say/hello/Sonny
Document Length: 13 bytes

Concurrency Level: 5
Time taken for tests: 0.882 seconds
Complete requests: 1000
Failed requests: 0

18 Chapter 2. Table of Contents

http://www.php.net/manual/en/function.get-included-files.php
http://php.net/manual/en/function.memory-get-usage.php
http://slimframework.com/
http://silex.sensiolabs.org/


Phalcon PHP Framework Documentation, Release 1.3.0

Write errors: 0
Total transferred: 206000 bytes
HTML transferred: 13000 bytes
Requests per second: 1134.21 [#/sec] (mean)
Time per request: 4.408 [ms] (mean)
Time per request: 0.882 [ms] (mean, across all concurrent requests)
Transfer rate: 228.17 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 4 2.4 4 33
Processing: 0 0 0.5 0 11
Waiting: 0 0 0.5 0 11
Total: 2 4 2.4 4 33

Percentage of the requests served within a certain time (ms)
50% 4
66% 4
75% 5
80% 5
90% 6
95% 8
98% 12
99% 14

100% 33 (longest request)

Silex
# ab -n 1000 -c 5 http://localhost/bench/micro/silex/say/hello/Sonny
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/micro/silex/say/hello/Sonny
Document Length: 12 bytes

Concurrency Level: 5
Time taken for tests: 2.228 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 225000 bytes
HTML transferred: 12000 bytes
Requests per second: 448.75 [#/sec] (mean)
Time per request: 11.142 [ms] (mean)
Time per request: 2.228 [ms] (mean, across all concurrent requests)
Transfer rate: 98.60 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 11 5.1 10 44

2.2. Framework Benchmarks 19



Phalcon PHP Framework Documentation, Release 1.3.0

Processing: 0 0 1.1 0 26
Waiting: 0 0 1.1 0 26
Total: 5 11 5.1 10 45

Percentage of the requests served within a certain time (ms)
50% 10
66% 12
75% 13
80% 14
90% 17
95% 20
98% 25
99% 29

100% 45 (longest request)

Phalcon 0.5.0
# ab -n 1000 -c 5 http://localhost/bench/micro/phalcon/say/hello/Sonny
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Server Software: Apache/2.2.22
Server Hostname: localhost
Server Port: 80

Document Path: /bench/micro/phalcon/say/hello/Sonny
Document Length: 12 bytes

Concurrency Level: 5
Time taken for tests: 0.397 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 205000 bytes
HTML transferred: 12000 bytes
Requests per second: 2516.74 [#/sec] (mean)
Time per request: 1.987 [ms] (mean)
Time per request: 0.397 [ms] (mean, across all concurrent requests)
Transfer rate: 503.84 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 2 0.9 2 11
Processing: 0 0 0.2 0 5
Waiting: 0 0 0.2 0 4
Total: 1 2 0.9 2 11

Percentage of the requests served within a certain time (ms)
50% 2
66% 2
75% 2
80% 2
90% 3
95% 4

20 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

98% 5
99% 5

100% 11 (longest request)

Graphs The first graph shows how many requests per second each framework was able to accept. The second shows
the average time across all concurrent requests.

Conclusion

The compiled nature of Phalcon offers extraordinary performance that outperforms all other frameworks measured in
these benchmarks.

2.2.3 ChangeLog

New in version 1.0: Update Mar-20-2012: Benchmarks redone changing the apc.stat setting to Off. More Info

Changed in version 1.1: Update May-13-2012: Benchmarks redone PHP plain templating engine instead of Twig for
Symfony. Configuration settings for Yii were also changed as recommended.

Changed in version 1.2: Update May-20-2012: Fuel framework was added to benchmarks.

Changed in version 1.3: Update Jun-4-2012: Cake framework was added to benchmarks. It is not however present in
the graphics, since it takes 30 seconds to run only 10 of 1000.

Changed in version 1.4: Update Ago-27-2012: PHP updated to 5.3.15, APC updated to 3.1.11, Yii updated to 1.1.12,
Phalcon updated to 0.5.0, Added Laravel, OS updated to Mac OS X Lion. Hardware upgraded.

2.2.4 External Resources

• For Impatient Web Users, an Eye Blink Is Just Too Long to Wait

• Millionaires performance cases: Impact of performance

• How fast are we going now?

• Speed, performance and human perception <http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION>‘_

2.3 Installation

PHP extensions require a slightly different installation method to a traditional php-based library or framework. You
can either download a binary package for the system of your choice or build it from the sources.

Phalcon compiles from PHP 5.3.1, but because of old PHP bugs causing memory leaks, we highly rec-
ommend you use at least PHP 5.3.11 or greater.

PHP versions below 5.3.9 have several security flaws and these aren’t recommended for production web
sites. Learn more

2.3. Installation 21

http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html?pagewanted=all&_r=0
https://github.com/zenorocha/browser-diet/wiki/Impact-of-performance
http://www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION
http://www.infoworld.com/d/security/php-539-fixes-hash-collision-dos-vulnerability-183947


Phalcon PHP Framework Documentation, Release 1.3.0

2.3.1 Windows

To use phalcon on Windows you can download a DLL library. Edit your php.ini file and then append at the end:

extension=php_phalcon.dll

Restart your webserver.

The following screencast is a step-by-step guide to install Phalcon on Windows:

Related Guides

Installation on XAMPP

XAMPP is an easy to install Apache distribution containing MySQL, PHP and Perl. Once you download XAMPP, all
you have to do is extract it and start using it. Below are detailed instructions on how to install Phalcon on XAMPP for
Windows. Using the latest XAMPP version is highly recommended.

Download the right version of Phalcon XAMPP is always releasing 32 bit versions of Apache and PHP. You will
need to download the x86 version of Phalcon for Windows from the download section.

After downloading the Phalcon library you will have a zip file like the one shown below:

Extract the library from the archive to get the Phalcon DLL:

Copy the file php_phalcon.dll to the PHP extensions. If you have installed XAMPP in the c:\xampp folder, the
extension needs to be in c:\xampp\php\ext

Edit the php.ini file, it is located at C:\xampp\php\php.ini. It can be edited with Notepad or a similar program. We
recommend Notepad++ to avoid issues with line endings. Append at the end of the file: extension=php_phalcon.dll
and save it.

Restart the Apache Web Server from the XAMPP Control Center. This will load the new PHP configuration.

Open your browser to navigate to http://localhost. The XAMPP welcome page will appear. Click on the link phpinfo().

phpinfo() will output a significant amount of information on screen about the current state of PHP. Scroll down to
check if the phalcon extension has been loaded correctly.

If you can see the phalcon version in the phpinfo() output, congrats!, You are now flying with Phalcon.

Screencast The following screencast is a step by step guide to install Phalcon on Windows:

22 Chapter 2. Table of Contents

http://www.apachefriends.org/en/xampp-windows.html
http://localhost


Phalcon PHP Framework Documentation, Release 1.3.0

Related Guides

• General Installation

• Detailed Installation on WAMP for Windows

Installation on WAMP

WampServer is a Windows web development environment. It allows you to create web applications with Apache2,
PHP and a MySQL database. Below are detailed instructions on how to install Phalcon on WampServer for Windows.
Using the latest WampServer version is highly recommended.

Download the right version of Phalcon WAMP has both 32 and 64 bit versions. From the download section, you
can choose the Phalcon for Windows accordingly to your desired architecture.

After download the Phalcon library you will have a zip file like the one shown below:

Extract the library from the archive to get the Phalcon DLL:

Copy the file php_phalcon.dll to the PHP extensions. If WAMP is installed in the c:\wamp folder, the extension needs
to be in C:\wamp\bin\php\php5.3.10\ext

Edit the php.ini file, it is located at C:\wamp\bin\php\php5.3.10\php.ini. It can be edited with Notepad or a simi-
lar program. We recommend Notepad++ to avoid issues with line endings. Append at the end of the file: exten-
sion=php_phalcon.dll and save it.

Also edit another php.ini file, which is located at C:\wamp\bin\apache\Apache2.2.21\bin\php.ini. Append at the end
of the file: extension=php_phalcon.dll and save it.

2.3. Installation 23

http://www.wampserver.com/en/


Phalcon PHP Framework Documentation, Release 1.3.0

24 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.3. Installation 25



Phalcon PHP Framework Documentation, Release 1.3.0

26 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.3. Installation 27



Phalcon PHP Framework Documentation, Release 1.3.0

Restart the Apache Web Server. Do a single click on the WampServer icon at system tray. Choose “Restart All
Services” from the pop-up menu. Check out that tray icon will become green again.

Open your browser to navigate to http://localhost. The WAMP welcome page will appear. Look at the section “exten-
sions loaded” to check if phalcon was loaded.

Congrats!, You are now flying with Phalcon.

Related Guides

• General Installation

• Detailed Installation on XAMPP for Windows

2.3.2 Linux/Solaris/Mac

On a Linux/Solaris/Mac system you can easily compile and install the extension from the source code:

Requirements

Prerequisite packages are:

• PHP 5.3.x/5.4.x/5.5.x development resources

• GCC compiler (Linux/Solaris) or Xcode (Mac)

28 Chapter 2. Table of Contents

http://localhost


Phalcon PHP Framework Documentation, Release 1.3.0

2.3. Installation 29



Phalcon PHP Framework Documentation, Release 1.3.0

• Git (if not already installed in your system - unless you download the package from GitHub and upload it on
your server via FTP/SFTP)

Specific packages for common platforms:

#Ubuntu
sudo apt-get install git-core gcc autoconf
sudo apt-get install php5-dev php5-mysql

#Suse
sudo yast -i gcc make autoconf2.13
sudo yast -i php5-devel php5-pear php5-mysql

#CentOS/RedHat
sudo yum install gcc make
sudo yum install php-devel

#Solaris
pkg install gcc-45
pkg install php-53 apache-php53

Compilation

Creating the extension:

git clone git://github.com/phalcon/cphalcon.git
cd cphalcon/build
sudo ./install

Add extension to your php.ini

extension=phalcon.so

Restart the webserver.

Phalcon automatically detects your architecture, however, you can force the compilation for a specific architecture:

sudo ./install 32bits
sudo ./install 64bits
sudo ./install safe

2.3.3 FreeBSD

A port is available for FreeBSD. Just only need these simple line commands to install it:

pkg_add -r phalcon

or

export CFLAGS="-O2 -fno-delete-null-pointer-checks"
cd /usr/ports/www/phalcon && make install clean

2.3.4 Installation Notes

Installation notes for Web Servers:

30 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Apache Installation Notes

Apache is a popular and well known web server available on many platforms.

Configuring Apache for Phalcon

The following are potential configurations you can use to setup Apache with Phalcon. These notes are primarily
focused on the configuration of the mod-rewrite module allowing to use friendly urls and the router component.
Commonly an application has the following structure:

test/
app/
controllers/
models/
views/

public/
css/
img/
js/
index.php

Directory under the main Document Root This being the most common case, the application is installed in any
directory under the document root. In this case, we use two .htaccess files, the first one to hide the application code
forwarding all requests to the application’s document root (public/).

# test/.htaccess

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteRule ^$ public/ [L]
RewriteRule (.*) public/$1 [L]

</IfModule>

Now a second .htaccess file is located in the public/ directory, this re-writes all the URIs to the public/index.php file:

# test/public/.htaccess

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ index.php?_url=/$1 [QSA,L]

</IfModule>

If you do not want to use .htaccess files you can move these configurations to the apache’s main configuration file:

<IfModule mod_rewrite.c>

<Directory "/var/www/test">
RewriteEngine on
RewriteRule ^$ public/ [L]
RewriteRule (.*) public/$1 [L]

</Directory>

<Directory "/var/www/test/public">
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d

2.3. Installation 31

http://httpd.apache.org/


Phalcon PHP Framework Documentation, Release 1.3.0

RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ index.php?_url=/$1 [QSA,L]

</Directory>

</IfModule>

Virtual Hosts And this second configuration allows you to install a Phalcon application in a virtual host:

<VirtualHost *:80>

ServerAdmin admin@example.host
DocumentRoot "/var/vhosts/test/public"
DirectoryIndex index.php
ServerName example.host
ServerAlias www.example.host

<Directory "/var/vhosts/test/public">
Options All
AllowOverride All
Allow from all

</Directory>

</VirtualHost>

Nginx Installation Notes

Nginx is a free, open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy
server. Unlike traditional servers, Nginx doesn’t rely on threads to handle requests. Instead it uses a much more
scalable event-driven (asynchronous) architecture. This architecture uses small, but more importantly, predictable
amounts of memory under load.

The PHP-FPM (FastCGI Process Manager) is usually used to allow Nginx to process PHP files. Nowadays, PHP-FPM
is bundled with any Unix PHP distribution. Phalcon + Nginx + PHP-FPM provides a powerful set of tools that offer
maximum performance for your PHP applications.

Configuring Nginx for Phalcon

The following are potential configurations you can use to setup nginx with Phalcon:

Basic configuration Using $_GET[’_url’] as source of URIs:

server {

listen 80;
server_name localhost.dev;

index index.php index.html index.htm;
set $root_path '/var/www/phalcon/public';
root $root_path;

try_files $uri $uri/ @rewrite;

location @rewrite {
rewrite ^/(.*)$ /index.php?_url=/$1;

32 Chapter 2. Table of Contents

http://wiki.nginx.org/Main
http://wiki.nginx.org/Main
http://php-fpm.org/
http://wiki.nginx.org/Main
http://php-fpm.org/
http://wiki.nginx.org/Main
http://php-fpm.org/


Phalcon PHP Framework Documentation, Release 1.3.0

}

location ~ \.php {
fastcgi_pass unix:/run/php-fpm/php-fpm.sock;
fastcgi_index /index.php;

include /etc/nginx/fastcgi_params;

fastcgi_split_path_info ^(.+\.php)(/.+)$;
fastcgi_param PATH_INFO $fastcgi_path_info;
fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

}

location ~* ^/(css|img|js|flv|swf|download)/(.+)$ {
root $root_path;

}

location ~ /\.ht {
deny all;

}
}

Using $_SERVER[’REQUEST_URI’] as source of URIs:

server {

listen 80;
server_name localhost.dev;

index index.php index.html index.htm;
set $root_path '/var/www/phalcon/public';
root $root_path;

location / {
try_files $uri $uri/ /index.php;

}

location ~ \.php$ {
try_files $uri =404;
fastcgi_split_path_info ^(.+\.php)(/.+)$;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
include fastcgi_params;

}

location ~* ^/(css|img|js|flv|swf|download)/(.+)$ {
root $root_path;

}

location ~ /\.ht {
deny all;

}
}

Dedicated Instance

2.3. Installation 33



Phalcon PHP Framework Documentation, Release 1.3.0

server {
listen 80;
server_name localhost;

charset utf-8;

#access_log /var/log/nginx/host.access.log main;

set $root_path '/srv/www/htdocs/phalcon-website/public';

location / {
root $root_path;
index index.php index.html index.htm;

# if file exists return it right away
if (-f $request_filename) {

break;
}

# otherwise rewrite it
if (!-e $request_filename) {

rewrite ^(.+)$ /index.php?_url=/$1 last;
break;

}
}

location ~ \.php {
# try_files $uri =404;

fastcgi_index /index.php;
fastcgi_pass 127.0.0.1:9000;

include fastcgi_params;
fastcgi_split_path_info ^(.+\.php)(/.+)$;
fastcgi_param PATH_INFO $fastcgi_path_info;
fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

}

location ~* ^/(css|img|js|flv|swf|download)/(.+)$ {
root $root_path;

}
}

Configuration by Host And this second configuration allow you to have different configurations by host:

server {
listen 80;
server_name localhost;
set $root_path '/var/www/$host/public';
root $root_path;

access_log /var/log/nginx/$host-access.log;
error_log /var/log/nginx/$host-error.log error;

index index.php index.html index.htm;

34 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

try_files $uri $uri/ @rewrite;

location @rewrite {
rewrite ^/(.*)$ /index.php?_url=/$1;

}

location ~ \.php {
# try_files $uri =404;

fastcgi_index /index.php;
fastcgi_pass 127.0.0.1:9000;

include fastcgi_params;
fastcgi_split_path_info ^(.+\.php)(/.+)$;
fastcgi_param PATH_INFO $fastcgi_path_info;
fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

}

location ~* ^/(css|img|js|flv|swf|download)/(.+)$ {
root $root_path;

}

location ~ /\.ht {
deny all;

}
}

Cherokee Installation Notes

Cherokee is a high-performance web server. It is very fast, flexible and easy to configure.

Configuring Cherokee for Phalcon

Cherokee provides a friendly graphical interface to configure almost every setting available in the web server. Start
the cherokee administrator by executing with root /path-to-cherokee/sbin/cherokee-admin

Create a new virtual host by clicking on ‘vServers’, then add a new virtual server:

The recently added virtual server must appear at the left bar of the screen. In the ‘Behaviors’ tab you will see a set
of default behaviors for this virtual server. Click the ‘Rule Management’ button. Remove those labeled as ‘Directory
/cherokee_themes’ and ‘Directory /icons’:

Add the ‘PHP Language’ behavior using the wizard. This behavior allow you to run PHP applications:

Normally this behavior does not require additional settings. Add another behavior, this time in the ‘Manual Configu-
ration’ section. In ‘Rule Type’ choose ‘File Exists’, then make sure the option ‘Match any file’ is enabled:

In the ‘Handler’ tab choose ‘List & Send’ as handler:

Edit the ‘Default’ behavior in order to enable the URL-rewrite engine. Change the handler to ‘Redirection’, then add
the following regular expression to the engine ^(.*)$:

Finally, make sure the behaviors have the following order:

Execute the application in a browser:

2.3. Installation 35

http://www.cherokee-project.com/


Phalcon PHP Framework Documentation, Release 1.3.0

36 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.3. Installation 37



Phalcon PHP Framework Documentation, Release 1.3.0

38 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.3. Installation 39



Phalcon PHP Framework Documentation, Release 1.3.0

Using PHP Built-in webserver

As of PHP 5.4.0, you can use PHP’s on built-in web server for development.

To start the server type:

php -S localhost:8000 -t /web_root

If you want to rewrite the URIs to the index.php file use the following router file (.htrouter.php):

<?php
if (!file_exists(__DIR__ . '/' . $_SERVER['REQUEST_URI'])) {

$_GET['_url'] = $_SERVER['REQUEST_URI'];
}
return false;

and then start the server with:

php -S localhost:8000 -t /web_root .htrouter.php

Then point your browser to http://localhost:8000/ to check if everything is working.

2.4 Tutorial 1: Let’s learn by example

Throughout this first tutorial, we’ll walk you through the creation of an application with a simple registration form
from the ground up. We will also explain the basic aspects of the framework’s behavior. If you are interested in
automatic code generation tools for Phalcon, you can check our developer tools.

40 Chapter 2. Table of Contents

http://php.net/manual/en/features.commandline.webserver.php
http://localhost:8000/


Phalcon PHP Framework Documentation, Release 1.3.0

2.4.1 Checking your installation

We’ll assume you have Phalcon installed already. Check your phpinfo() output for a section referencing “Phalcon” or
execute the code snippet below:

<?php print_r(get_loaded_extensions()); ?>

The Phalcon extension should appear as part of the output:

Array
(

[0] => Core
[1] => libxml
[2] => filter
[3] => SPL
[4] => standard
[5] => phalcon
[6] => pdo_mysql

)

2.4.2 Creating a project

The best way to use this guide is to follow each step in turn. You can get the complete code here.

File structure

Phalcon does not impose a particular file structure for application development. Due to the fact that it is loosely
coupled, you can implement Phalcon powered applications with a file structure you are most comfortable using.

For the purposes of this tutorial and as a starting point, we suggest the following structure:

tutorial/
app/
controllers/
models/
views/

public/
css/
img/
js/

Note that you don’t need any “library” directory related to Phalcon. The framework is available in memory, ready for
you to use.

Beautiful URLs

We’ll use pretty (friendly) URLs for this tutorial. Friendly URLs are better for SEO as well as being easy for users to
remember. Phalcon supports rewrite modules provided by the most popular web servers. Making your application’s
URLs friendly is not a requirement and you can just as easily develop without them.

In this example we’ll use the rewrite module for Apache. Let’s create a couple of rewrite rules in the /tutorial/.htaccess
file:

#/tutorial/.htaccess
<IfModule mod_rewrite.c>

RewriteEngine on

2.4. Tutorial 1: Let’s learn by example 41

https://github.com/phalcon/tutorial


Phalcon PHP Framework Documentation, Release 1.3.0

RewriteRule ^$ public/ [L]
RewriteRule (.*) public/$1 [L]

</IfModule>

All requests to the project will be rewritten to the public/ directory making it the document root. This step ensures that
the internal project folders remain hidden from public viewing and thus eliminates security threats of this kind.

The second set of rules will check if the requested file exists and, if it does, it doesn’t have to be rewritten by the web
server module:

#/tutorial/public/.htaccess
<IfModule mod_rewrite.c>

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ index.php?_url=/$1 [QSA,L]

</IfModule>

Bootstrap

The first file you need to create is the bootstrap file. This file is very important; since it serves as the base of your
application, giving you control of all aspects of it. In this file you can implement initialization of components as well
as application behavior.

The tutorial/public/index.php file should look like:

<?php

try {

//Register an autoloader
$loader = new \Phalcon\Loader();
$loader->registerDirs(array(

'../app/controllers/',
'../app/models/'

))->register();

//Create a DI
$di = new Phalcon\DI\FactoryDefault();

//Setup the view component
$di->set('view', function(){

$view = new \Phalcon\Mvc\View();
$view->setViewsDir('../app/views/');
return $view;

});

//Setup a base URI so that all generated URIs include the "tutorial" folder
$di->set('url', function(){

$url = new \Phalcon\Mvc\Url();
$url->setBaseUri('/tutorial/');
return $url;

});

//Handle the request
$application = new \Phalcon\Mvc\Application($di);

echo $application->handle()->getContent();

42 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

} catch(\Phalcon\Exception $e) {
echo "PhalconException: ", $e->getMessage();

}

Autoloaders

The first part that we find in the bootstrap is registering an autoloader. This will be used to load classes as controllers
and models in the application. For example we may register one or more directories of controllers increasing the
flexibility of the application. In our example we have used the component Phalcon\Loader.

With it, we can load classes using various strategies but for this example we have chosen to locate classes based on
predefined directories:

<?php

$loader = new \Phalcon\Loader();
$loader->registerDirs(

array(
'../app/controllers/',
'../app/models/'

)
)->register();

Dependency Management

A very important concept that must be understood when working with Phalcon is its dependency injection container.
It may sound complex but is actually very simple and practical.

A service container is a bag where we globally store the services that our application will use to function. Each time the
framework requires a component, it will ask the container using an agreed upon name for the service. Since Phalcon
is a highly decoupled framework, Phalcon\DI acts as glue facilitating the integration of the different components
achieving their work together in a transparent manner.

<?php

//Create a DI
$di = new Phalcon\DI\FactoryDefault();

Phalcon\DI\FactoryDefault is a variant of Phalcon\DI. To make things easier, it has registered most of the components
that come with Phalcon. Thus we should not register them one by one. Later there will be no problem in replacing a
factory service.

In the next part, we register the “view” service indicating the directory where the framework will find the views files.
As the views do not correspond to classes, they cannot be charged with an autoloader.

Services can be registered in several ways, but for our tutorial we’ll use an anonymous function:

<?php

//Setup the view component
$di->set('view', function(){

$view = new \Phalcon\Mvc\View();
$view->setViewsDir('../app/views/');
return $view;

});

2.4. Tutorial 1: Let’s learn by example 43

http://php.net/manual/en/functions.anonymous.php


Phalcon PHP Framework Documentation, Release 1.3.0

Next we register a base URI so that all URIs generated by Phalcon include the “tutorial” folder we setup earlier. This
will become important later on in this tutorial when we use the class Phalcon\Tag to generate a hyperlink.

<?php

//Setup a base URI so that all generated URIs include the "tutorial" folder
$di->set('url', function(){

$url = new \Phalcon\Mvc\Url();
$url->setBaseUri('/tutorial/');
return $url;

});

In the last part of this file, we find Phalcon\Mvc\Application. Its purpose is to initialize the request environment, route
the incoming request, and then dispatch any discovered actions; it aggregates any responses and returns them when
the process is complete.

<?php

$application = new \Phalcon\Mvc\Application($di);

echo $application->handle()->getContent();

As you can see, the bootstrap file is very short and we do not need to include any additional files. We have set ourselves
a flexible MVC application in less than 30 lines of code.

Creating a Controller

By default Phalcon will look for a controller named “Index”. It is the starting point when no controller or action has
been passed in the request. The index controller (app/controllers/IndexController.php) looks like:

<?php

class IndexController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

echo "<h1>Hello!</h1>";
}

}

The controller classes must have the suffix “Controller” and controller actions must have the suffix “Action”. If you
access the application from your browser, you should see something like this:

Congratulations, you’re flying with Phalcon!

Sending output to a view

Sending output to the screen from the controller is at times necessary but not desirable as most purists in the MVC
community will attest. Everything must be passed to the view that is responsible for outputting data on screen. Phalcon
will look for a view with the same name as the last executed action inside a directory named as the last executed
controller. In our case (app/views/index/index.phtml):

<?php echo "<h1>Hello!</h1>";

Our controller (app/controllers/IndexController.php) now has an empty action definition:

44 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

class IndexController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

}

The browser output should remain the same. The Phalcon\Mvc\View static component is automatically created when
the action execution has ended. Learn more about views usage here .

Designing a sign up form

Now we will change the index.phtml view file, to add a link to a new controller named “signup”. The goal is to allow
users to sign up within our application.

<?php

echo "<h1>Hello!</h1>";

echo Phalcon\Tag::linkTo("signup", "Sign Up Here!");

The generated HTML code displays an anchor (“a”) HTML tag linking to a new controller:

2.4. Tutorial 1: Let’s learn by example 45



Phalcon PHP Framework Documentation, Release 1.3.0

<h1>Hello!</h1> <a href="/tutorial/signup">Sign Up Here!</a>

To generate the tag we use the class Phalcon\Tag. This is a utility class that allows us to build HTML tags with
framework conventions in mind. A more detailed article regarding HTML generation can be found here

Here is the Signup controller (app/controllers/SignupController.php):

<?php

class SignupController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

}

The empty index action gives the clean pass to a view with the form definition (app/views/signup/index.phtml):

<?php use Phalcon\Tag; ?>

<h2>Sign up using this form</h2>

<?php echo Tag::form("signup/register"); ?>

<p>
<label for="name">Name</label>
<?php echo Tag::textField("name") ?>

46 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

</p>

<p>
<label for="name">E-Mail</label>
<?php echo Tag::textField("email") ?>

</p>

<p>
<?php echo Tag::submitButton("Register") ?>

</p>

</form>

Viewing the form in your browser will show something like this:

Phalcon\Tag also provides useful methods to build form elements.

The Phalcon\Tag::form method receives only one parameter for instance, a relative uri to a controller/action in the
application.

By clicking the “Send” button, you will notice an exception thrown from the framework, indicating that we are missing
the “register” action in the controller “signup”. Our public/index.php file throws this exception:

PhalconException: Action “register” was not found on controller “signup”

Implementing that method will remove the exception:

<?php

class SignupController extends \Phalcon\Mvc\Controller
{

2.4. Tutorial 1: Let’s learn by example 47



Phalcon PHP Framework Documentation, Release 1.3.0

public function indexAction()
{

}

public function registerAction()
{

}

}

If you click the “Send” button again, you will see a blank page. The name and email input provided by the user should
be stored in a database. According to MVC guidelines, database interactions must be done through models so as to
ensure clean object-oriented code.

Creating a Model

Phalcon brings the first ORM for PHP entirely written in C-language. Instead of increasing the complexity of devel-
opment, it simplifies it.

Before creating our first model, we need to create a database table outside of Phalcon to map it to. A simple table to
store registered users can be defined like this:

CREATE TABLE `users` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(70) NOT NULL,
`email` varchar(70) NOT NULL,
PRIMARY KEY (`id`)

);

A model should be located in the app/models directory (app/models/Users.php). The model maps to the “users” table:

<?php

class Users extends \Phalcon\Mvc\Model
{

}

Setting a Database Connection

In order to be able to use a database connection and subsequently access data through our models, we need to specify
it in our bootstrap process. A database connection is just another service that our application has that can be used for
several components:

<?php

try {

//Register an autoloader
$loader = new \Phalcon\Loader();
$loader->registerDirs(array(

'../app/controllers/',
'../app/models/'

))->register();

48 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Create a DI
$di = new Phalcon\DI\FactoryDefault();

//Setup the database service
$di->set('db', function(){

return new \Phalcon\Db\Adapter\Pdo\Mysql(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "test_db"

));
});

//Setup the view component
$di->set('view', function(){

$view = new \Phalcon\Mvc\View();
$view->setViewsDir('../app/views/');
return $view;

});

//Setup a base URI so that all generated URIs include the "tutorial" folder
$di->set('url', function(){

$url = new \Phalcon\Mvc\Url();
$url->setBaseUri('/tutorial/');
return $url;

});

//Handle the request
$application = new \Phalcon\Mvc\Application($di);

echo $application->handle()->getContent();

} catch(Exception $e) {
echo "PhalconException: ", $e->getMessage();

}

With the correct database parameters, our models are ready to work and interact with the rest of the application.

Storing data using models

Receiving data from the form and storing them in the table is the next step.

<?php

class SignupController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function registerAction()
{

$user = new Users();

2.4. Tutorial 1: Let’s learn by example 49



Phalcon PHP Framework Documentation, Release 1.3.0

//Store and check for errors
$success = $user->save($this->request->getPost(), array('name', 'email'));

if ($success) {
echo "Thanks for registering!";

} else {
echo "Sorry, the following problems were generated: ";
foreach ($user->getMessages() as $message) {

echo $message->getMessage(), "<br/>";
}

}

$this->view->disable();
}

}

We then instantiate the Users class, which corresponds to a User record. The class public properties map to the fields
of the record in the users table. Setting the relevant values in the new record and calling save() will store the data in
the database for that record. The save() method returns a boolean value which indicates whether the storing of the data
was successful or not.

The ORM automatically escapes the input preventing SQL injections so we only need to pass the request to the save
method.

Additional validation happens automatically on fields that are defined as not null (required). If we don’t enter any of
the required fields in the sign up form our screen will look like this:

50 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.4.3 Conclusion

This is a very simple tutorial and as you can see, it’s easy to start building an application using Phalcon. The fact that
Phalcon is an extension on your web server has not interfered with the ease of development or features available. We
invite you to continue reading the manual so that you can discover additional features offered by Phalcon!

2.4.4 Sample Applications

The following Phalcon-powered applications are also available, providing more complete examples:

• INVO application: Invoice generation application. Allows for management of products, companies, product
types. etc.

• PHP Alternative website: Multilingual and advanced routing application

• Album O’Rama: A showcase of music albums, handling big sets of data with PHQL and using Volt as template
engine

• Phosphorum: A simple and clean forum

2.5 Tutorial 2: Explaining INVO

In this second tutorial, we’ll explain a more complete application in order to deepen the development with Phalcon.
INVO is one of the applications we have created as samples. INVO is a small website that allows their users to generate
invoices, and do other tasks such as manage their customers and products. You can clone its code from Github.

Also, INVO was made with Twitter Bootstrap as client-side framework. Although the application does not generate
invoices, it still serves as an example to understand how the framework works.

2.5.1 Project Structure

Once you clone the project in your document root you’ll see the following structure:

invo/
app/

app/config/
app/controllers/
app/library/
app/models/
app/plugins/
app/views/

public/
public/bootstrap/
public/css/
public/js/

schemas/

As you know, Phalcon does not impose a particular file structure for application development. This project provides a
simple MVC structure and a public document root.

Once you open the application in your browser http://localhost/invo you’ll see something like this:

The application is divided into two parts, a frontend, that is a public part where visitors can receive information about
INVO and request contact information. The second part is the backend, an administrative area where a registered user
can manage his/her products and customers.

2.5. Tutorial 2: Explaining INVO 51

http://blog.phalconphp.com/post/20928554661/invo-a-sample-application
http://blog.phalconphp.com/post/24622423072/sample-application-php-alternative-site
http://blog.phalconphp.com/post/37515965262/sample-application-album-orama
http://blog.phalconphp.com/post/41461000213/phosphorum-the-phalcons-forum
https://github.com/phalcon/invo
http://twitter.github.io/bootstrap/
http://localhost/invo


Phalcon PHP Framework Documentation, Release 1.3.0

2.5.2 Routing

INVO uses the standard route that is built-in with the Router component. These routes match the following pattern:
/:controller/:action/:params. This means that the first part of a URI is the controller, the second the action and the rest
are the parameters.

The following route /session/register executes the controller SessionController and its action registerAction.

2.5.3 Configuration

INVO has a configuration file that sets general parameters in the application. This file is read in the first few lines of
the bootstrap file (public/index.php):

<?php

//Read the configuration
$config = new Phalcon\Config\Adapter\Ini('../app/config/config.ini');

Phalcon\Config allows us to manipulate the file in an object-oriented way. The configuration file contains the following
settings:

[database]
host = localhost
username = root
password = secret
name = invo

[application]
controllersDir = /../app/controllers/

52 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

modelsDir = /../app/models/
viewsDir = /../app/views/
pluginsDir = /../app/plugins/
libraryDir = /../app/library/
baseUri = /invo/

;[metadata]
;adapter = "Apc"
;suffix = my-suffix
;lifetime = 3600

Phalcon hasn’t any pre-defined convention settings. Sections help us to organize the options as appropriate. In this file
there are three sections to be used later.

2.5.4 Autoloaders

The second part that appears in the bootstrap file (public/index.php) is the autoloader. The autoloader registers a set of
directories in which the application will look for the classes that it eventually will need.

<?php

$loader = new \Phalcon\Loader();

$loader->registerDirs(
array(

$config->application->controllersDir,
$config->application->pluginsDir,
$config->application->libraryDir,
$config->application->modelsDir,

)
)->register();

Note that the above code has registered the directories that were defined in the configuration file. The only directory
that is not registered is the viewsDir, because it contains HTML + PHP files but no classes.

2.5.5 Handling the Request

If we skip to the end of the file, the request is finally handled by Phalcon\Mvc\Application which initializes and
executes all that is necessary to make the application run:

<?php

$app = new \Phalcon\Mvc\Application($di);

echo $app->handle()->getContent();

2.5.6 Dependency Injection

Look at the first line of the code block above, the Application class constructor is receiving the variable $di as an
argument. What is the purpose of that variable? Phalcon is a highly decoupled framework, so we need a component
that acts as glue to make everything work together. That component is Phalcon\DI. It is a service container that also
performs dependency injection, instantiating all components as they are needed by the application.

2.5. Tutorial 2: Explaining INVO 53



Phalcon PHP Framework Documentation, Release 1.3.0

There are many ways of registering services in the container. In INVO, most services have been registered using
anonymous functions. Thanks to this, the objects are instantiated in a lazy way, reducing the resources needed by the
application.

For instance, in the following excerpt the session service is registered. The anonymous function will only be called
when the application requires access to the session data:

<?php

//Start the session the first time a component requests the session service
$di->set('session', function() {

$session = new Phalcon\Session\Adapter\Files();
$session->start();
return $session;

});

Here, we have the freedom to change the adapter, perform additional initialization and much more. Note that the
service was registered using the name “session”. This is a convention that will allow the framework to identify the
active service in the services container.

A request can use many services and registering each service individually can be a cumbersome task. For that reason,
the framework provides a variant of Phalcon\DI called Phalcon\DI\FactoryDefault whose task is to register all services
providing a full-stack framework.

<?php

// The FactoryDefault Dependency Injector automatically registers the
// right services providing a full-stack framework
$di = new \Phalcon\DI\FactoryDefault();

It registers the majority of services with components provided by the framework as standard. If we need to override
the definition of some service we could just set it again as we did above with “session”. This is the reason for the
existence of the variable $di.

2.5.7 Log into the Application

A “log in” facility will allow us to work on backend controllers. The separation between backend controllers and
frontend ones is only logical. All controllers are located in the same directory (app/controllers/).

To enter the system, users must have a valid username and password. Users are stored in the table “users” in the
database “invo”.

Before we can start a session, we need to configure the connection to the database in the application. A service called
“db” is set up in the service container with the connection information. As with the autoloader, we are again taking
parameters from the configuration file in order to configure a service:

<?php

// Database connection is created based on parameters defined in the configuration file
$di->set('db', function() use ($config) {

return new \Phalcon\Db\Adapter\Pdo\Mysql(array(
"host" => $config->database->host,
"username" => $config->database->username,
"password" => $config->database->password,
"dbname" => $config->database->name

));
});

54 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Here, we return an instance of the MySQL connection adapter. If needed, you could do extra actions such as adding a
logger, a profiler or change the adapter, setting it up as you want.

The following simple form (app/views/session/index.phtml) requests the login information. We’ve removed some
HTML code to make the example more concise:

<?php echo $this->tag->form('session/start') ?>

<label for="email">Username/Email</label>
<?php echo $this->tag->textField(array("email", "size" => "30")) ?>

<label for="password">Password</label>
<?php echo $this->tag->passwordField(array("password", "size" => "30")) ?>

<?php echo $this->tag->submitButton(array('Login')) ?>

</form>

The SessionController::startAction function (app/controllers/SessionController.php) has the task of validating the data
entered in the form including checking for a valid user in the database:

<?php

class SessionController extends ControllerBase
{

// ...

private function _registerSession($user)
{

$this->session->set('auth', array(
'id' => $user->id,
'name' => $user->name

));
}

public function startAction()
{

if ($this->request->isPost()) {

//Receiving the variables sent by POST
$email = $this->request->getPost('email', 'email');
$password = $this->request->getPost('password');

$password = sha1($password);

//Find the user in the database
$user = Users::findFirst(array(

"email = :email: AND password = :password: AND active = 'Y'",
"bind" => array('email' => $email, 'password' => $password)

));
if ($user != false) {

$this->_registerSession($user);

$this->flash->success('Welcome ' . $user->name);

//Forward to the 'invoices' controller if the user is valid
return $this->dispatcher->forward(array(

2.5. Tutorial 2: Explaining INVO 55



Phalcon PHP Framework Documentation, Release 1.3.0

'controller' => 'invoices',
'action' => 'index'

));
}

$this->flash->error('Wrong email/password');
}

//Forward to the login form again
return $this->dispatcher->forward(array(

'controller' => 'session',
'action' => 'index'

));

}

}

For simplicity, we have used “sha1” to store the password hashes in the database, however, this algorithm is not
recommended in real applications, use “bcrypt” instead.

Note that multiple public attributes are accessed in the controller like: $this->flash, $this->request or $this->session.
These are services defined in the services container from earlier. When they’re accessed the first time, they are injected
as part of the controller.

These services are shared, which means that we are always accessing the same instance regardless of the place where
we invoke them.

For instance, here we invoke the “session” service and then we store the user identity in the variable “auth”:

<?php

$this->session->set('auth', array(
'id' => $user->id,
'name' => $user->name

));

2.5.8 Securing the Backend

The backend is a private area where only registered users have access. Therefore, it is necessary to check that only
registered users have access to these controllers. If you aren’t logged into the application and you try to access, for
example, the products controller (which is private) you will see a screen like this:

Every time someone attempts to access any controller/action, the application verifies that the current role (in session)
has access to it, otherwise it displays a message like the above and forwards the flow to the home page.

Now let’s find out how the application accomplishes this. The first thing to know is that there is a component called
Dispatcher. It is informed about the route found by the Routing component. Then, it is responsible for loading the
appropriate controller and execute the corresponding action method.

Normally, the framework creates the Dispatcher automatically. In our case, we want to perform a verification before
executing the required action, checking if the user has access to it or not. To achieve this, we have replaced the
component by creating a function in the bootstrap:

<?php

$di->set('dispatcher', function() use ($di) {
$dispatcher = new Phalcon\Mvc\Dispatcher();

56 Chapter 2. Table of Contents

http://php.net/manual/en/function.sha1.php


Phalcon PHP Framework Documentation, Release 1.3.0

return $dispatcher;
});

We now have total control over the Dispatcher used in the application. Many components in the framework trigger
events that allow us to modify their internal flow of operation. As the Dependency Injector component acts as glue
for components, a new component called EventsManager allows us to intercept the events produced by a component,
routing the events to listeners.

Events Management

An EventsManager allows us to attach listeners to a particular type of event. The type that interests us now is “dis-
patch”. The following code filters all events produced by the Dispatcher:

<?php

$di->set('dispatcher', function() use ($di) {

//Obtain the standard eventsManager from the DI
$eventsManager = $di->getShared('eventsManager');

//Instantiate the Security plugin
$security = new Security($di);

//Listen for events produced in the dispatcher using the Security plugin
$eventsManager->attach('dispatch', $security);

$dispatcher = new Phalcon\Mvc\Dispatcher();

//Bind the EventsManager to the Dispatcher

2.5. Tutorial 2: Explaining INVO 57



Phalcon PHP Framework Documentation, Release 1.3.0

$dispatcher->setEventsManager($eventsManager);

return $dispatcher;
});

The Security plugin is a class located at (app/plugins/Security.php). This class implements the method “beforeDis-
patch”. This is the same name as one of the events produced in the Dispatcher:

<?php

use Phalcon\Events\Event,
Phalcon\Mvc\User\Plugin,
Phalcon\Mvc\Dispatcher,
Phalcon\Acl;

class Security extends Plugin
{

// ...

public function beforeDispatch(Event $event, Dispatcher $dispatcher)
{

// ...
}

}

The hook events always receive a first parameter that contains contextual information of the event produced ($event)
and a second one that is the object that produced the event itself ($dispatcher). It is not mandatory that plugins extend
the class Phalcon\Mvc\User\Plugin, but by doing this they gain easier access to the services available in the application.

Now, we’re verifying the role in the current session, checking if the user has access using the ACL list. If the user does
not have access we redirect to the home screen as explained before:

<?php

use Phalcon\Events\Event,
Phalcon\Mvc\User\Plugin,
Phalcon\Mvc\Dispatcher,
Phalcon\Acl;

class Security extends Plugin
{

// ...

public function beforeExecuteRoute(Event $event, Dispatcher $dispatcher)
{

//Check whether the "auth" variable exists in session to define the active role
$auth = $this->session->get('auth');
if (!$auth) {

$role = 'Guests';
} else {

$role = 'Users';
}

//Take the active controller/action from the dispatcher
$controller = $dispatcher->getControllerName();

58 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$action = $dispatcher->getActionName();

//Obtain the ACL list
$acl = $this->getAcl();

//Check if the Role have access to the controller (resource)
$allowed = $acl->isAllowed($role, $controller, $action);
if ($allowed != Acl::ALLOW) {

//If he doesn't have access forward him to the index controller
$this->flash->error("You don't have access to this module");
$dispatcher->forward(

array(
'controller' => 'index',
'action' => 'index'

)
);

//Returning "false" we tell to the dispatcher to stop the current operation
return false;

}

}

}

Providing an ACL list

In the above example we have obtained the ACL using the method $this->_getAcl(). This method is also implemented
in the Plugin. Now we are going to explain step-by-step how we built the access control list (ACL):

<?php

//Create the ACL
$acl = new Phalcon\Acl\Adapter\Memory();

//The default action is DENY access
$acl->setDefaultAction(Phalcon\Acl::DENY);

//Register two roles, Users is registered users
//and guests are users without a defined identity
$roles = array(

'users' => new Phalcon\Acl\Role('Users'),
'guests' => new Phalcon\Acl\Role('Guests')

);
foreach ($roles as $role) {

$acl->addRole($role);
}

Now we define the resources for each area respectively. Controller names are resources and their actions are accesses
for the resources:

<?php

//Private area resources (backend)
$privateResources = array(

'companies' => array('index', 'search', 'new', 'edit', 'save', 'create', 'delete'),

2.5. Tutorial 2: Explaining INVO 59



Phalcon PHP Framework Documentation, Release 1.3.0

'products' => array('index', 'search', 'new', 'edit', 'save', 'create', 'delete'),
'producttypes' => array('index', 'search', 'new', 'edit', 'save', 'create', 'delete'),
'invoices' => array('index', 'profile')

);
foreach ($privateResources as $resource => $actions) {

$acl->addResource(new Phalcon\Acl\Resource($resource), $actions);
}

//Public area resources (frontend)
$publicResources = array(
'index' => array('index'),
'about' => array('index'),
'session' => array('index', 'register', 'start', 'end'),
'contact' => array('index', 'send')

);
foreach ($publicResources as $resource => $actions) {

$acl->addResource(new Phalcon\Acl\Resource($resource), $actions);
}

The ACL now have knowledge of the existing controllers and their related actions. Role “Users” has access to all the
resources of both frontend and backend. The role “Guests” only has access to the public area:

<?php

//Grant access to public areas to both users and guests
foreach ($roles as $role) {

foreach ($publicResources as $resource => $actions) {
$acl->allow($role->getName(), $resource, '*');

}
}

//Grant access to private area only to role Users
foreach ($privateResources as $resource => $actions) {

foreach ($actions as $action) {
$acl->allow('Users', $resource, $action);

}
}

Hooray!, the ACL is now complete.

2.5.9 User Components

All the UI elements and visual style of the application has been achieved mostly through Twitter Bootstrap. Some
elements, such as the navigation bar changes according to the state of the application. For example, in the upper right
corner, the link “Log in / Sign Up” changes to “Log out” if an user is logged into the application.

This part of the application is implemented in the component “Elements” (app/library/Elements.php).

<?php

use Phalcon\Mvc\User\Component;

class Elements extends Component
{

public function getMenu()
{

//...

60 Chapter 2. Table of Contents

http://twitter.github.io/bootstrap/


Phalcon PHP Framework Documentation, Release 1.3.0

}

public function getTabs()
{

//...
}

}

This class extends the Phalcon\Mvc\User\Component, it is not imposed to extend a component with this class, but it
helps to get access more quickly to the application services. Now, we register this class in the services container:

<?php

//Register an user component
$di->set('elements', function(){

return new Elements();
});

As controllers, plugins or components within a view, this component also has access to the services registered in the
container and by just accessing an attribute with the same name as a previously registered service:

<div class="navbar navbar-fixed-top">
<div class="navbar-inner">

<div class="container">
<a class="btn btn-navbar" data-toggle="collapse" data-target=".nav-collapse">

<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>

</a>
<a class="brand" href="#">INVO</a>
<?php echo $this->elements->getMenu() ?>

</div>
</div>

</div>

<div class="container">
<?php echo $this->getContent() ?>
<hr>
<footer>

<p>&copy; Company 2012</p>
</footer>

</div>

The important part is:

<?php echo $this->elements->getMenu() ?>

2.5.10 Working with the CRUD

Most options that manipulate data (companies, products and types of products), were developed using a basic and
common CRUD (Create, Read, Update and Delete). Each CRUD contains the following files:

invo/
app/

app/controllers/
ProductsController.php

app/models/

2.5. Tutorial 2: Explaining INVO 61

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete


Phalcon PHP Framework Documentation, Release 1.3.0

Products.php
app/views/

products/
edit.phtml
index.phtml
new.phtml
search.phtml

Each controller has the following actions:

<?php

class ProductsController extends ControllerBase
{

/**
* The start action, it shows the "search" view

*/
public function indexAction()
{

//...
}

/**
* Execute the "search" based on the criteria sent from the "index"

* Returning a paginator for the results

*/
public function searchAction()
{

//...
}

/**
* Shows the view to create a "new" product

*/
public function newAction()
{

//...
}

/**
* Shows the view to "edit" an existing product

*/
public function editAction()
{

//...
}

/**
* Creates a product based on the data entered in the "new" action

*/
public function createAction()
{

//...
}

/**
* Updates a product based on the data entered in the "edit" action

62 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

*/
public function saveAction()
{

//...
}

/**
* Deletes an existing product

*/
public function deleteAction($id)
{

//...
}

}

The Search Form

Every CRUD starts with a search form. This form shows each field that has the table (products), allowing the user
creating a search criteria from any field. Table “products” has a relationship to the table “products_types”. In this case,
we previously queried the records in this table in order to facilitate the search by that field:

<?php

/**
* The start action, it shows the "search" view

*/
public function indexAction()
{

$this->persistent->searchParams = null;
$this->view->productTypes = ProductTypes::find();

}

All the “product types” are queried and passed to the view as a local variable “productTypes”. Then, in the view
(app/views/index.phtml) we show a “select” tag filled with those results:

<div>
<label for="product_types_id">Product Type</label>
<?php echo $this->tag->select(array(

"product_types_id",
$productTypes,
"using" => array("id", "name"),
"useDummy" => true

)) ?>
</div>

Note that $productTypes contains the data necessary to fill the SELECT tag using Phalcon\Tag::select. Once the form
is submitted, the action “search” is executed in the controller performing the search based on the data entered by the
user.

Performing a Search

The action “search” has a dual behavior. When accessed via POST, it performs a search based on the data sent from
the form. But when accessed via GET it moves the current page in the paginator. To differentiate one from another
HTTP method, we check it using the Request component:

2.5. Tutorial 2: Explaining INVO 63



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

/**
* Execute the "search" based on the criteria sent from the "index"

* Returning a paginator for the results

*/
public function searchAction()
{

if ($this->request->isPost()) {
//create the query conditions

} else {
//paginate using the existing conditions

}

//...

}

With the help of Phalcon\Mvc\Model\Criteria, we can create the search conditions intelligently based on the data types
and values sent from the form:

<?php

$query = Criteria::fromInput($this->di, "Products", $_POST);

This method verifies which values are different from “” (empty string) and null and takes them into account to create
the search criteria:

• If the field data type is text or similar (char, varchar, text, etc.) It uses an SQL “like” operator to filter the results.

• If the data type is not text or similar, it’ll use the operator “=”.

Additionally, “Criteria” ignores all the $_POST variables that do not match any field in the table. Values are automat-
ically escaped using “bound parameters”.

Now, we store the produced parameters in the controller’s session bag:

<?php

$this->persistent->searchParams = $query->getParams();

A session bag, is a special attribute in a controller that persists between requests. When accessed, this attribute injects
a Phalcon\Session\Bag service that is independent in each controller.

Then, based on the built params we perform the query:

<?php

$products = Products::find($parameters);
if (count($products) == 0) {

$this->flash->notice("The search did not found any products");
return $this->forward("products/index");

}

If the search doesn’t return any product, we forward the user to the index action again. Let’s pretend the search
returned results, then we create a paginator to navigate easily through them:

<?php

$paginator = new Phalcon\Paginator\Adapter\Model(array(

64 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

"data" => $products, //Data to paginate
"limit" => 5, //Rows per page
"page" => $numberPage //Active page

));

//Get active page in the paginator
$page = $paginator->getPaginate();

Finally we pass the returned page to view:

<?php

$this->view->setVar("page", $page);

In the view (app/views/products/search.phtml), we traverse the results corresponding to the current page:

<?php foreach ($page->items as $product) { ?>
<tr>

<td><?= $product->id ?></td>
<td><?= $product->getProductTypes()->name ?></td>
<td><?= $product->name ?></td>
<td><?= $product->price ?></td>
<td><?= $product->active ?></td>
<td><?= $this->tag->linkTo("products/edit/" . $product->id, 'Edit') ?></td>
<td><?= $this->tag->linkTo("products/delete/" . $product->id, 'Delete') ?></td>

</tr>
<?php } ?>

Creating and Updating Records

Now let’s see how the CRUD creates and updates records. From the “new” and “edit” views the data entered by the
user are sent to the actions “create” and “save” that perform actions of “creating” and “updating” products respectively.

In the creation case, we recover the data submitted and assign them to a new “products” instance:

<?php

/**
* Creates a product based on the data entered in the "new" action

*/
public function createAction()
{

$products = new Products();

$products->id = $this->request->getPost("id", "int");
$products->product_types_id = $this->request->getPost("product_types_id", "int");
$products->name = $this->request->getPost("name", "striptags");
$products->price = $this->request->getPost("price", "double");
$products->active = $this->request->getPost("active");

//...

}

Data is filtered before being assigned to the object. This filtering is optional, the ORM escapes the input data and
performs additional casting according to the column types.

2.5. Tutorial 2: Explaining INVO 65



Phalcon PHP Framework Documentation, Release 1.3.0

When saving we’ll know whether the data conforms to the business rules and validations implemented in the model
Products:

<?php

/**
* Creates a product based on the data entered in the "new" action

*/
public function createAction()
{

//...

if (!$products->create()) {

//The store failed, the following messages were produced
foreach ($products->getMessages() as $message) {

$this->flash->error((string) $message);
}
return $this->forward("products/new");

} else {
$this->flash->success("Product was created successfully");
return $this->forward("products/index");

}

}

Now, in the case of product updating, first we must present to the user the data that is currently in the edited record:

<?php

/**
* Shows the view to "edit" an existing product

*/
public function editAction($id)
{

//...

$product = Products::findFirstById($id);

$this->tag->setDefault("id", $product->id);
$this->tag->setDefault("product_types_id", $product->product_types_id);
$this->tag->setDefault("name", $product->name);
$this->tag->setDefault("price", $product->price);
$this->tag->setDefault("active", $product->active);

}

The “setDefault” helper sets a default value in the form on the attribute with the same name. Thanks to this, the user
can change any value and then sent it back to the database through to the “save” action:

<?php

/**
* Updates a product based on the data entered in the "edit" action

*/
public function saveAction()

66 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{

//...

//Find the product to update
$id = $this->request->getPost("id");
$product = Products::findFirstById($id);
if (!$product) {

$this->flash->error("products does not exist " . $id);
return $this->forward("products/index");

}

//... assign the values to the object and store it

}

2.5.11 Changing the Title Dynamically

When you browse between one option and another will see that the title changes dynamically indicating where we are
currently working. This is achieved in each controller initializer:

<?php

class ProductsController extends ControllerBase
{

public function initialize()
{

//Set the document title
$this->tag->setTitle('Manage your product types');
parent::initialize();

}

//...

}

Note, that the method parent::initialize() is also called, it adds more data to the title:

<?php

class ControllerBase extends Phalcon\Mvc\Controller
{

protected function initialize()
{

//Prepend the application name to the title
$this->tag->prependTitle('INVO | ');

}

//...
}

Finally, the title is printed in the main view (app/views/index.phtml):

<!DOCTYPE html>
<html>

2.5. Tutorial 2: Explaining INVO 67



Phalcon PHP Framework Documentation, Release 1.3.0

<head>
<?php echo $this->tag->getTitle() ?>

</head>
<!-- ... -->

</html>

2.5.12 Conclusion

This tutorial covers many more aspects of building applications with Phalcon, hope you have served to learn more and
get more out of the framework.

2.6 Tutorial 3: Creating a Simple REST API

In this tutorial, we will explain how to create a simple application that provides a RESTful API using the different
HTTP methods:

• GET to retrieve and search data

• POST to add data

• PUT to update data

• DELETE to delete data

2.6.1 Defining the API

The API consists of the following methods:

Method URL Action
GET /api/robots Retrieves all robots
GET /api/robots/search/Astro Searches for robots with ‘Astro’ in their name
GET /api/robots/2 Retrieves robots based on primary key
POST /api/robots Adds a new robot
PUT /api/robots/2 Updates robots based on primary key
DELETE /api/robots/2 Deletes robots based on primary key

2.6.2 Creating the Application

As the application is so simple, we will not implement any full MVC environment to develop it. In this case, we will
use a micro application to meet our goal.

The following file structure is more than enough:

my-rest-api/
models/

Robots.php
index.php
.htaccess

First, we need an .htaccess file that contains all the rules to rewrite the URIs to the index.php file, that is our application:

68 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Representational_state_transfer


Phalcon PHP Framework Documentation, Release 1.3.0

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ index.php?_url=/$1 [QSA,L]

</IfModule>

Then, in the index.php file we create the following:

<?php

$app = new \Phalcon\Mvc\Micro();

//define the routes here

$app->handle();

Now we will create the routes as we defined above:

<?php

$app = new Phalcon\Mvc\Micro();

//Retrieves all robots
$app->get('/api/robots', function() {

});

//Searches for robots with $name in their name
$app->get('/api/robots/search/{name}', function($name) {

});

//Retrieves robots based on primary key
$app->get('/api/robots/{id:[0-9]+}', function($id) {

});

//Adds a new robot
$app->post('/api/robots', function() {

});

//Updates robots based on primary key
$app->put('/api/robots/{id:[0-9]+}', function() {

});

//Deletes robots based on primary key
$app->delete('/api/robots/{id:[0-9]+}', function() {

});

$app->handle();

Each route is defined with a method with the same name as the HTTP method, as first parameter we pass a route pattern,
followed by a handler. In this case, the handler is an anonymous function. The following route: ‘/api/robots/{id:[0-
9]+}’, by example, explicitly sets that the “id” parameter must have a numeric format.

When a defined route matches the requested URI then the application executes the corresponding handler.

2.6. Tutorial 3: Creating a Simple REST API 69



Phalcon PHP Framework Documentation, Release 1.3.0

2.6.3 Creating a Model

Our API provides information about ‘robots’, these data are stored in a database. The following model allows us to
access that table in an object-oriented way. We have implemented some business rules using built-in validators and
simple validations. Doing this will give us the peace of mind that saved data meet the requirements of our application:

<?php

use Phalcon\Mvc\Model,
Phalcon\Mvc\Model\Message,
Phalcon\Mvc\Model\Validator\InclusionIn,
Phalcon\Mvc\Model\Validator\Uniqueness;

class Robots extends Model
{

public function validation()
{

//Type must be: droid, mechanical or virtual
$this->validate(new InclusionIn(

array(
"field" => "type",
"domain" => array("droid", "mechanical", "virtual")

)
));

//Robot name must be unique
$this->validate(new Uniqueness(

array(
"field" => "name",
"message" => "The robot name must be unique"

)
));

//Year cannot be less than zero
if ($this->year < 0) {

$this->appendMessage(new Message("The year cannot be less than zero"));
}

//Check if any messages have been produced
if ($this->validationHasFailed() == true) {

return false;
}

}

}

Now, we must set up a connection to be used by this model and load it within our app:

<?php

// Use Loader() to autoload our model
$loader = new \Phalcon\Loader();

$loader->registerDirs(array(
__DIR__ . '/models/'

))->register();

$di = new \Phalcon\DI\FactoryDefault();

70 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Set up the database service
$di->set('db', function(){

return new \Phalcon\Db\Adapter\Pdo\Mysql(array(
"host" => "localhost",
"username" => "asimov",
"password" => "zeroth",
"dbname" => "robotics"

));
});

//Create and bind the DI to the application
$app = new \Phalcon\Mvc\Micro($di);

2.6.4 Retrieving Data

The first “handler” that we will implement is which by method GET returns all available robots. Let’s use PHQL to
perform this simple query returning the results as JSON:

<?php

//Retrieves all robots
$app->get('/api/robots', function() use ($app) {

$phql = "SELECT * FROM Robots ORDER BY name";
$robots = $app->modelsManager->executeQuery($phql);

$data = array();
foreach ($robots as $robot) {

$data[] = array(
'id' => $robot->id,
'name' => $robot->name,

);
}

echo json_encode($data);
});

PHQL, allow us to write queries using a high-level, object-oriented SQL dialect that internally translates to the right
SQL statements depending on the database system we are using. The clause “use” in the anonymous function allows
us to pass some variables from the global to local scope easily.

The searching by name handler would look like:

<?php

//Searches for robots with $name in their name
$app->get('/api/robots/search/{name}', function($name) use ($app) {

$phql = "SELECT * FROM Robots WHERE name LIKE :name: ORDER BY name";
$robots = $app->modelsManager->executeQuery($phql, array(

'name' => '%' . $name . '%'
));

$data = array();
foreach ($robots as $robot) {

$data[] = array(
'id' => $robot->id,

2.6. Tutorial 3: Creating a Simple REST API 71



Phalcon PHP Framework Documentation, Release 1.3.0

'name' => $robot->name,
);

}

echo json_encode($data);

});

Searching by the field “id” it’s quite similar, in this case, we’re also notifying if the robot was found or not:

<?php

//Retrieves robots based on primary key
$app->get('/api/robots/{id:[0-9]+}', function($id) use ($app) {

$phql = "SELECT * FROM Robots WHERE id = :id:";
$robot = $app->modelsManager->executeQuery($phql, array(

'id' => $id
))->getFirst();

//Create a response
$response = new Phalcon\Http\Response();

if ($robot == false) {
$response->setJsonContent(array('status' => 'NOT-FOUND'));

} else {
$response->setJsonContent(array(

'status' => 'FOUND',
'data' => array(

'id' => $robot->id,
'name' => $robot->name

)
));

}

return $response;
});

2.6.5 Inserting Data

Taking the data as a JSON string inserted in the body of the request, we also use PHQL for insertion:

<?php

//Adds a new robot
$app->post('/api/robots', function() use ($app) {

$robot = $app->request->getJsonRawBody();

$phql = "INSERT INTO Robots (name, type, year) VALUES (:name:, :type:, :year:)";

$status = $app->modelsManager->executeQuery($phql, array(
'name' => $robot->name,
'type' => $robot->type,
'year' => $robot->year

));

72 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Create a response
$response = new Phalcon\Http\Response();

//Check if the insertion was successful
if ($status->success() == true) {

$robot->id = $status->getModel()->id;

$response->setJsonContent(array('status' => 'OK', 'data' => $robot));

} else {

//Change the HTTP status
$response->setStatusCode(500, "Internal Error");

//Send errors to the client
$errors = array();
foreach ($status->getMessages() as $message) {

$errors[] = $message->getMessage();
}

$response->setJsonContent(array('status' => 'ERROR', 'messages' => $errors));
}

return $response;
});

2.6.6 Updating Data

The data update is similar to insertion. The “id” passed as parameter indicates what robot must be updated:

<?php

//Updates robots based on primary key
$app->put('/api/robots/{id:[0-9]+}', function($id) use($app) {

$robot = $app->request->getJsonRawBody();

$phql = "UPDATE Robots SET name = :name:, type = :type:, year = :year: WHERE id = :id:";
$status = $app->modelsManager->executeQuery($phql, array(

'id' => $id,
'name' => $robot->name,
'type' => $robot->type,
'year' => $robot->year

));

//Create a response
$response = new Phalcon\Http\Response();

//Check if the insertion was successful
if ($status->success() == true) {

$response->setJsonContent(array('status' => 'OK'));
} else {

//Change the HTTP status
$response->setStatusCode(500, "Internal Error");

2.6. Tutorial 3: Creating a Simple REST API 73



Phalcon PHP Framework Documentation, Release 1.3.0

$errors = array();
foreach ($status->getMessages() as $message) {

$errors[] = $message->getMessage();
}

$response->setJsonContent(array('status' => 'ERROR', 'messages' => $errors));
}

return $response;
});

2.6.7 Deleting Data

The data delete is similar to update. The “id” passed as parameter indicates what robot must be deleted:

<?php

//Deletes robots based on primary key
$app->delete('/api/robots/{id:[0-9]+}', function($id) use ($app) {

$phql = "DELETE FROM Robots WHERE id = :id:";
$status = $app->modelsManager->executeQuery($phql, array(

'id' => $id
));

//Create a response
$response = new Phalcon\Http\Response();

if ($status->success() == true) {
$response->setJsonContent(array('status' => 'OK'));

} else {

//Change the HTTP status
$response->setStatusCode(500, "Internal Error");

$errors = array();
foreach ($status->getMessages() as $message) {

$errors[] = $message->getMessage();
}

$response->setJsonContent(array('status' => 'ERROR', 'messages' => $errors));

}

return $response;
});

2.6.8 Testing our Application

Using curl we’ll test every route in our application verifying its proper operation:

Obtain all the robots:

curl -i -X GET http://localhost/my-rest-api/api/robots

HTTP/1.1 200 OK

74 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/CURL


Phalcon PHP Framework Documentation, Release 1.3.0

Date: Wed, 12 Sep 2012 07:05:13 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 117
Content-Type: text/html; charset=UTF-8

[{"id":"1","name":"Robotina"},{"id":"2","name":"Astro Boy"},{"id":"3","name":"Terminator"}]

Search a robot by its name:

curl -i -X GET http://localhost/my-rest-api/api/robots/search/Astro

HTTP/1.1 200 OK
Date: Wed, 12 Sep 2012 07:09:23 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 31
Content-Type: text/html; charset=UTF-8

[{"id":"2","name":"Astro Boy"}]

Obtain a robot by its id:

curl -i -X GET http://localhost/my-rest-api/api/robots/3

HTTP/1.1 200 OK
Date: Wed, 12 Sep 2012 07:12:18 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 56
Content-Type: text/html; charset=UTF-8

{"status":"FOUND","data":{"id":"3","name":"Terminator"}}

Insert a new robot:

curl -i -X POST -d '{"name":"C-3PO","type":"droid","year":1977}'
http://localhost/my-rest-api/api/robots

HTTP/1.1 200 OK
Date: Wed, 12 Sep 2012 07:15:09 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 75
Content-Type: text/html; charset=UTF-8

{"status":"OK","data":{"name":"C-3PO","type":"droid","year":1977,"id":"4"}}

Try to insert a new robot with the name of an existing robot:

curl -i -X POST -d '{"name":"C-3PO","type":"droid","year":1977}'
http://localhost/my-rest-api/api/robots

HTTP/1.1 500 Internal Error
Date: Wed, 12 Sep 2012 07:18:28 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 63
Content-Type: text/html; charset=UTF-8

{"status":"ERROR","messages":["The robot name must be unique"]}

Or update a robot with an unknown type:

2.6. Tutorial 3: Creating a Simple REST API 75



Phalcon PHP Framework Documentation, Release 1.3.0

curl -i -X PUT -d '{"name":"ASIMO","type":"humanoid","year":2000}'
http://localhost/my-rest-api/api/robots/4

HTTP/1.1 500 Internal Error
Date: Wed, 12 Sep 2012 08:48:01 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 104
Content-Type: text/html; charset=UTF-8

{"status":"ERROR","messages":["Value of field 'type' must be part of
list: droid, mechanical, virtual"]}

Finally, delete a robot:

curl -i -X DELETE http://localhost/my-rest-api/api/robots/4

HTTP/1.1 200 OK
Date: Wed, 12 Sep 2012 08:49:29 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 15
Content-Type: text/html; charset=UTF-8

{"status":"OK"}

2.6.9 Conclusion

As we have seen, develop a RESTful API with Phalcon is easy. Later in the documentation we’ll explain in detail how
to use micro applications and the PHQL language.

2.7 List of examples

Following examples are full applications you can use to learn more about Phalcon and use them as base for your own
websites/applications:

2.8 Dependency Injection/Service Location

The following example is a bit lengthy, but explains why use service location and dependency injection. First, let’s
pretend we are developing a component called SomeComponent. This performs a task that is not important now. Our
component has some dependency that is a connection to a database.

In this first example, the connection is created inside the component. This approach is impractical; due to the fact we
cannot change the connection parameters or the type of database system because the component only works as created.

<?php

class SomeComponent
{

/**
* The instantiation of the connection is hardcoded inside

* the component, therefore it's difficult replace it externally

* or change its behavior

*/

76 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public function someDbTask()
{

$connection = new Connection(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));

// ...
}

}

$some = new SomeComponent();
$some->someDbTask();

To solve this, we have created a setter that injects the dependency externally before using it. For now, this seems to be
a good solution:

<?php

class SomeComponent
{

protected $_connection;

/**
* Sets the connection externally

*/
public function setConnection($connection)
{

$this->_connection = $connection;
}

public function someDbTask()
{

$connection = $this->_connection;

// ...
}

}

$some = new SomeComponent();

//Create the connection
$connection = new Connection(array(

"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));

//Inject the connection in the component
$some->setConnection($connection);

$some->someDbTask();

2.8. Dependency Injection/Service Location 77



Phalcon PHP Framework Documentation, Release 1.3.0

Now consider that we use this component in different parts of the application and then we will need to create the
connection several times before passing it to the component. Using some kind of global registry where we obtain the
connection instance and not have to create it again and again could solve this:

<?php

class Registry
{

/**
* Returns the connection

*/
public static function getConnection()
{

return new Connection(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));
}

}

class SomeComponent
{

protected $_connection;

/**
* Sets the connection externally

*/
public function setConnection($connection)
{

$this->_connection = $connection;
}

public function someDbTask()
{

$connection = $this->_connection;

// ...
}

}

$some = new SomeComponent();

//Pass the connection defined in the registry
$some->setConnection(Registry::getConnection());

$some->someDbTask();

Now, let’s imagine that we must implement two methods in the component, the first always need to create a new
connection and the second always need to use a shared connection:

<?php

class Registry

78 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{

protected static $_connection;

/**
* Creates a connection

*/
protected static function _createConnection()
{

return new Connection(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));
}

/**
* Creates a connection only once and returns it

*/
public static function getSharedConnection()
{

if (self::$_connection===null){
$connection = self::_createConnection();
self::$_connection = $connection;

}
return self::$_connection;

}

/**
* Always returns a new connection

*/
public static function getNewConnection()
{

return self::_createConnection();
}

}

class SomeComponent
{

protected $_connection;

/**
* Sets the connection externally

*/
public function setConnection($connection)
{

$this->_connection = $connection;
}

/**
* This method always needs the shared connection

*/
public function someDbTask()
{

$connection = $this->_connection;

2.8. Dependency Injection/Service Location 79



Phalcon PHP Framework Documentation, Release 1.3.0

// ...
}

/**
* This method always needs a new connection

*/
public function someOtherDbTask($connection)
{

}

}

$some = new SomeComponent();

//This injects the shared connection
$some->setConnection(Registry::getSharedConnection());

$some->someDbTask();

//Here, we always pass a new connection as parameter
$some->someOtherDbTask(Registry::getConnection());

So far we have seen how dependency injection solved our problems. Passing dependencies as arguments instead
of creating them internally in the code makes our application more maintainable and decoupled. However, in the
long-term, this form of dependency injection have some disadvantages.

For instance, if the component has many dependencies, we will need to create multiple setter arguments to pass the
dependencies or create a constructor that pass them with many arguments, additionally creating dependencies before
using the component, every time, makes our code not as maintainable as we would like:

<?php

//Create the dependencies or retrieve them from the registry
$connection = new Connection();
$session = new Session();
$fileSystem = new FileSystem();
$filter = new Filter();
$selector = new Selector();

//Pass them as constructor parameters
$some = new SomeComponent($connection, $session, $fileSystem, $filter, $selector);

// ... or using setters

$some->setConnection($connection);
$some->setSession($session);
$some->setFileSystem($fileSystem);
$some->setFilter($filter);
$some->setSelector($selector);

Think we had to create this object in many parts of our application. If you ever do not require any of the dependencies,
we need to go everywhere to remove the parameter in the constructor or the setter where we injected the code. To
solve this, we return again to a global registry to create the component. However, it adds a new layer of abstraction
before creating the object:

<?php

80 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

class SomeComponent
{

// ...

/**
* Define a factory method to create SomeComponent instances injecting its dependencies

*/
public static function factory()
{

$connection = new Connection();
$session = new Session();
$fileSystem = new FileSystem();
$filter = new Filter();
$selector = new Selector();

return new self($connection, $session, $fileSystem, $filter, $selector);
}

}

One moment, we returned to the beginning, we are again building the dependencies inside of the component! We can
move on and find out a way to solve this problem every time. But it seems that time and again we fall back into bad
practices.

A practical and elegant way to solve these problems is using a container for dependencies. The containers act as the
global registry that we saw earlier. Using the container for dependencies as a bridge to obtain the dependencies allows
us to reduce the complexity of our component:

<?php

class SomeComponent
{

protected $_di;

public function __construct($di)
{

$this->_di = $di;
}

public function someDbTask()
{

// Get the connection service
// Always returns a new connection
$connection = $this->_di->get('db');

}

public function someOtherDbTask()
{

// Get a shared connection service,
// this will return the same connection everytime
$connection = $this->_di->getShared('db');

//This method also requires an input filtering service

2.8. Dependency Injection/Service Location 81



Phalcon PHP Framework Documentation, Release 1.3.0

$filter = $this->_di->get('filter');

}

}

$di = new Phalcon\DI();

//Register a "db" service in the container
$di->set('db', function() {

return new Connection(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));
});

//Register a "filter" service in the container
$di->set('filter', function() {

return new Filter();
});

//Register a "session" service in the container
$di->set('session', function() {

return new Session();
});

//Pass the service container as unique parameter
$some = new SomeComponent($di);

$some->someTask();

The component now simply access the service it requires when it needs it, if it does not require a service that is not
even initialized saving resources. The component is now highly decoupled. For example, we can replace the manner
in which connections are created, their behavior or any other aspect of them and that would not affect the component.

2.8.1 Our approach

Phalcon\DI is a component implementing Dependency Injection and Location of services and it’s itself a container for
them.

Since Phalcon is highly decoupled, Phalcon\DI is essential to integrate the different components of the framework.
The developer can also use this component to inject dependencies and manage global instances of the different classes
used in the application.

Basically, this component implements the Inversion of Control pattern. Applying this, the objects do not receive their
dependencies using setters or constructors, but requesting a service dependency injector. This reduces the overall
complexity since there is only one way to get the required dependencies within a component.

Additionally, this pattern increases testability in the code, thus making it less prone to errors.

2.8.2 Registering services in the Container

The framework itself or the developer can register services. When a component A requires component B (or an
instance of its class) to operate, it can request component B from the container, rather than creating a new instance

82 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Inversion_of_control


Phalcon PHP Framework Documentation, Release 1.3.0

component B.

This way of working gives us many advantages:

• We can easily replace a component with one created by ourselves or a third party.

• We have full control of the object initialization, allowing us to set these objects, as needed before delivering
them to components.

• We can get global instances of components in a structured and unified way

Services can be registered using several types of definitions:

<?php

//Create the Dependency Injector Container
$di = new Phalcon\DI();

//By its class name
$di->set("request", 'Phalcon\Http\Request');

//Using an anonymous function, the instance will be lazy loaded
$di->set("request", function() {

return new Phalcon\Http\Request();
});

//Registering an instance directly
$di->set("request", new Phalcon\Http\Request());

//Using an array definition
$di->set("request", array(

"className" => 'Phalcon\Http\Request'
));

The array syntax is also allowed to register services:

<?php

//Create the Dependency Injector Container
$di = new Phalcon\DI();

//By its class name
$di["request"] = 'Phalcon\Http\Request';

//Using an anonymous function, the instance will be lazy loaded
$di["request"] = function() {

return new Phalcon\Http\Request();
};

//Registering an instance directly
$di["request"] = new Phalcon\Http\Request();

//Using an array definition
$di["request"] = array(

"className" => 'Phalcon\Http\Request'
);

In the examples above, when the framework needs to access the request data, it will ask for the service identified as
‘request’ in the container. The container in turn will return an instance of the required service. A developer might
eventually replace a component when he/she needs.

2.8. Dependency Injection/Service Location 83



Phalcon PHP Framework Documentation, Release 1.3.0

Each of the methods (demonstrated in the examples above) used to set/register a service has advantages and disadvan-
tages. It is up to the developer and the particular requirements that will designate which one is used.

Setting a service by a string is simple, but lacks flexibility. Setting services using an array offers a lot more flexibility,
but makes the code more complicated. The lambda function is a good balance between the two, but could lead to more
maintenance than one would expect.

Phalcon\DI offers lazy loading for every service it stores. Unless the developer chooses to instantiate an object directly
and store it in the container, any object stored in it (via array, string, etc.) will be lazy loaded i.e. instantiated only
when requested.

Simple Registration

As seen before, there are several ways to register services. These we call simple:

String

This type expects the name of a valid class, returning an object of the specified class, if the class is not loaded it will be
instantiated using an auto-loader. This type of definition does not allow to specify arguments for the class constructor
or parameters:

<?php

// return new Phalcon\Http\Request();
$di->set('request', 'Phalcon\Http\Request');

Object

This type expects an object. Due to the fact that object does not need to be resolved as it is already an object, one
could say that it is not really a dependency injection, however it is useful if you want to force the returned dependency
to always be the same object/value:

<?php

// return new Phalcon\Http\Request();
$di->set('request', new Phalcon\Http\Request());

Closures/Anonymous functions

This method offers greater freedom to build the dependency as desired, however, it is difficult to change some of the
parameters externally without having to completely change the definition of dependency:

<?php

$di->set("db", function() {
return new \Phalcon\Db\Adapter\Pdo\Mysql(array(

"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "blog"

));
});

84 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Some of the limitations can be overcome by passing additional variables to the closure’s environment:

<?php

//Using the $config variable in the current scope
$di->set("db", function() use ($config) {

return new \Phalcon\Db\Adapter\Pdo\Mysql(array(
"host" => $config->host,
"username" => $config->username,
"password" => $config->password,
"dbname" => $config->name

));
});

Complex Registration

If it is required to change the definition of a service without instantiating/resolving the service, then, we need to define
the services using the array syntax. Define a service using an array definition can be a little more verbose:

<?php

//Register a service 'logger' with a class name and its parameters
$di->set('logger', array(

'className' => 'Phalcon\Logger\Adapter\File',
'arguments' => array(

array(
'type' => 'parameter',
'value' => '../apps/logs/error.log'

)
)

));

//Using an anonymous function
$di->set('logger', function() {

return new \Phalcon\Logger\Adapter\File('../apps/logs/error.log');
});

Both service registrations above produce the same result. The array definition however, allows for alteration of the
service parameters if needed:

<?php

//Change the service class name
$di->getService('logger')->setClassName('MyCustomLogger');

//Change the first parameter without instantiating the logger
$di->getService('logger')->setParameter(0, array(

'type' => 'parameter',
'value' => '../apps/logs/error.log'

));

In addition by using the array syntax you can use three types of dependency injection:

Constructor Injection

This injection type passes the dependencies/arguments to the class constructor. Let’s pretend we have the following
component:

2.8. Dependency Injection/Service Location 85



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

namespace SomeApp;

use Phalcon\Http\Response;

class SomeComponent
{

protected $_response;

protected $_someFlag;

public function __construct(Response $response, $someFlag)
{

$this->_response = $response;
$this->_someFlag = $someFlag;

}

}

The service can be registered this way:

<?php

$di->set('response', array(
'className' => 'Phalcon\Http\Response'

));

$di->set('someComponent', array(
'className' => 'SomeApp\SomeComponent',
'arguments' => array(

array('type' => 'service', 'name' => 'response'),
array('type' => 'parameter', 'value' => true)

)
));

The service “response” (Phalcon\Http\Response) is resolved to be passed as the first argument of the constructor, while
the second is a boolean value (true) that is passed as it is.

Setter Injection

Classes may have setters to inject optional dependencies, our previous class can be changed to accept the dependencies
with setters:

<?php

namespace SomeApp;

use Phalcon\Http\Response;

class SomeComponent
{

protected $_response;

protected $_someFlag;

86 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public function setResponse(Response $response)
{

$this->_response = $response;
}

public function setFlag($someFlag)
{

$this->_someFlag = $someFlag;
}

}

A service with setter injection can be registered as follows:

<?php

$di->set('response', array(
'className' => 'Phalcon\Http\Response'

));

$di->set('someComponent', array(
'className' => 'SomeApp\SomeComponent',
'calls' => array(

array(
'method' => 'setResponse',
'arguments' => array(

array('type' => 'service', 'name' => 'response'),
)

),
array(

'method' => 'setFlag',
'arguments' => array(

array('type' => 'parameter', 'value' => true)
)

)
)

));

Properties Injection

A less common strategy is to inject dependencies or parameters directly into public attributes of the class:

<?php

namespace SomeApp;

use Phalcon\Http\Response;

class SomeComponent
{

public $response;

public $someFlag;

}

2.8. Dependency Injection/Service Location 87



Phalcon PHP Framework Documentation, Release 1.3.0

A service with properties injection can be registered as follows:

<?php

$di->set('response', array(
'className' => 'Phalcon\Http\Response'

));

$di->set('someComponent', array(
'className' => 'SomeApp\SomeComponent',
'properties' => array(

array(
'name' => 'response',
'value' => array('type' => 'service', 'name' => 'response')

),
array(

'name' => 'someFlag',
'value' => array('type' => 'parameter', 'value' => true)

)
)

));

Supported parameter types include the following:

Type Description Example
param-
eter

Represents a literal value to be
passed as parameter

array(‘type’ => ‘parameter’, ‘value’ => 1234)

service Represents another service in the
service container

array(‘type’ => ‘service’, ‘name’ => ‘request’)

in-
stance

Represents an object that must be
built dynamically

array(‘type’ => ‘instance’, ‘className’ => ‘DateTime’,
‘arguments’ => array(‘now’))

Resolving a service whose definition is complex may be slightly slower than simple definitions seen previously. How-
ever, these provide a more robust approach to define and inject services.

Mixing different types of definitions is allowed, everyone can decide what is the most appropriate way to register the
services according to the application needs.

2.8.3 Resolving Services

Obtaining a service from the container is a matter of simply calling the “get” method. A new instance of the service
will be returned:

<?php $request = $di->get("request");

Or by calling through the magic method:

<?php

$request = $di->getRequest();

Or using the array-access syntax:

<?php

$request = $di['request'];

Arguments can be passed to the constructor by adding an array parameter to the method “get”:

88 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

// new MyComponent("some-parameter", "other")
$component = $di->get("MyComponent", array("some-parameter", "other"));

2.8.4 Shared services

Services can be registered as “shared” services this means that they always will act as singletons. Once the service
is resolved for the first time the same instance of it is returned every time a consumer retrieve the service from the
container:

<?php

//Register the session service as "always shared"
$di->setShared('session', function() {

$session = new Phalcon\Session\Adapter\Files();
$session->start();
return $session;

});

$session = $di->get('session'); // Locates the service for the first time
$session = $di->getSession(); // Returns the first instantiated object

An alternative way to register shared services is to pass “true” as third parameter of “set”:

<?php

//Register the session service as "always shared"
$di->set('session', function() {

//...
}, true);

If a service isn’t registered as shared and you want to be sure that a shared instance will be accessed every time the
service is obtained from the DI, you can use the ‘getShared’ method:

<?php

$request = $di->getShared("request");

2.8.5 Manipulating services individually

Once a service is registered in the service container, you can retrieve it to manipulate it individually:

<?php

//Register the "register" service
$di->set('request', 'Phalcon\Http\Request');

//Get the service
$requestService = $di->getService('request');

//Change its definition
$requestService->setDefinition(function() {

return new Phalcon\Http\Request();
});

2.8. Dependency Injection/Service Location 89

http://en.wikipedia.org/wiki/Singleton_pattern


Phalcon PHP Framework Documentation, Release 1.3.0

//Change it to shared
$requestService->setShared(true);

//Resolve the service (return a Phalcon\Http\Request instance)
$request = $requestService->resolve();

2.8.6 Instantiating classes via the Service Container

When you request a service to the service container, if it can’t find out a service with the same name it’ll try to load a
class with the same name. With this behavior we can replace any class by another simply by registering a service with
its name:

<?php

//Register a controller as a service
$di->set('IndexController', function() {

$component = new Component();
return $component;

}, true);

//Register a controller as a service
$di->set('MyOtherComponent', function() {

//Actually returns another component
$component = new AnotherComponent();
return $component;

});

//Create an instance via the service container
$myComponent = $di->get('MyOtherComponent');

You can take advantage of this, always instantiating your classes via the service container (even if they aren’t registered
as services). The DI will fallback to a valid autoloader to finally load the class. By doing this, you can easily replace
any class in the future by implementing a definition for it.

2.8.7 Automatic Injecting of the DI itself

If a class or component requires the DI itself to locate services, the DI can automatically inject itself to the instances
it creates, to do this, you need to implement the Phalcon\DI\InjectionAwareInterface in your classes:

<?php

class MyClass implements \Phalcon\DI\InjectionAwareInterface
{

protected $_di;

public function setDi($di)
{

$this->_di = $di;
}

public function getDi()
{

return $this->_di;
}

90 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

}

Then once the service is resolved, the $di will be passed to setDi automatically:

<?php

//Register the service
$di->set('myClass', 'MyClass');

//Resolve the service (NOTE: $myClass->setDi($di) is automatically called)
$myClass = $di->get('myClass');

2.8.8 Avoiding service resolution

Some services are used in each of the requests made to the application, eliminate the process of resolving the service
could add some small improvement in performance.

<?php

//Resolve the object externally instead of using a definition for it:
$router = new MyRouter();

//Pass the resolved object to the service registration
$di->set('router', $router);

2.8.9 Organizing services in files

You can better organize your application by moving the service registration to individual files instead of doing every-
thing in the application’s bootstrap:

<?php

$di->set('router', function() {
return include "../app/config/routes.php";

});

Then in the file (”../app/config/routes.php”) return the object resolved:

<?php

$router = new MyRouter();

$router->post('/login');

return $router;

2.8.10 Accessing the DI in a static way

If needed you can access the latest DI created in a static function in the following way:

<?php

class SomeComponent
{

2.8. Dependency Injection/Service Location 91



Phalcon PHP Framework Documentation, Release 1.3.0

public static function someMethod()
{

//Get the session service
$session = Phalcon\DI::getDefault()->getSession();

}

}

2.8.11 Factory Default DI

Although the decoupled character of Phalcon offers us great freedom and flexibility, maybe we just simply want
to use it as a full-stack framework. To achieve this, the framework provides a variant of Phalcon\DI called Phal-
con\DI\FactoryDefault. This class automatically registers the appropriate services bundled with the framework to act
as full-stack.

<?php $di = new Phalcon\DI\FactoryDefault();

2.8.12 Service Name Conventions

Although you can register services with the names you want, Phalcon has a several naming conventions that allow it
to get the the correct (built-in) service when you need it.

92 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Service Name Description Default Shared
dispatcher Controllers Dispatching

Service
Phalcon\Mvc\Dispatcher Yes

router Routing Service Phalcon\Mvc\Router Yes
url URL Generator Service Phalcon\Mvc\Url Yes
request HTTP Request Environ-

ment Service
Phalcon\Http\Request Yes

response HTTP Response Environ-
ment Service

Phalcon\Http\Response Yes

cookies HTTP Cookies Manage-
ment Service

Phalcon\Http\Response\CookiesYes

filter Input Filtering Service Phalcon\Filter Yes
flash Flash Messaging Service Phalcon\Flash\Direct Yes
flashSession Flash Session Messaging

Service
Phalcon\Flash\Session Yes

session Session Service Phalcon\Session\Adapter\FilesYes
eventsManager Events Management Ser-

vice
Phalcon\Events\Manager Yes

db Low-Level Database Con-
nection Service

Phalcon\Db Yes

security Security helpers Phalcon\Security Yes
crypt Encrypt/Decrypt data Phalcon\Crypt Yes
tag HTML generation helpers Phalcon\Tag Yes
escaper Contextual Escaping Phalcon\Escaper Yes
annotations Annotations Parser Phalcon\Annotations\Adapter\MemoryYes
modelsManager Models Management Ser-

vice
Phalcon\Mvc\Model\Manager Yes

modelsMetadata Models Meta-Data Service Phalcon\Mvc\Model\MetaData\MemoryYes
transactionManager Models Transaction Man-

ager Service
Phalcon\Mvc\Model\Transaction\ManagerYes

modelsCache Cache backend for models
cache

None •

viewsCache Cache backend for views
fragments

None •

2.8.13 Implementing your own DI

The Phalcon\DiInterface interface must be implemented to create your own DI replacing the one provided by Phalcon
or extend the current one.

2.9 The MVC Architecture

Phalcon offers the object-oriented classes, necessary to implement the Model, View, Controller architecture (often
referred to as MVC) in your application. This design pattern is widely used by other web frameworks and desktop
applications.

MVC benefits include:

• Isolation of business logic from the user interface and the database layer

• Making it clear where different types of code belong for easier maintenance

2.9. The MVC Architecture 93

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


Phalcon PHP Framework Documentation, Release 1.3.0

If you decide to use MVC, every request to your application resources will be managed by the MVC architecture.
Phalcon classes are written in C language, offering a high performance approach of this pattern in a PHP based
application.

2.9.1 Models

A model represents the information (data) of the application and the rules to manipulate that data. Models are primarily
used for managing the rules of interaction with a corresponding database table. In most cases, each table in your
database will correspond to one model in your application. The bulk of your application’s business logic will be
concentrated in the models. Learn more

2.9.2 Views

Views represent the user interface of your application. Views are often HTML files with embedded PHP code that
perform tasks related solely to the presentation of the data. Views handle the job of providing data to the web browser
or other tool that is used to make requests from your application. Learn more

2.9.3 Controllers

The controllers provide the “flow” between models and views. Controllers are responsible for processing the incoming
requests from the web browser, interrogating the models for data, and passing that data on to the views for presentation.
Learn more

2.10 Using Controllers

The controllers provide a number of methods that are called actions. Actions are methods on a controller that handle
requests. By default all public methods on a controller map to actions and are accessible by an URL. Actions are
responsible for interpreting the request and creating the response. Usually responses are in the form of a rendered
view, but there are other ways to create responses as well.

For instance, when you access an URL like this: http://localhost/blog/posts/show/2012/the-post-title Phalcon by de-
fault will decompose each part like this:

Phalcon Directory blog
Controller posts
Action show
Parameter 2012
Parameter the-post-title

In this case, the PostsController will handle this request. There is no a special location to put controllers in an
application, they could be loaded using autoloaders, so you’re free to organize your controllers as you need.

Controllers must have the suffix “Controller” while actions the suffix “Action”. A sample of a controller is as follows:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

94 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://localhost/blog/posts/show/2012/the-post-title


Phalcon PHP Framework Documentation, Release 1.3.0

}

public function showAction($year, $postTitle)
{

}

}

Additional URI parameters are defined as action parameters, so that they can be easily accessed using local variables.
A controller can optionally extend Phalcon\Mvc\Controller. By doing this, the controller can have easy access to the
application services.

Parameters without a default value are handled as required. Setting optional values for parameters is done as usual in
PHP:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function showAction($year=2012, $postTitle='some default title')
{

}

}

Parameters are assigned in the same order as they were passed in the route. You can get an arbitrary parameter from
its name in the following way:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function showAction()
{

$year = $this->dispatcher->getParam('year');
$postTitle = $this->dispatcher->getParam('postTitle');

}

}

2.10.1 Dispatch Loop

The dispatch loop will be executed within the Dispatcher until there are no actions left to be executed. In the above
example only one action was executed. Now we’ll see how “forward” can provide a more complex flow of operation

2.10. Using Controllers 95



Phalcon PHP Framework Documentation, Release 1.3.0

in the dispatch loop, by forwarding execution to a different controller/action.

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function showAction($year, $postTitle)
{

$this->flash->error("You don't have permission to access this area");

// Forward flow to another action
$this->dispatcher->forward(array(

"controller" => "users",
"action" => "signin"

));
}

}

If users don’t have permissions to access a certain action then will be forwarded to the Users controller, signin action.

<?php

class UsersController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function signinAction()
{

}

}

There is no limit on the “forwards” you can have in your application, so long as they do not result in circular references,
at which point your application will halt. If there are no other actions to be dispatched by the dispatch loop, the
dispatcher will automatically invoke the view layer of the MVC that is managed by Phalcon\Mvc\View.

2.10.2 Initializing Controllers

Phalcon\Mvc\Controller offers the initialize method, which is executed first, before any action is executed on a con-
troller. The use of the “__construct” method is not recommended.

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

96 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public $settings;

public function initialize()
{

$this->settings = array(
"mySetting" => "value"

);
}

public function saveAction()
{

if ($this->settings["mySetting"] == "value") {
//...

}
}

}

Method ‘initialize’ is only called if the event ‘beforeExecuteRoute’ is executed with success. This avoid
that application logic in the initializer cannot be executed without authorization.

If you want to execute some initialization logic just after build the controller object you can implement the method
‘onConstruct’:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function onConstruct()
{

//...
}

}

Be aware that method ‘onConstruct’ is executed even if the action to be executed not exists in the controller
or the user does not have access to it (according to custom control access provided by developer).

2.10.3 Injecting Services

If a controller extends Phalcon\Mvc\Controller then it has easy access to the service container in application. For
example, if we have registered a service like this:

<?php

$di = new Phalcon\DI();

$di->set('storage', function() {
return new Storage('/some/directory');

}, true);

Then, we can access to that service in several ways:

<?php

class FilesController extends \Phalcon\Mvc\Controller
{

2.10. Using Controllers 97



Phalcon PHP Framework Documentation, Release 1.3.0

public function saveAction()
{

//Injecting the service by just accessing the property with the same name
$this->storage->save('/some/file');

//Accessing the service from the DI
$this->di->get('storage')->save('/some/file');

//Another way to access the service using the magic getter
$this->di->getStorage()->save('/some/file');

//Another way to access the service using the magic getter
$this->getDi()->getStorage()->save('/some/file');

//Using the array-syntax
$this->di['storage']->save('/some/file');

}

}

If you’re using Phalcon as a full-stack framework, you can read the services provided by default in the framework.

2.10.4 Request and Response

Assuming that the framework provides a set of pre-registered services. We explain how to interact with the HTTP
environment. The “request” service contains an instance of Phalcon\Http\Request and the “response” contains a
Phalcon\Http\Response representing what is going to be sent back to the client.

<?php

class PostsController extends Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function saveAction()
{

// Check if request has made with POST
if ($this->request->isPost() == true) {

// Access POST data
$customerName = $this->request->getPost("name");
$customerBorn = $this->request->getPost("born");

}
}

}

The response object is not usually used directly, but is built up before the execution of the action, sometimes - like in
an afterDispatch event - it can be useful to access the response directly:

<?php

class PostsController extends Phalcon\Mvc\Controller

98 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{

public function indexAction()
{

}

public function notFoundAction()
{

// Send a HTTP 404 response header
$this->response->setStatusCode(404, "Not Found");

}

}

Learn more about the HTTP environment in their dedicated articles request and response.

2.10.5 Session Data

Sessions help us maintain persistent data between requests. You could access a Phalcon\Session\Bag from any con-
troller to encapsulate data that need to be persistent.

<?php

class UserController extends Phalcon\Mvc\Controller
{

public function indexAction()
{

$this->persistent->name = "Michael";
}

public function welcomeAction()
{

echo "Welcome, ", $this->persistent->name;
}

}

2.10.6 Using Services as Controllers

Services may act as controllers, controllers classes are always requested from the services container. Accordingly, any
other class registered with its name can easily replace a controller:

<?php

//Register a controller as a service
$di->set('IndexController', function() {

$component = new Component();
return $component;

});

//Register a namespaced controller as a service
$di->set('Backend\Controllers\IndexController', function() {

$component = new Component();

2.10. Using Controllers 99



Phalcon PHP Framework Documentation, Release 1.3.0

return $component;
});

2.10.7 Creating a Base Controller

Some application features like access control lists, translation, cache, and template engines are often common to many
controllers. In cases like these the creation of a “base controller” is encouraged to ensure your code stays DRY. A
base controller is simply a class that extends the Phalcon\Mvc\Controller and encapsulates the common functionality
that all controllers must have. In turn, your controllers extend the “base controller” and have access to the common
functionality.

This class could be located anywhere, but for organizational conventions we recommend it to be in the controllers
folder, e.g. apps/controllers/ControllerBase.php. We may require this file directly in the bootstrap file or cause to be
loaded using any autoloader:

<?php

require "../app/controllers/ControllerBase.php";

The implementation of common components (actions, methods, properties etc.) resides in this file:

<?php

class ControllerBase extends \Phalcon\Mvc\Controller
{

/**
* This action is available for multiple controllers

*/
public function someAction()
{

}

}

Any other controller now inherits from ControllerBase, automatically gaining access to the common components
(discussed above):

<?php

class UsersController extends ControllerBase
{

}

2.10.8 Events in Controllers

Controllers automatically act as listeners for dispatcher events, implementing methods with those event names allow
you to implement hook points before/after the actions are executed:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

100 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Don't_repeat_yourself


Phalcon PHP Framework Documentation, Release 1.3.0

public function beforeExecuteRoute($dispatcher)
{

// This is executed before every found action
if ($dispatcher->getActionName() == 'save') {

$this->flash->error("You don't have permission to save posts");

$this->dispatcher->forward(array(
'controller' => 'home',
'action' => 'index'

));

return false;
}

}

public function afterExecuteRoute($dispatcher)
{

// Executed after every found action
}

}

2.11 Working with Models

A model represents the information (data) of the application and the rules to manipulate that data. Models are primarily
used for managing the rules of interaction with a corresponding database table. In most cases, each table in your
database will correspond to one model in your application. The bulk of your application’s business logic will be
concentrated in the models.

Phalcon\Mvc\Model is the base for all models in a Phalcon application. It provides database independence, basic
CRUD functionality, advanced finding capabilities, and the ability to relate models to one another, among other ser-
vices. Phalcon\Mvc\Model avoids the need of having to use SQL statements because it translates methods dynamically
to the respective database engine operations.

Models are intended to work on a database high layer of abstraction. If you need to work with databases
at a lower level check out the Phalcon\Db component documentation.

2.11.1 Creating Models

A model is a class that extends from Phalcon\Mvc\Model. It must be placed in the models directory. A model file
must contain a single class; its class name should be in camel case notation:

<?php

class Robots extends \Phalcon\Mvc\Model
{

}

The above example shows the implementation of the “Robots” model. Note that the class Robots inherits from Phal-
con\Mvc\Model. This component provides a great deal of functionality to models that inherit it, including basic
database CRUD (Create, Read, Update, Delete) operations, data validation, as well as sophisticated search support
and the ability to relate multiple models with each other.

2.11. Working with Models 101



Phalcon PHP Framework Documentation, Release 1.3.0

If you’re using PHP 5.4/5.5 is recommended declare each column that makes part of the model in order
to save memory and reduce the memory allocation.

By default model “Robots” will refer to the table “robots”. If you want to manually specify another name for the
mapping table, you can use the getSource() method:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function getSource()
{

return "the_robots";
}

}

The model Robots now maps to “the_robots” table. The initialize() method aids in setting up the model with a custom
behavior i.e. a different table. The initialize() method is only called once during the request.

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->setSource("the_robots");
}

}

The initialize() method is only called once during the request, it’s intended to perform initializations that apply for all
instances of the model created within the application. If you want to perform initialization tasks for every instance
created you can ‘onConstruct’:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function onConstruct()
{

//...
}

}

Public properties vs. Setters/Getters

Models can be implemented with properties of public scope, meaning that each property can be read/updated from
any part of the code that has instantiated that model class without any restrictions:

<?php

class Robots extends \Phalcon\Mvc\Model
{

102 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public $id;

public $name;

public $price;
}

By using getters and setters you can control which properties are visible publicly perform various transformations to
the data (which would be impossible otherwise) and also add validation rules to the data stored in the object:

<?php

class Robots extends \Phalcon\Mvc\Model
{

protected $id;

protected $name;

protected $price;

public function getId()
{

return $this->id;
}

public function setName($name)
{

//The name is too short?
if (strlen($name) < 10) {

throw new \InvalidArgumentException('The name is too short');
}
$this->name = $name;

}

public function getName()
{

return $this->name;
}

public function setPrice($price)
{

//Negative prices aren't allowed
if ($price < 0) {

throw new \InvalidArgumentException('Price can\'t be negative');
}
$this->price = $price;

}

public function getPrice()
{

//Convert the value to double before be used
return (double) $this->price;

}
}

Public properties provide less complexity in development. However getters/setters can heavily increase the testability,
extensibility and maintainability of applications. Developers can decide which strategy is more appropriate for the
application they are creating. The ORM is compatible with both schemes of defining properties.

2.11. Working with Models 103



Phalcon PHP Framework Documentation, Release 1.3.0

Models in Namespaces

Namespaces can be used to avoid class name collision. The mapped table is taken from the class name, in this case
‘Robots’:

<?php

namespace Store\Toys;

class Robots extends \Phalcon\Mvc\Model
{

}

2.11.2 Understanding Records To Objects

Every instance of a model represents a row in the table. You can easily access record data by reading object properties.
For example, for a table “robots” with the records:

mysql> select * from robots;
+----+------------+------------+------+
| id | name | type | year |
+----+------------+------------+------+
| 1 | Robotina | mechanical | 1972 |
| 2 | Astro Boy | mechanical | 1952 |
| 3 | Terminator | cyborg | 2029 |
+----+------------+------------+------+
3 rows in set (0.00 sec)

You could find a certain record by its primary key and then print its name:

<?php

// Find record with id = 3
$robot = Robots::findFirst(3);

// Prints "Terminator"
echo $robot->name;

Once the record is in memory, you can make modifications to its data and then save changes:

<?php

$robot = Robots::findFirst(3);
$robot->name = "RoboCop";
$robot->save();

As you can see, there is no need to use raw SQL statements. Phalcon\Mvc\Model provides high database abstraction
for web applications.

2.11.3 Finding Records

Phalcon\Mvc\Model also offers several methods for querying records. The following examples will show you how to
query one or more records from a model:

104 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

// How many robots are there?
$robots = Robots::find();
echo "There are ", count($robots), "\n";

// How many mechanical robots are there?
$robots = Robots::find("type = 'mechanical'");
echo "There are ", count($robots), "\n";

// Get and print virtual robots ordered by name
$robots = Robots::find(array(

"type = 'virtual'",
"order" => "name"

));
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

// Get first 100 virtual robots ordered by name
$robots = Robots::find(array(

"type = 'virtual'",
"order" => "name",
"limit" => 100

));
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

You could also use the findFirst() method to get only the first record matching the given criteria:

<?php

// What's the first robot in robots table?
$robot = Robots::findFirst();
echo "The robot name is ", $robot->name, "\n";

// What's the first mechanical robot in robots table?
$robot = Robots::findFirst("type = 'mechanical'");
echo "The first mechanical robot name is ", $robot->name, "\n";

// Get first virtual robot ordered by name
$robot = Robots::findFirst(array("type = 'virtual'", "order" => "name"));
echo "The first virtual robot name is ", $robot->name, "\n";

Both find() and findFirst() methods accept an associative array specifying the search criteria:

<?php

$robot = Robots::findFirst(array(
"type = 'virtual'",
"order" => "name DESC",
"limit" => 30

));

$robots = Robots::find(array(
"conditions" => "type = ?1",
"bind" => array(1 => "virtual")

));

2.11. Working with Models 105



Phalcon PHP Framework Documentation, Release 1.3.0

The available query options are:

Pa-
ram-
eter

Description Example

con-
di-
tions

Search conditions for the find operation. Is used to extract only those
records that fulfill a specified criterion. By default
Phalcon\Mvc\Model assumes the first parameter are the conditions.

“conditions” => “name LIKE
‘steve%”’

columnsReturn specific columns instead of the full columns in the model.
When using this option an incomplete object is returned

“columns” => “id, name”

bind Bind is used together with options, by replacing placeholders and
escaping values thus increasing security

“bind” => array(“status” => “A”,
“type” => “some-time”)

bind-
Types

When binding parameters, you can use this parameter to define
additional casting to the bound parameters increasing even more the
security

“bindTypes” => ar-
ray(Column::BIND_TYPE_STR,
Column::BIND_TYPE_INT)

or-
der

Is used to sort the resultset. Use one or more fields separated by
commas.

“order” => “name DESC, status”

limit Limit the results of the query to results to certain range “limit” => 10 / “limit” =>
array(“number” => 10, “offset”
=> 5)

group Allows to collect data across multiple records and group the results
by one or more columns

“group” => “name, status”

for_updateWith this option, Phalcon\Mvc\Model reads the latest available data,
setting exclusive locks on each row it reads

“for_update” => true

shared_lockWith this option, Phalcon\Mvc\Model reads the latest available data,
setting shared locks on each row it reads

“shared_lock” => true

cache Cache the resultset, reducing the continuous access to the relational
system

“cache” => array(“lifetime” =>
3600, “key” => “my-find-key”)

hy-
dra-
tion

Sets the hydration strategy to represent each returned record in the
result

“hydration” => Result-
set::HYDRATE_OBJECTS

If you prefer, there is also available a way to create queries in an object-oriented way, instead of using an array of
parameters:

<?php

$robots = Robots::query()
->where("type = :type:")
->andWhere("year < 2000")
->bind(array("type" => "mechanical"))
->order("name")
->execute();

The static method query() returns a Phalcon\Mvc\Model\Criteria object that is friendly with IDE autocompleters.

All the queries are internally handled as PHQL queries. PHQL is a high-level, object-oriented and SQL-like lan-
guage. This language provide you more features to perform queries like joining other models, define groupings, add
agreggations etc.

Model Resultsets

While findFirst() returns directly an instance of the called class (when there is data to be returned), the find() method
returns a Phalcon\Mvc\Model\Resultset\Simple. This is an object that encapsulates all the functionality a resultset has
like traversing, seeking specific records, counting, etc.

106 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

These objects are more powerful than standard arrays. One of the greatest features of the Phal-
con\Mvc\Model\Resultset is that at any time there is only one record in memory. This greatly helps in memory
management especially when working with large amounts of data.

<?php

// Get all robots
$robots = Robots::find();

// Traversing with a foreach
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

// Traversing with a while
$robots->rewind();
while ($robots->valid()) {

$robot = $robots->current();
echo $robot->name, "\n";
$robots->next();

}

// Count the resultset
echo count($robots);

// Alternative way to count the resultset
echo $robots->count();

// Move the internal cursor to the third robot
$robots->seek(2);
$robot = $robots->current();

// Access a robot by its position in the resultset
$robot = $robots[5];

// Check if there is a record in certain position
if (isset($robots[3])) {

$robot = $robots[3];
}

// Get the first record in the resultset
$robot = $robots->getFirst();

// Get the last record
$robot = $robots->getLast();

Phalcon’s resultsets emulate scrollable cursors, you can get any row just by accessing its position, or seeking the
internal pointer to a specific position. Note that some database systems don’t support scrollable cursors, this forces
to re-execute the query in order to rewind the cursor to the beginning and obtain the record at the requested position.
Similarly, if a resultset is traversed several times, the query must be executed the same number of times.

Storing large query results in memory could consume many resources, because of this, resultsets are obtained from
the database in chunks of 32 rows reducing the need for re-execute the request in several cases also saving memory.

Note that resultsets can be serialized and stored in a cache backend. Phalcon\Cache can help with that task. However,
serializing data causes Phalcon\Mvc\Model to retrieve all the data from the database in an array, thus consuming more
memory while this process takes place.

2.11. Working with Models 107



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

// Query all records from model parts
$parts = Parts::find();

// Store the resultset into a file
file_put_contents("cache.txt", serialize($parts));

// Get parts from file
$parts = unserialize(file_get_contents("cache.txt"));

// Traverse the parts
foreach ($parts as $part) {

echo $part->id;
}

Filtering Resultsets

The most efficient way to filter data is setting some search criteria, databases will use indexes set on tables to return
data faster. Phalcon additionally allows you to filter the data using PHP using any resource that is not available in the
database:

<?php

$customers = Customers::find()->filter(function($customer) {

//Return only customers with a valid e-mail
if (filter_var($customer->email, FILTER_VALIDATE_EMAIL)) {

return $customer;
}

});

Binding Parameters

Bound parameters are also supported in Phalcon\Mvc\Model. Although there is a minimal performance impact by
using bound parameters, you are encouraged to use this methodology so as to eliminate the possibility of your code
being subject to SQL injection attacks. Both string and integer placeholders are supported. Binding parameters can
simply be achieved as follows:

<?php

// Query robots binding parameters with string placeholders
$conditions = "name = :name: AND type = :type:";

//Parameters whose keys are the same as placeholders
$parameters = array(

"name" => "Robotina",
"type" => "maid"

);

//Perform the query
$robots = Robots::find(array(

$conditions,
"bind" => $parameters

108 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

));

// Query robots binding parameters with integer placeholders
$conditions = "name = ?1 AND type = ?2";
$parameters = array(1 => "Robotina", 2 => "maid");
$robots = Robots::find(array(

$conditions,
"bind" => $parameters

));

// Query robots binding parameters with both string and integer placeholders
$conditions = "name = :name: AND type = ?1";

//Parameters whose keys are the same as placeholders
$parameters = array(

"name" => "Robotina",
1 => "maid"

);

//Perform the query
$robots = Robots::find(array(

$conditions,
"bind" => $parameters

));

When using numeric placeholders, you will need to define them as integers i.e. 1 or 2. In this case “1” or “2” are
considered strings and not numbers, so the placeholder could not be successfully replaced.

Strings are automatically escaped using PDO. This function takes into account the connection charset, so its recom-
mended to define the correct charset in the connection parameters or in the database configuration, as a wrong charset
will produce undesired effects when storing or retrieving data.

Additionally you can set the parameter “bindTypes”, this allows defining how the parameters should be bound accord-
ing to its data type:

<?php

use \Phalcon\Db\Column;

//Bind parameters
$parameters = array(

"name" => "Robotina",
"year" => 2008

);

//Casting Types
$types = array(

"name" => Column::BIND_PARAM_STR,
"year" => Column::BIND_PARAM_INT

);

// Query robots binding parameters with string placeholders
$robots = Robots::find(array(

"name = :name: AND year = :year:",
"bind" => $parameters,
"bindTypes" => $types

));

Since the default bind-type is \Phalcon\Db\Column::BIND_PARAM_STR, there is no need to specify the

2.11. Working with Models 109

http://www.php.net/manual/en/pdo.prepared-statements.php


Phalcon PHP Framework Documentation, Release 1.3.0

“bindTypes” parameter if all of the columns are of that type.

Bound parameters are available for all query methods such as find() and findFirst() but also the calculation methods
like count(), sum(), average() etc.

2.11.4 Initializing/Preparing fetched records

May be the case that after obtaining a record from the database is necessary to initialise the data before being used
by the rest of the application. You can implement the method ‘afterFetch’ in a model, this event will be executed just
after create the instance and assign the data to it:

<?php

class Robots extends Phalcon\Mvc\Model
{

public $id;

public $name;

public $status;

public function beforeSave()
{

//Convert the array into a string
$this->status = join(',', $this->status);

}

public function afterFetch()
{

//Convert the string to an array
$this->status = explode(',', $this->status);

}
}

If you use getters/setters instead of/or together with public properties, you can initialize the field once it is accessed:

<?php

class Robots extends Phalcon\Mvc\Model
{

public $id;

public $name;

public $status;

public function getStatus()
{

return explode(',', $this->status);
}

}

110 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.11.5 Relationships between Models

There are four types of relationships: one-on-one, one-to-many, many-to-one and many-to-many. The relationship
may be unidirectional or bidirectional, and each can be simple (a one to one model) or more complex (a combination
of models). The model manager manages foreign key constraints for these relationships, the definition of these helps
referential integrity as well as easy and fast access of related records to a model. Through the implementation of
relations, it is easy to access data in related models from each record in a uniform way.

Unidirectional relationships

Unidirectional relations are those that are generated in relation to one another but not vice versa.

Bidirectional relations

The bidirectional relations build relationships in both models and each model defines the inverse relationship of the
other.

Defining relationships

In Phalcon, relationships must be defined in the initialize() method of a model. The methods belongsTo(), hasOne(),
hasMany() and hasManyToMany() define the relationship between one or more fields from the current model to fields
in another model. Each of these methods requires 3 parameters: local fields, referenced model, referenced fields.

Method Description
hasMany Defines a 1-n relationship
hasOne Defines a 1-1 relationship
belongsTo Defines a n-1 relationship
hasManyToMany Defines a n-n relationship

The following schema shows 3 tables whose relations will serve us as an example regarding relationships:

CREATE TABLE `robots` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(70) NOT NULL,
`type` varchar(32) NOT NULL,
`year` int(11) NOT NULL,
PRIMARY KEY (`id`)

);

CREATE TABLE `robots_parts` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`robots_id` int(10) NOT NULL,
`parts_id` int(10) NOT NULL,
`created_at` DATE NOT NULL,
PRIMARY KEY (`id`),
KEY `robots_id` (`robots_id`),
KEY `parts_id` (`parts_id`)

);

CREATE TABLE `parts` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(70) NOT NULL,
PRIMARY KEY (`id`)

);

2.11. Working with Models 111



Phalcon PHP Framework Documentation, Release 1.3.0

• The model “Robots” has many “RobotsParts”.

• The model “Parts” has many “RobotsParts”.

• The model “RobotsParts” belongs to both “Robots” and “Parts” models as a many-to-one relation.

• The model “Robots” has a relation many-to-many to “Parts” through “RobotsParts”

Check the EER diagram to understand better the relations:

The models with their relations could be implemented as follows:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public $id;

public $name;

public function initialize()
{

$this->hasMany("id", "RobotsParts", "robots_id");
}

}

112 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

class Parts extends \Phalcon\Mvc\Model
{

public $id;

public $name;

public function initialize()
{

$this->hasMany("id", "RobotsParts", "parts_id");
}

}

<?php

class RobotsParts extends \Phalcon\Mvc\Model
{

public $id;

public $robots_id;

public $parts_id;

public function initialize()
{

$this->belongsTo("robots_id", "Robots", "id");
$this->belongsTo("parts_id", "Parts", "id");

}

}

The first parameter indicates the field of the local model used in the relationship; the second indicates the name of the
referenced model and the third the field name in the referenced model. You could also use arrays to define multiple
fields in the relationship.

Many to many relationships require 3 models and define the attributes involved in the relationship:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public $id;

public $name;

public function initialize()
{

$this->hasManyToMany(
"id",
"RobotsParts",
"robots_id", "parts_id",
"Parts",
"id"

);
}

2.11. Working with Models 113



Phalcon PHP Framework Documentation, Release 1.3.0

}

Taking advantage of relationships

When explicitly defining the relationships between models, it is easy to find related records for a particular record.

<?php

$robot = Robots::findFirst(2);
foreach ($robot->robotsParts as $robotPart) {

echo $robotPart->parts->name, "\n";
}

Phalcon uses the magic methods __set/__get/__call to store or retrieve related data using relationships.

By accesing an attribute with the same name as the relationship will retrieve all its related record(s).

<?php

$robot = Robots::findFirst();
$robotsParts = $robot->robotsParts; // all the related records in RobotsParts

Also, you can use a magic getter:

<?php

$robot = Robots::findFirst();
$robotsParts = $robot->getRobotsParts(); // all the related records in RobotsParts
$robotsParts = $robot->getRobotsParts(array('limit' => 5)); // passing parameters

If the called method has a “get” prefix Phalcon\Mvc\Model will return a findFirst()/find() result. The following exam-
ple compares retrieving related results with using magic methods and without:

<?php

$robot = Robots::findFirst(2);

// Robots model has a 1-n (hasMany)
// relationship to RobotsParts then
$robotsParts = $robot->robotsParts;

// Only parts that match conditions
$robotsParts = $robot->getRobotsParts("created_at = '2012-03-15'");

// Or using bound parameters
$robotsParts = $robot->getRobotsParts(array(

"created_at = :date:",
"bind" => array("date" => "2012-03-15")

));

$robotPart = RobotsParts::findFirst(1);

// RobotsParts model has a n-1 (belongsTo)
// relationship to RobotsParts then
$robot = $robotPart->robots;

Getting related records manually:

114 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$robot = Robots::findFirst(2);

// Robots model has a 1-n (hasMany)
// relationship to RobotsParts, then
$robotsParts = RobotsParts::find("robots_id = '" . $robot->id . "'");

// Only parts that match conditions
$robotsParts = RobotsParts::find(

"robots_id = '" . $robot->id . "' AND created_at = '2012-03-15'"
);

$robotPart = RobotsParts::findFirst(1);

// RobotsParts model has a n-1 (belongsTo)
// relationship to RobotsParts then
$robot = Robots::findFirst("id = '" . $robotPart->robots_id . "'");

The prefix “get” is used to find()/findFirst() related records. Depending on the type of relation it will use ‘find’ or
‘findFirst’:

Type Description Implicit
Method

Belongs-To Returns a model instance of the related record directly findFirst
Has-One Returns a model instance of the related record directly findFirst
Has-Many Returns a collection of model instances of the referenced model find
Has-Many-
to-Many

Returns a collection of model instances of the referenced model, it implicitly does
‘inner joins’ with the involved models

(complex
query)

You can also use “count” prefix to return an integer denoting the count of the related records:

<?php

$robot = Robots::findFirst(2);
echo "The robot has ", $robot->countRobotsParts(), " parts\n";

Aliasing Relationships

To explain better how aliases work, let’s check the following example:

Table “robots_similar” has the function to define what robots are similar to others:

mysql> desc robots_similar;
+-------------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+------------------+------+-----+---------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| robots_id | int(10) unsigned | NO | MUL | NULL | |
| similar_robots_id | int(10) unsigned | NO | | NULL | |
+-------------------+------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

Both “robots_id” and “similar_robots_id” have a relation to the model Robots:

A model that maps this table and its relationships is the following:

2.11. Working with Models 115



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

class RobotsSimilar extends Phalcon\Mvc\Model
{

public function initialize()
{

$this->belongsTo('robots_id', 'Robots', 'id');
$this->belongsTo('similar_robots_id', 'Robots', 'id');

}

}

Since both relations point to the same model (Robots), obtain the records related to the relationship could not be clear:

<?php

$robotsSimilar = RobotsSimilar::findFirst();

//Returns the related record based on the column (robots_id)
//Also as is a belongsTo it's only returning one record
//but the name 'getRobots' seems to imply that return more than one
$robot = $robotsSimilar->getRobots();

//but, how to get the related record based on the column (similar_robots_id)
//if both relationships have the same name?

The aliases allow us to rename both releationships to solve these problems:

<?php

class RobotsSimilar extends Phalcon\Mvc\Model
{

public function initialize()
{

$this->belongsTo('robots_id', 'Robots', 'id', array(
'alias' => 'Robot'

116 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

));
$this->belongsTo('similar_robots_id', 'Robots', 'id', array(

'alias' => 'SimilarRobot'
));

}

}

With the aliasing we can get the related records easily:

<?php

$robotsSimilar = RobotsSimilar::findFirst();

//Returns the related record based on the column (robots_id)
$robot = $robotsSimilar->getRobot();
$robot = $robotsSimilar->robot;

//Returns the related record based on the column (similar_robots_id)
$similarRobot = $robotsSimilar->getSimilarRobot();
$similarRobot = $robotsSimilar->similarRobot;

Magic Getters vs. Explicit methods

Most IDEs and editors with auto-completion capabilities can not infer the correct types when using magic getters,
instead of use the magic getters you can optionally define those methods explicitly with the corresponding docblocks
helping the IDE to produce a better auto-completion:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public $id;

public $name;

public function initialize()
{

$this->hasMany("id", "RobotsParts", "robots_id");
}

/**
* Return the related "robots parts"

*
* @return \RobotsParts[]

*/
public function getRobotsParts($parameters=null)
{

return $this->getRelated('RobotsParts', $parameters);
}

}

2.11. Working with Models 117



Phalcon PHP Framework Documentation, Release 1.3.0

2.11.6 Virtual Foreign Keys

By default, relationships do not act like database foreign keys, that is, if you try to insert/update a value without having
a valid value in the referenced model, Phalcon will not produce a validation message. You can modify this behavior
by adding a fourth parameter when defining a relationship.

The RobotsPart model can be changed to demonstrate this feature:

<?php

class RobotsParts extends \Phalcon\Mvc\Model
{

public $id;

public $robots_id;

public $parts_id;

public function initialize()
{

$this->belongsTo("robots_id", "Robots", "id", array(
"foreignKey" => true

));

$this->belongsTo("parts_id", "Parts", "id", array(
"foreignKey" => array(

"message" => "The part_id does not exist on the Parts model"
)

));
}

}

If you alter a belongsTo() relationship to act as foreign key, it will validate that the values inserted/updated on those
fields have a valid value on the referenced model. Similarly, if a hasMany()/hasOne() is altered it will validate that the
records cannot be deleted if that record is used on a referenced model.

<?php

class Parts extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->hasMany("id", "RobotsParts", "parts_id", array(
"foreignKey" => array(

"message" => "The part cannot be deleted because other robots are using it"
)

));
}

}

Cascade/Restrict actions

Relationships that act as virtual foreign keys by default restrict the creation/update/deletion of records to maintain the
integrity of data:

118 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

namespace Store\Models;

use Phalcon\Mvc\Model,
Phalcon\Mvc\Model\Relation;

class Robots extends Model
{

public $id;

public $name;

public function initialize()
{

$this->hasMany('id', 'Store\\Models\Parts', 'robots_id', array(
'foreignKey' => array(

'action' => Relation::ACTION_CASCADE
)

));
}

}

The above code set up to delete all the referenced records (parts) if the master record (robot) is deleted.

2.11.7 Generating Calculations

Calculations (or aggregations) are helpers for commonly used functions of database systems such as COUNT, SUM,
MAX, MIN or AVG. Phalcon\Mvc\Model allows to use these functions directly from the exposed methods.

Count examples:

<?php

// How many employees are?
$rowcount = Employees::count();

// How many different areas are assigned to employees?
$rowcount = Employees::count(array("distinct" => "area"));

// How many employees are in the Testing area?
$rowcount = Employees::count("area = 'Testing'");

// Count employees grouping results by their area
$group = Employees::count(array("group" => "area"));
foreach ($group as $row) {

echo "There are ", $row->rowcount, " in ", $row->area;
}

// Count employees grouping by their area and ordering the result by count
$group = Employees::count(array(

"group" => "area",
"order" => "rowcount"

));

2.11. Working with Models 119



Phalcon PHP Framework Documentation, Release 1.3.0

// Avoid SQL injections using bound parameters
$group = Employees::count(array(

"type > ?0",
"bind" => array($type)

));

Sum examples:

<?php

// How much are the salaries of all employees?
$total = Employees::sum(array("column" => "salary"));

// How much are the salaries of all employees in the Sales area?
$total = Employees::sum(array(

"column" => "salary",
"conditions" => "area = 'Sales'"

));

// Generate a grouping of the salaries of each area
$group = Employees::sum(array(

"column" => "salary",
"group" => "area"

));
foreach ($group as $row) {

echo "The sum of salaries of the ", $row->area, " is ", $row->sumatory;
}

// Generate a grouping of the salaries of each area ordering
// salaries from higher to lower
$group = Employees::sum(array(

"column" => "salary",
"group" => "area",
"order" => "sumatory DESC"

));

// Avoid SQL injections using bound parameters
$group = Employees::sum(array(

"conditions" => "area > ?0",
"bind" => array($area)

));

Average examples:

<?php

// What is the average salary for all employees?
$average = Employees::average(array("column" => "salary"));

// What is the average salary for the Sales's area employees?
$average = Employees::average(array(

"column" => "salary",
"conditions" => "area = 'Sales'"

));

// Avoid SQL injections using bound parameters
$average = Employees::average(array(

"column" => "age",
"conditions" => "area > ?0",

120 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

"bind" => array($area)
));

Max/Min examples:

<?php

// What is the oldest age of all employees?
$age = Employees::maximum(array("column" => "age"));

// What is the oldest of employees from the Sales area?
$age = Employees::maximum(array(

"column" => "age",
"conditions" => "area = 'Sales'"

));

// What is the lowest salary of all employees?
$salary = Employees::minimum(array("column" => "salary"));

2.11.8 Hydration Modes

As mentioned above, resultsets are collections of complete objects, this means that every returned result is an object
representing a row in the database. These objects can be modified and saved again to persistence:

<?php

// Manipulating a resultset of complete objects
foreach (Robots::find() as $robot) {

$robot->year = 2000;
$robot->save();

}

Sometimes records are obtained only to be presented to a user in read-only mode, in these cases it may be useful to
change the way in which records are represented to facilitate their handling. The strategy used to represent objects
returned in a resultset is called ‘hydration mode’:

<?php

use Phalcon\Mvc\Model\Resultset;

$robots = Robots::find();

//Return every robot as an array
$robots->setHydrateMode(Resultset::HYDRATE_ARRAYS);

foreach ($robots as $robot) {
echo $robot['year'], PHP_EOL;

}

//Return every robot as an stdClass
$robots->setHydrateMode(Resultset::HYDRATE_OBJECTS);

foreach ($robots as $robot) {
echo $robot->year, PHP_EOL;

}

//Return every robot as a Robots instance

2.11. Working with Models 121



Phalcon PHP Framework Documentation, Release 1.3.0

$robots->setHydrateMode(Resultset::HYDRATE_RECORDS);

foreach ($robots as $robot) {
echo $robot->year, PHP_EOL;

}

Hydration mode can also be passed as a parameter of ‘find’:

<?php

use Phalcon\Mvc\Model\Resultset;

$robots = Robots::find(array(
'hydration' => Resultset::HYDRATE_ARRAYS

));

foreach ($robots as $robot) {
echo $robot['year'], PHP_EOL;

}

2.11.9 Creating/Updating Records

The method Phalcon\Mvc\Model::save() allows you to create/update records according to whether they already exist
in the table associated with a model. The save method is called internally by the create and update methods of
Phalcon\Mvc\Model. For this to work as expected it is necessary to have properly defined a primary key in the entity
to determine whether a record should be updated or created.

Also the method executes associated validators, virtual foreign keys and events that are defined in the model:

<?php

$robot = new Robots();
$robot->type = "mechanical";
$robot->name = "Astro Boy";
$robot->year = 1952;
if ($robot->save() == false) {

echo "Umh, We can't store robots right now: \n";
foreach ($robot->getMessages() as $message) {

echo $message, "\n";
}

} else {
echo "Great, a new robot was saved successfully!";

}

An array could be passed to “save” to avoid assign every column manually. Phalcon\Mvc\Model will check if there
are setters implemented for the columns passed in the array giving priority to them instead of assign directly the values
of the attributes:

<?php

$robot = new Robots();
$robot->save(array(

"type" => "mechanical",
"name" => "Astro Boy",
"year" => 1952

));

122 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Values assigned directly or via the array of attributes are escaped/sanitized according to the related attribute data type.
So you can pass an insecure array without worrying about possible SQL injections:

<?php

$robot = new Robots();
$robot->save($_POST);

Without precautions mass assignment could allow attackers to set any database column’s value. Only use
this feature if you want that a user can insert/update every column in the model, even if those fields are
not in the submitted form.

You can set an additional parameter in ‘save’ to set a whitelist of fields that only must taken into account when doing
the mass assignment:

<?php

$robot = new Robots();
$robot->save($_POST, array('name', 'type'));

Create/Update with Confidence

When an application has a lot of competition, we could be expecting create a record but it is actually updated. This
could happen if we use Phalcon\Mvc\Model::save() to persist the records in the database. If we want to be absolutely
sure that a record is created or updated, we can change the save() call with create() or update():

<?php

$robot = new Robots();
$robot->type = "mechanical";
$robot->name = "Astro Boy";
$robot->year = 1952;

//This record only must be created
if ($robot->create() == false) {

echo "Umh, We can't store robots right now: \n";
foreach ($robot->getMessages() as $message) {

echo $message, "\n";
}

} else {
echo "Great, a new robot was created successfully!";

}

These methods “create” and “update” also accept an array of values as parameter.

Auto-generated identity columns

Some models may have identity columns. These columns usually are the primary key of the mapped table. Phal-
con\Mvc\Model can recognize the identity column omitting it in the generated SQL INSERT, so the database system
can generate an auto-generated value for it. Always after creating a record, the identity field will be registered with
the value generated in the database system for it:

<?php

$robot->save();

echo "The generated id is: ", $robot->id;

2.11. Working with Models 123



Phalcon PHP Framework Documentation, Release 1.3.0

Phalcon\Mvc\Model is able to recognize the identity column. Depending on the database system, those columns may
be serial columns like in PostgreSQL or auto_increment columns in the case of MySQL.

PostgreSQL uses sequences to generate auto-numeric values, by default, Phalcon tries to obtain the generated value
from the sequence “table_field_seq”, for example: robots_id_seq, if that sequence has a different name, the method
“getSequenceName” needs to be implemented:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function getSequenceName()
{

return "robots_sequence_name";
}

}

Storing related records

Magic properties can be used to store a records and its related properties:

<?php

// Create a robot
$artist = new Artists();
$artist->name = 'Shinichi Osawa';
$artist->country = 'Japan';

// Create an album
$album = new Albums();
$album->name = 'The One';
$album->artist = $artist; //Assign the artist
$album->year = 2008;

//Save both records
$album->save();

Saving a record and its related records in a has-many relation:

<?php

// Get an existing artist
$artist = Artists::findFirst('name = "Shinichi Osawa"');

// Create an album
$album = new Albums();
$album->name = 'The One';
$album->artist = $artist;

$songs = array();

// Create a first song
$songs[0] = new Songs();
$songs[0]->name = 'Star Guitar';
$songs[0]->duration = '5:54';

124 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

// Create a second song
$songs[1] = new Songs();
$songs[1]->name = 'Last Days';
$songs[1]->duration = '4:29';

// Assign the songs array
$album->songs = $songs;

// Save the album + its songs
$album->save();

Saving the album and the artist at the same time implictly makes use of a transaction so if anything goes wrong with
saving the related records, the parent will not be saved either. Messages are passed back to the user for information
regarding any errors.

Note: Adding related entities by overloading the following methods is not possible:

• PhalconMvcModel::beforeSave()

• PhalconMvcModel::beforeCreate()

• PhalconMvcModel::beforeUpdate()

You need to overload PhalconMvcModel::save() for this to work from within a model.

Validation Messages

Phalcon\Mvc\Model has a messaging subsystem that provides a flexible way to output or store the validation messages
generated during the insert/update processes.

Each message consists of an instance of the class Phalcon\Mvc\Model\Message. The set of messages generated can
be retrieved with the method getMessages(). Each message provides extended information like the field name that
generated the message or the message type:

<?php

if ($robot->save() == false) {
foreach ($robot->getMessages() as $message) {

echo "Message: ", $message->getMessage();
echo "Field: ", $message->getField();
echo "Type: ", $message->getType();

}
}

Phalcon\Mvc\Model can generate the following types of validation messages:

Type Description
PresenceOf Generated when a field with a non-null attribute on the database is trying to insert/update a

null value
ConstraintViola-
tion

Generated when a field part of a virtual foreign key is trying to insert/update a value that
doesn’t exist in the referenced model

InvalidValue Generated when a validator failed because of an invalid value
InvalidCreateAt-
tempt

Produced when a record is attempted to be created but it already exists

InvalidUp-
dateAttempt

Produced when a record is attempted to be updated but it doesn’t exist

The method getMessages() can be overriden in a model to replace/translate the default messages generated automati-
cally by the ORM:

2.11. Working with Models 125



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

class Robots extends Phalcon\Mvc\Model
{

public function getMessages()
{

$messages = array();
foreach (parent::getMessages() as $message) {

switch ($message->getType()) {
case 'InvalidCreateAttempt':

$messages[] = 'The record cannot be created because it already exists';
break;

case 'InvalidUpdateAttempt':
$messages[] = 'The record cannot be updated because it already exists';
break;

case 'PresenceOf':
$messages[] = 'The field ' . $message->getField() . ' is mandatory';
break;

}
}
return $messages;

}
}

Events and Events Manager

Models allow you to implement events that will be thrown when performing an insert/update/delete. They help define
business rules for a certain model. The following are the events supported by Phalcon\Mvc\Model and their order of
execution:

126 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Opera-
tion

Name Can stop
operation?

Explanation

Insert-
ing/Updating

beforeValida-
tion

YES Is executed before the fields are validated for not nulls/empty
strings or foreign keys

Inserting beforeValida-
tionOnCreate

YES Is executed before the fields are validated for not nulls/empty
strings or foreign keys when an insertion operation is being made

Updating beforeValida-
tionOnUpdate

YES Is executed before the fields are validated for not nulls/empty
strings or foreign keys when an updating operation is being made

Insert-
ing/Updating

onValidation-
Fails

YES
(already
stopped)

Is executed after an integrity validator fails

Inserting afterValida-
tionOnCreate

YES Is executed after the fields are validated for not nulls/empty strings
or foreign keys when an insertion operation is being made

Updating afterValida-
tionOnUpdate

YES Is executed after the fields are validated for not nulls/empty strings
or foreign keys when an updating operation is being made

Insert-
ing/Updating

afterValida-
tion

YES Is executed after the fields are validated for not nulls/empty strings
or foreign keys

Insert-
ing/Updating

beforeSave YES Runs before the required operation over the database system

Updating beforeUpdate YES Runs before the required operation over the database system only
when an updating operation is being made

Inserting beforeCreate YES Runs before the required operation over the database system only
when an inserting operation is being made

Updating afterUpdate NO Runs after the required operation over the database system only
when an updating operation is being made

Inserting afterCreate NO Runs after the required operation over the database system only
when an inserting operation is being made

Insert-
ing/Updating

afterSave NO Runs after the required operation over the database system

Implementing Events in the Model’s class

The easier way to make a model react to events is implement a method with the same name of the event in the model’s
class:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function beforeValidationOnCreate()
{

echo "This is executed before creating a Robot!";
}

}

Events can be useful to assign values before performing an operation, for example:

<?php

class Products extends \Phalcon\Mvc\Model
{

public function beforeCreate()

2.11. Working with Models 127



Phalcon PHP Framework Documentation, Release 1.3.0

{
//Set the creation date
$this->created_at = date('Y-m-d H:i:s');

}

public function beforeUpdate()
{

//Set the modification date
$this->modified_in = date('Y-m-d H:i:s');

}

}

Using a custom Events Manager

Additionally, this component is integrated with Phalcon\Events\Manager, this means we can create listeners that run
when an event is triggered.

<?php

use Phalcon\Mvc\Model,
Phalcon\Events\Manager as EventsManager;

class Robots extends Model
{

public function initialize()
{

$eventsManager = new EventsManager();

//Attach an anonymous function as a listener for "model" events
$eventsManager->attach('model', function($event, $robot) {

if ($event->getType() == 'beforeSave') {
if ($robot->name == 'Scooby Doo') {

echo "Scooby Doo isn't a robot!";
return false;

}
}
return true;

});

//Attach the events manager to the event
$this->setEventsManager($eventsManager);

}

}

In the example given above, EventsManager only acts as a bridge between an object and a listener (the anonymous
function). Events will be fired to the listener when ‘robots’ are saved:

<?php

$robot = new Robots();
$robot->name = 'Scooby Doo';
$robot->year = 1969;
$robot->save();

128 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

If we want all objects created in our application use the same EventsManager, then we need to assign it to the Models
Manager:

<?php

//Registering the modelsManager service
$di->setShared('modelsManager', function() {

$eventsManager = new \Phalcon\Events\Manager();

//Attach an anonymous function as a listener for "model" events
$eventsManager->attach('model', function($event, $model){

//Catch events produced by the Robots model
if (get_class($model) == 'Robots') {

if ($event->getType() == 'beforeSave') {
if ($modle->name == 'Scooby Doo') {

echo "Scooby Doo isn't a robot!";
return false;

}
}

}
return true;

});

//Setting a default EventsManager
$modelsManager = new ModelsManager();
$modelsManager->setEventsManager($eventsManager);
return $modelsManager;

});

If a listener returns false that will stop the operation that is executing currently.

Implementing a Business Rule

When an insert, update or delete is executed, the model verifies if there are any methods with the names of the events
listed in the table above.

We recommend that validation methods are declared protected to prevent that business logic implementation from
being exposed publicly.

The following example implements an event that validates the year cannot be smaller than 0 on update or insert:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function beforeSave()
{

if ($this->year < 0) {
echo "Year cannot be smaller than zero!";
return false;

}
}

}

2.11. Working with Models 129



Phalcon PHP Framework Documentation, Release 1.3.0

Some events return false as an indication to stop the current operation. If an event doesn’t return anything, Phal-
con\Mvc\Model will assume a true value.

Validating Data Integrity

Phalcon\Mvc\Model provides several events to validate data and implement business rules. The special “validation”
event allows us to call built-in validators over the record. Phalcon exposes a few built-in validators that can be used at
this stage of validation.

The following example shows how to use it:

<?php

use Phalcon\Mvc\Model\Validator\InclusionIn,
Phalcon\Mvc\Model\Validator\Uniqueness;

class Robots extends \Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new InclusionIn(
array(

"field" => "type",
"domain" => array("Mechanical", "Virtual")

)
));

$this->validate(new Uniqueness(
array(

"field" => "name",
"message" => "The robot name must be unique"

)
));

return $this->validationHasFailed() != true;
}

}

The above example performs a validation using the built-in validator “InclusionIn”. It checks the value of the field
“type” in a domain list. If the value is not included in the method then the validator will fail and return false. The
following built-in validators are available:

130 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Name Explanation Ex-
am-
ple

Pres-
enceOf

Validates that a field’s value isn’t null or empty string. This validator is automatically added
based on the attributes marked as not null on the mapped table

Ex-
am-
ple

Email Validates that field contains a valid email format Ex-
am-
ple

Exclu-
sionIn

Validates that a value is not within a list of possible values Ex-
am-
ple

Inclu-
sionIn

Validates that a value is within a list of possible values Ex-
am-
ple

Numer-
icality

Validates that a field has a numeric format Ex-
am-
ple

Regex Validates that the value of a field matches a regular expression Ex-
am-
ple

Unique-
ness

Validates that a field or a combination of a set of fields are not present more than once in the
existing records of the related table

Ex-
am-
ple

StringLengthValidates the length of a string Ex-
am-
ple

Url Validates that a value has a valid URL format Ex-
am-
ple

In addition to the built-in validatiors, you can create your own validators:

<?php

use Phalcon\Mvc\Model\Validator,
Phalcon\Mvc\Model\ValidatorInterface;

class MaxMinValidator extends Validator implements ValidatorInterface
{

public function validate($model)
{

$field = $this->getOption('field');

$min = $this->getOption('min');
$max = $this->getOption('max');

$value = $model->$field;

if ($min <= $value && $value <= $max) {
$this->appendMessage(

"The field doesn't have the right range of values",
$field,
"MaxMinValidator"

);

2.11. Working with Models 131



Phalcon PHP Framework Documentation, Release 1.3.0

return false;
}
return true;

}

}

Adding the validator to a model:

<?php

class Customers extends \Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new MaxMinValidator(
array(

"field" => "price",
"min" => 10,
"max" => 100

)
));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

The idea of creating validators is make them reusable between several models. A validator can also be as simple as:

<?php

use Phalcon\Mvc\Model,
Phalcon\Mvc\Model\Message;

class Robots extends Model
{

public function validation()
{

if ($this->type == "Old") {
$message = new Message(

"Sorry, old robots are not allowed anymore",
"type",
"MyType"

);
$this->appendMessage($message);
return false;

}
return true;

}

}

132 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Avoiding SQL injections

Every value assigned to a model attribute is escaped depending of its data type. A developer doesn’t need to es-
cape manually each value before storing it on the database. Phalcon uses internally the bound parameters capability
provided by PDO to automatically escape every value to be stored in the database.

mysql> desc products;
+------------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+------------------+------+-----+---------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| product_types_id | int(10) unsigned | NO | MUL | NULL | |
| name | varchar(70) | NO | | NULL | |
| price | decimal(16,2) | NO | | NULL | |
| active | char(1) | YES | | NULL | |
+------------------+------------------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

If we use just PDO to store a record in a secure way, we need to write the following code:

<?php

$productTypesId = 1;
$name = 'Artichoke';
$price = 10.5;
$active = 'Y';

$sql = 'INSERT INTO products VALUES (null, :productTypesId, :name, :price, :active)';
$sth = $dbh->prepare($sql);

$sth->bindParam(':productTypesId', $productTypesId, PDO::PARAM_INT);
$sth->bindParam(':name', $name, PDO::PARAM_STR, 70);
$sth->bindParam(':price', doubleval($price));
$sth->bindParam(':active', $active, PDO::PARAM_STR, 1);

$sth->execute();

The good news is that Phalcon do this for you automatically:

<?php

$product = new Products();
$product->product_types_id = 1;
$product->name = 'Artichoke';
$product->price = 10.5;
$product->active = 'Y';
$product->create();

2.11.10 Skipping Columns

To tell Phalcon\Mvc\Model that always omits some fields in the creation and/or update of records in order to delegate
the database system the assignation of the values by a trigger or a default:

<?php

class Robots extends \Phalcon\Mvc\Model
{

2.11. Working with Models 133

http://php.net/manual/en/pdostatement.bindparam.php


Phalcon PHP Framework Documentation, Release 1.3.0

public function initialize()
{

//Skips fields/columns on both INSERT/UPDATE operations
$this->skipAttributes(array('year', 'price'));

//Skips only when inserting
$this->skipAttributesOnCreate(array('created_at'));

//Skips only when updating
$this->skipAttributesOnUpdate(array('modified_in'));

}

}

This will ignore globally these fields on each INSERT/UPDATE operation on the whole application. Forcing a default
value can be done in the following way:

<?php

$robot = new Robots();
$robot->name = 'Bender';
$robot->year = 1999;
$robot->created_at = new \Phalcon\Db\RawValue('default');
$robot->create();

A callback also can be used to create a conditional assigment of automatic default values:

<?php

use Phalcon\Mvc\Model,
Phalcon\Db\RawValue;

class Robots extends Model
{

public function beforeCreate()
{

if ($this->price > 10000) {
$this->type = new RawValue('default');

}
}

}

Never use a \Phalcon\Db\RawValue to assign external data (such as user input) or variable data. The
value of these fields is ignored when binding parameters to the query. So it could be used to attack the
application injecting SQL.

Dynamic Update

SQL UPDATE statements are by default created with every column defined in the model (full all-field SQL update).
You can change specific models to make dynamic updates, in this case, just the fields that had changed are used to
create the final SQL statement.

In some cases this could improve the performance by reducing the traffic between the application and the database
server, this specially helps when the table has blob/text fields:

<?php

class Robots extends Phalcon\Mvc\Model

134 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{
public function initialize()
{

$this->useDynamicUpdate(true);
}

}

2.11.11 Deleting Records

The method Phalcon\Mvc\Model::delete() allows to delete a record. You can use it as follows:

<?php

$robot = Robots::findFirst(11);
if ($robot != false) {

if ($robot->delete() == false) {
echo "Sorry, we can't delete the robot right now: \n";
foreach ($robot->getMessages() as $message) {

echo $message, "\n";
}

} else {
echo "The robot was deleted successfully!";

}
}

You can also delete many records by traversing a resultset with a foreach:

<?php

foreach (Robots::find("type='mechanical'") as $robot) {
if ($robot->delete() == false) {

echo "Sorry, we can't delete the robot right now: \n";
foreach ($robot->getMessages() as $message) {

echo $message, "\n";
}

} else {
echo "The robot was deleted successfully!";

}
}

The following events are available to define custom business rules that can be executed when a delete operation is
performed:

Operation Name Can stop operation? Explanation
Deleting beforeDelete YES Runs before the delete operation is made
Deleting afterDelete NO Runs after the delete operation was made

With the above events can also define business rules in the models:

<?php

class Robots extends Phalcon\Mvc\Model
{

public function beforeDelete()
{

if ($this->status == 'A') {
echo "The robot is active, it can't be deleted";

2.11. Working with Models 135



Phalcon PHP Framework Documentation, Release 1.3.0

return false;
}
return true;

}

}

2.11.12 Validation Failed Events

Another type of events are available when the data validation process finds any inconsistency:

Operation Name Explanation
Insert or Update notSave Triggered when the INSERT or UPDATE operation fails for any

reason
Insert, Delete or
Update

onValidation-
Fails

Triggered when any data manipulation operation fails

2.11.13 Behaviors

Behaviors are shared conducts that several models may adopt in order to re-use code, the ORM provides an API to
implement behaviors in your models. Also, you can use the events and callbacks as seen before as an alternative to
implement Behaviors with more freedom.

A behavior must be added in the model initializer, a model can have zero or more behaviors:

<?php

use Phalcon\Mvc\Model\Behavior\Timestampable;

class Users extends \Phalcon\Mvc\Model
{

public $id;

public $name;

public $created_at;

public function initialize()
{

$this->addBehavior(new Timestampable(
array(

'beforeCreate' => array(
'field' => 'created_at',
'format' => 'Y-m-d'

)
)

));
}

}

The following built-in behaviors are provided by the framework:

136 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Name Description
Timestam-
pable

Allows to automatically update a model’s attribute saving the datetime when a record is created
or updated

SoftDelete Instead of permanently delete a record it marks the record as deleted changing the value of a flag
column

Timestampable

This behavior receives an array of options, the first level key must be an event name indicating when the column must
be assigned:

<?php

public function initialize()
{

$this->addBehavior(new Timestampable(
array(

'beforeCreate' => array(
'field' => 'created_at',
'format' => 'Y-m-d'

)
)

));
}

Each event can have its own options, ‘field’ is the name of the column that must be updated, if ‘format’ is a string it
will be used as format of the PHP’s function date, format can also be an anonymous function providing you the free
to generate any kind timestamp:

<?php

public function initialize()
{

$this->addBehavior(new Timestampable(
array(

'beforeCreate' => array(
'field' => 'created_at',
'format' => function() {

$datetime = new Datetime(new DateTimeZone('Europe/Stockholm'));
return $datetime->format('Y-m-d H:i:sP');

}
)

)
));

}

If the option ‘format’ is omitted a timestamp using the PHP’s function time, will be used.

SoftDelete

This behavior can be used in the following way:

<?php

use Phalcon\Mvc\Model\Behavior\SoftDelete;

class Users extends \Phalcon\Mvc\Model

2.11. Working with Models 137

http://php.net/manual/en/function.date.php
http://php.net/manual/en/function.time.php


Phalcon PHP Framework Documentation, Release 1.3.0

{

const DELETED = 'D';

const NOT_DELETED = 'N';

public $id;

public $name;

public $status;

public function initialize()
{

$this->addBehavior(new SoftDelete(
array(

'field' => 'status',
'value' => Users::DELETED

)
));

}

}

This behavior accepts two options: ‘field’ and ‘value’, ‘field’ determines what field must be updated and ‘value’ the
value to be deleted. Let’s pretend the table ‘users’ has the following data:

mysql> select * from users;
+----+---------+--------+
| id | name | status |
+----+---------+--------+
| 1 | Lana | N |
| 2 | Brandon | N |
+----+---------+--------+
2 rows in set (0.00 sec)

If we delete any of the two records the status will be updated instead of delete the record:

<?php

Users::findFirst(2)->delete();

The operation will result in the following data in the table:

mysql> select * from users;
+----+---------+--------+
| id | name | status |
+----+---------+--------+
| 1 | Lana | N |
| 2 | Brandon | D |
+----+---------+--------+
2 rows in set (0.01 sec)

Note that you need to specify the deleted condition in your queries to effectively ignore them as deleted records, this
behavior doesn’t support that.

138 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Creating your own behaviors

The ORM provides an API to create your own behaviors. A behavior must be a class implementing the Phal-
con\Mvc\Model\BehaviorInterface Also, Phalon\Mvc\Model\Behavior provides most of the methods needed to ease
the implementation of behaviors.

The following behavior is an example, it implements the Blamable behavior which helps identify the user that is
performed operations over a model:

<?php

use Phalcon\Mvc\Model\Behavior;
Phalcon\Mvc\Model\BehaviorInterface;

class Blameable extends Behavior implements BehaviorInterface
{

public function notify($eventType, $model)
{

switch ($eventType) {

case 'afterCreate':
case 'afterDelete':
case 'afterUpdate':

$userName = // ... get the current user from session

//Store in a log the username - event type and primary key
file_put_contents(

'logs/blamable-log.txt',
$userName . ' ' . $eventType . ' ' . $model->id

);

break;

default:
/* ignore the rest of events */

}
}

}

The former is a very simple behavior, but it illustrates how to create a behavior, now let’s add this behavior to a model:

<?php

class Profiles extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->addBehavior(new Blamable());
}

}

A behavior is also capable of intercept missing methods on your models:

2.11. Working with Models 139



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

use Phalcon\Mvc\Model\Behavior,
Phalcon\Mvc\Model\BehaviorInterface;

class Sluggable extends Behavior implements BehaviorInterface
{

public function missingMethod($model, $method, $arguments=array())
{

// if the method is 'getSlug' convert the title
if ($method == 'getSlug') {

return Phalcon\Tag::friendlyTitle($model->title);
}

}

}

Call that method on a model that implements Sluggable returns a SEO friendly title:

<?php

$title = $post->getSlug();

Using Traits as behaviors

Starting from PHP 5.4 you can use Traits to re-use code in your classes, this is another way to implement custom
behaviors. The following trait implements a simple version of the Timestampable behavior:

<?php

trait MyTimestampable
{

public function beforeCreate()
{

$this->created_at = date('r');
}

public function beforeUpdate()
{

$this->updated_at = date('r');
}

}

Then you can use it in your model as follows:

<?php

class Products extends \Phalcon\Mvc\Model
{

use MyTimestampable;
}

140 Chapter 2. Table of Contents

http://php.net/manual/en/language.oop5.traits.php


Phalcon PHP Framework Documentation, Release 1.3.0

2.11.14 Transactions

When a process performs multiple database operations, it is often that each step is completed successfully so that data
integrity can be maintained. Transactions offer the ability to ensure that all database operations have been executed
successfully before the data are committed to the database.

Transactions in Phalcon allow you to commit all operations if they have been executed successfully or rollback all
operations if something went wrong.

Manual Transactions

If an application only uses one connection and the transactions aren’t very complex, a transaction can be created by
just moving the current connection to transaction mode, doing a rollback or commit if the operation is successfully or
not:

<?php

class RobotsController extends Phalcon\Mvc\Controller
{

public function saveAction()
{

$this->db->begin();

$robot = new Robots();

$robot->name = "WALL·E";
$robot->created_at = date("Y-m-d");
if ($robot->save() == false) {

$this->db->rollback();
return;

}

$robotPart = new RobotParts();
$robotPart->robots_id = $robot->id;
$robotPart->type = "head";
if ($robotPart->save() == false) {

$this->db->rollback();
return;

}

$this->db->commit();
}

}

Implicit Transactions

Existing relationships can be used to store records and their related instances, this kind of operation implicitly creates
a transaction to ensure that data are correctly stored:

<?php

$robotPart = new RobotParts();
$robotPart->type = "head";

$robot = new Robots();
$robot->name = "WALL·E";

2.11. Working with Models 141



Phalcon PHP Framework Documentation, Release 1.3.0

$robot->created_at = date("Y-m-d");
$robot->robotPart = $robotPart;

$robot->save(); //Creates an implicit transaction to store both records

Isolated Transactions

Isolated transactions are executed in a new connection ensuring that all the generated SQL, virtual foreign key checks
and business rules are isolated from the main connection. This kind of transaction requires a transaction manager that
globally manages each transaction created ensuring that they are correctly rolled back/committed before ending the
request:

<?php

use Phalcon\Mvc\Model\Transaction\Manager as TxManager,
Phalcon\Mvc\Model\Transaction\Failed as TxFailed;

try {

//Create a transaction manager
$manager = new TxManager();

// Request a transaction
$transaction = $manager->get();

$robot = new Robots();
$robot->setTransaction($transaction);
$robot->name = "WALL·E";
$robot->created_at = date("Y-m-d");
if ($robot->save() == false) {

$transaction->rollback("Cannot save robot");
}

$robotPart = new RobotParts();
$robotPart->setTransaction($transaction);
$robotPart->robots_id = $robot->id;
$robotPart->type = "head";
if ($robotPart->save() == false) {

$transaction->rollback("Cannot save robot part");
}

//Everything goes fine, let's commit the transaction
$transaction->commit();

} catch(TxFailed $e) {
echo "Failed, reason: ", $e->getMessage();

}

Transactions can be used to delete many records in a consistent way:

<?php

use Phalcon\Mvc\Model\Transaction\Manager as TxManager,
Phalcon\Mvc\Model\Transaction\Failed as TxFailed;

try {

142 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Create a transaction manager
$manager = new TxManager();

//Request a transaction
$transaction = $manager->get();

//Get the robots will be deleted
foreach (Robots::find("type = 'mechanical'") as $robot) {

$robot->setTransaction($transaction);
if ($robot->delete() == false) {

//Something goes wrong, we should to rollback the transaction
foreach ($robot->getMessages() as $message) {

$transaction->rollback($message->getMessage());
}

}
}

//Everything goes fine, let's commit the transaction
$transaction->commit();

echo "Robots were deleted successfully!";

} catch(TxFailed $e) {
echo "Failed, reason: ", $e->getMessage();

}

Transactions are reused no matter where the transaction object is retrieved. A new transaction is generated only when
a commit() or rollback() is performed. You can use the service container to create the global transaction manager for
the entire application:

<?php

$di->setShared('transactions', function(){
return new \Phalcon\Mvc\Model\Transaction\Manager();

});

Then access it from a controller or view:

<?php

class ProductsController extends \Phalcon\Mvc\Controller
{

public function saveAction()
{

//Obtain the TransactionsManager from the services container
$manager = $this->di->getTransactions();

//Or
$manager = $this->transactions;

//Request a transaction
$transaction = $manager->get();

//...
}

}

2.11. Working with Models 143



Phalcon PHP Framework Documentation, Release 1.3.0

While a transaction is active, the transaction manager will always return the same transaction across the application.

2.11.15 Independent Column Mapping

The ORM supports an independent column map, which allows the developer to use different column names in the
model to the ones in the table. Phalcon will recognize the new column names and will rename them accordingly to
match the respective columns in the database. This is a great feature when one needs to rename fields in the database
without having to worry about all the queries in the code. A change in the column map in the model will take care of
the rest. For example:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function columnMap()
{

//Keys are the real names in the table and
//the values their names in the application
return array(

'id' => 'code',
'the_name' => 'theName',
'the_type' => 'theType',
'the_year' => 'theYear'

);
}

}

Then you can use the new names naturally in your code:

<?php

//Find a robot by its name
$robot = Robots::findFirst("theName = 'Voltron'");
echo $robot->theName, "\n";

//Get robots ordered by type
$robot = Robots::find(array('order' => 'theType DESC'));
foreach ($robots as $robot) {

echo 'Code: ', $robot->code, "\n";
}

//Create a robot
$robot = new Robots();
$robot->code = '10101';
$robot->theName = 'Bender';
$robot->theType = 'Industrial';
$robot->theYear = 2999;
$robot->save();

Take into consideration the following the next when renaming your columns:

• References to attributes in relationships/validators must use the new names

• Refer the real column names will result in an exception by the ORM

The independent column map allow you to:

144 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

• Write applications using your own conventions

• Eliminate vendor prefixes/suffixes in your code

• Change column names without change your application code

2.11.16 Operations over Resultsets

If a resultset is composed of complete objects, the resultset is in the ability to perform operations on the records
obtained in a simple manner:

Updating related records

Instead of doing this:

<?php

foreach ($robots->getParts() as $part) {
$part->stock = 100;
$part->updated_at = time();
if ($part->update() == false) {

foreach ($part->getMessages() as $message) {
echo $message;

}
break;

}
}

you can do this:

<?php

$robots->getParts()->update(array(
'stock' => 100,
'updated_at' => time()

));

‘update’ also accepts an anonymous function to filter what records must be updated:

<?php

$data = array(
'stock' => 100,
'updated_at' => time()

);

//Update all the parts except these whose type is basic
$robots->getParts()->update($data, function($part) {

if ($part->type == Part::TYPE_BASIC) {
return false;

}
return true;

});

Deleting related records

Instead of doing this:

2.11. Working with Models 145



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

foreach ($robots->getParts() as $part) {
if ($part->delete() == false) {

foreach ($part->getMessages() as $message) {
echo $message;

}
break;

}
}

you can do this:

<?php

$robots->getParts()->delete();

‘delete’ also accepts an anonymous function to filter what records must be deleted:

<?php

//Delete only whose stock is greater or equal than zero
$robots->getParts()->delete(function($part) {

if ($part->stock < 0) {
return false;

}
return true;

});

2.11.17 Record Snapshots

Specific models could be set to maintain a record snapshot when they’re queried. You can use this feature to implement
auditing or just to know what fields are changed according to the data queried from the persistence:

<?php

class Robots extends Phalcon\Mvc\Model
{

public function initialize()
{

$this->keepSnapshots(true);
}

}

When activating this feature the application consumes a bit more of memory to keep track of the original values
obtained from the persistence. In models that have this feature activated you can check what fields changed:

<?php

//Get a record from the database
$robot = Robots::findFirst();

//Change a column
$robot->name = 'Other name';

var_dump($robot->getChangedFields()); // ['name']
var_dump($robot->hasChanged('name')); // true
var_dump($robot->hasChanged('type')); // false

146 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.11.18 Models Meta-Data

To speed up development Phalcon\Mvc\Model helps you to query fields and constraints from tables related to models.
To achieve this, Phalcon\Mvc\Model\MetaData is available to manage and cache table meta-data.

Sometimes it is necessary to get those attributes when working with models. You can get a meta-data instance as
follows:

<?php

$robot = new Robots();

// Get Phalcon\Mvc\Model\Metadata instance
$metaData = $robot->getModelsMetaData();

// Get robots fields names
$attributes = $metaData->getAttributes($robot);
print_r($attributes);

// Get robots fields data types
$dataTypes = $metaData->getDataTypes($robot);
print_r($dataTypes);

Caching Meta-Data

Once the application is in a production stage, it is not necessary to query the meta-data of the table from the database
system each time you use the table. This could be done caching the meta-data using any of the following adapters:

AdapterDescription API
Mem-
ory

This adapter is the default. The meta-data is cached only during the request. When
the request is completed, the meta-data are released as part of the normal memory
of the request. This adapter is perfect when the application is in development so as
to refresh the meta-data in each request containing the new and/or modified fields.

Phal-
con\Mvc\Model\MetaData\Memory

Ses-
sion

This adapter stores meta-data in the $_SESSION superglobal. This adapter is
recommended only when the application is actually using a small number of
models. The meta-data are refreshed every time a new session starts. This also
requires the use of session_start() to start the session before using any models.

Phal-
con\Mvc\Model\MetaData\Session

Apc This adapter uses the Alternative PHP Cache (APC) to store the table meta-data.
You can specify the lifetime of the meta-data with options. This is the most
recommended way to store meta-data when the application is in production stage.

Phal-
con\Mvc\Model\MetaData\Apc

XCacheThis adapter uses XCache to store the table meta-data. You can specify the lifetime
of the meta-data with options. This is the most recommended way to store
meta-data when the application is in production stage.

Phal-
con\Mvc\Model\MetaData\Xcache

Files This adapter uses plain files to store meta-data. By using this adapter the
disk-reading is increased but the database access is reduced

Phal-
con\Mvc\Model\MetaData\Files

As other ORM’s dependencies, the metadata manager is requested from the services container:

<?php

$di['modelsMetadata'] = function() {

// Create a meta-data manager with APC
$metaData = new \Phalcon\Mvc\Model\MetaData\Apc(array(

"lifetime" => 86400,
"prefix" => "my-prefix"

));

2.11. Working with Models 147

http://www.php.net/manual/en/book.apc.php
http://xcache.lighttpd.net/


Phalcon PHP Framework Documentation, Release 1.3.0

return $metaData;
};

Meta-Data Strategies

As mentioned above the default strategy to obtain the model’s meta-data is database introspection. In this strategy, the
information schema is used to know the fields in a table, its primary key, nullable fields, data types, etc.

You can change the default meta-data introspection in the following way:

<?php

$di['modelsMetadata'] = function() {

// Instantiate a meta-data adapter
$metaData = new \Phalcon\Mvc\Model\MetaData\Apc(array(

"lifetime" => 86400,
"prefix" => "my-prefix"

));

//Set a custom meta-data introspection strategy
$metaData->setStrategy(new MyInstrospectionStrategy());

return $metaData;
};

Database Introspection Strategy

This strategy doesn’t require any customization and is implicitly used by all the meta-data adapters.

Annotations Strategy

This strategy makes use of annotations to describe the columns in a model:

<?php

class Robots extends \Phalcon\Mvc\Model
{

/**
* @Primary

* @Identity

* @Column(type="integer", nullable=false)

*/
public $id;

/**
* @Column(type="string", length=70, nullable=false)

*/
public $name;

/**
* @Column(type="string", length=32, nullable=false)

*/
public $type;

148 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

/**
* @Column(type="integer", nullable=false)

*/
public $year;

}

Annotations must be placed in properties that are mapped to columns in the mapped source. Properties without the
@Column annotation are handled as simple class attributes.

The following annotations are supported:

Name Description
Primary Mark the field as part of the table’s primary key
Identity The field is an auto_increment/serial column
Column This marks an attribute as a mapped column

The annotation @Column supports the following parameters:

Name Description
type The column’s type (string, integer, decimal, boolean)
length The column’s length if any
nullable Set whether the column accepts null values or not

The annotations strategy could be set up this way:

<?php

use Phalcon\Mvc\Model\MetaData\Apc as ApcMetaData,
Phalcon\Mvc\Model\MetaData\Strategy\Annotations as StrategyAnnotations;

$di['modelsMetadata'] = function() {

// Instantiate a meta-data adapter
$metaData = new ApcMetaData(array(

"lifetime" => 86400,
"prefix" => "my-prefix"

));

//Set a custom meta-data database introspection
$metaData->setStrategy(new StrategyAnnotations());

return $metaData;
};

Manual Meta-Data

Phalcon can obtain the metadata for each model automatically without the developer must set them manually using
any of the introspection strategies presented above.

The developer also has the option of define the metadata manually. This strategy overrides any strategy set in the meta-
data manager. New columns added/modified/removed to/from the mapped table must be added/modified/removed also
for everything to work properly.

The following example shows how to define the meta-data manually:

<?php

2.11. Working with Models 149



Phalcon PHP Framework Documentation, Release 1.3.0

use Phalcon\Mvc\Model,
Phalcon\Db\Column,
Phalcon\Mvc\Model\MetaData;

class Robots extends Model
{

public function metaData()
{

return array(

//Every column in the mapped table
MetaData::MODELS_ATTRIBUTES => array(

'id', 'name', 'type', 'year'
),

//Every column part of the primary key
MetaData::MODELS_PRIMARY_KEY => array(

'id'
),

//Every column that isn't part of the primary key
MetaData::MODELS_NON_PRIMARY_KEY => array(

'name', 'type', 'year'
),

//Every column that doesn't allows null values
MetaData::MODELS_NOT_NULL => array(

'id', 'name', 'type', 'year'
),

//Every column and their data types
MetaData::MODELS_DATA_TYPES => array(

'id' => Column::TYPE_INTEGER,
'name' => Column::TYPE_VARCHAR,
'type' => Column::TYPE_VARCHAR,
'year' => Column::TYPE_INTEGER

),

//The columns that have numeric data types
MetaData::MODELS_DATA_TYPES_NUMERIC => array(

'id' => true,
'year' => true,

),

//The identity column, use boolean false if the model doesn't have
//an identity column
MetaData::MODELS_IDENTITY_COLUMN => 'id',

//How every column must be bound/casted
MetaData::MODELS_DATA_TYPES_BIND => array(

'id' => Column::BIND_PARAM_INT,
'name' => Column::BIND_PARAM_STR,
'type' => Column::BIND_PARAM_STR,
'year' => Column::BIND_PARAM_INT,

),

//Fields that must be ignored from INSERT SQL statements

150 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

MetaData::MODELS_AUTOMATIC_DEFAULT_INSERT => array(
'year' => true

),

//Fields that must be ignored from UPDATE SQL statements
MetaData::MODELS_AUTOMATIC_DEFAULT_UPDATE => array(

'year' => true
)

);
}

}

2.11.19 Pointing to a different schema

If a model is mapped to a table that is in a different schemas/databases than the default. You can use the getSchema
method to define that:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function getSchema()
{

return "toys";
}

}

2.11.20 Setting multiple databases

In Phalcon, all models can belong to the same database connection or have an individual one. Actually, when Phal-
con\Mvc\Model needs to connect to the database it requests the “db” service in the application’s services container.
You can overwrite this service setting it in the initialize method:

<?php

//This service returns a MySQL database
$di->set('dbMysql', function() {

return new \Phalcon\Db\Adapter\Pdo\Mysql(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));
});

//This service returns a PostgreSQL database
$di->set('dbPostgres', function() {

return new \Phalcon\Db\Adapter\Pdo\PostgreSQL(array(
"host" => "localhost",
"username" => "postgres",
"password" => "",

2.11. Working with Models 151



Phalcon PHP Framework Documentation, Release 1.3.0

"dbname" => "invo"
));

});

Then, in the Initialize method, we define the connection service for the model:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->setConnectionService('dbPostgres');
}

}

But Phalcon offers you more flexibility, you can define the connection that must be used to ‘read’ and for ‘write’. This
is specially useful to balance the load to your databases implementing a master-slave architecture:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->setReadConnectionService('dbSlave');
$this->setWriteConnectionService('dbMaster');

}

}

The ORM also provides Horizontal Sharding facilities, by allowing you to implement a ‘shard’ selection according to
the current query conditions:

<?php

class Robots extends Phalcon\Mvc\Model
{

/**
* Dynamically selects a shard

*
* @param array $intermediate

* @param array $bindParams

* @param array $bindTypes

*/
public function selectReadConnection($intermediate, $bindParams, $bindTypes)
{

//Check if there is a 'where' clause in the select
if (isset($intermediate['where'])) {

$conditions = $intermediate['where'];

//Choose the possible shard according to the conditions
if ($conditions['left']['name'] == 'id') {

$id = $conditions['right']['value'];
if ($id > 0 && $id < 10000) {

152 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

return $this->getDI()->get('dbShard1');
}
if ($id > 10000) {

return $this->getDI()->get('dbShard2');
}

}
}

//Use a default shard
return $this->getDI()->get('dbShard0');

}

}

The method ‘selectReadConnection’ is called to choose the right connection, this method intercepts any new query
executed:

<?php

$robot = Robots::findFirst('id = 101');

2.11.21 Logging Low-Level SQL Statements

When using high-level abstraction components such as Phalcon\Mvc\Model to access a database, it is difficult to
understand which statements are finally sent to the database system. Phalcon\Mvc\Model is supported internally by
Phalcon\Db. Phalcon\Logger interacts with Phalcon\Db, providing logging capabilities on the database abstraction
layer, thus allowing us to log SQL statements as they happen.

<?php

use Phalcon\Logger,
Phalcon\Db\Adapter\Pdo\Mysql as Connection,
Phalcon\Events\Manager,
Phalcon\Logger\Adapter\File;

$di->set('db', function() {

$eventsManager = new EventsManager();

$logger = new Logger("app/logs/debug.log");

//Listen all the database events
$eventsManager->attach('db', function($event, $connection) use ($logger) {

if ($event->getType() == 'beforeQuery') {
$logger->log($connection->getSQLStatement(), Logger::INFO);

}
});

$connection = new Connection(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));

//Assign the eventsManager to the db adapter instance
$connection->setEventsManager($eventsManager);

2.11. Working with Models 153



Phalcon PHP Framework Documentation, Release 1.3.0

return $connection;
});

As models access the default database connection, all SQL statements that are sent to the database system will be
logged in the file:

<?php

$robot = new Robots();
$robot->name = "Robby the Robot";
$robot->created_at = "1956-07-21";
if ($robot->save() == false) {

echo "Cannot save robot";
}

As above, the file app/logs/db.log will contain something like this:

[Mon, 30 Apr 12 13:47:18 -0500][DEBUG][Resource Id #77] INSERT INTO robots
(name, created_at) VALUES ('Robby the Robot', '1956-07-21')

2.11.22 Profiling SQL Statements

Thanks to Phalcon\Db, the underlying component of Phalcon\Mvc\Model, it’s possible to profile the SQL statements
generated by the ORM in order to analyze the performance of database operations. With this you can diagnose
performance problems and to discover bottlenecks.

<?php

$di->set('profiler', function(){
return new \Phalcon\Db\Profiler();

}, true);

$di->set('db', function() use ($di) {

$eventsManager = new \Phalcon\Events\Manager();

//Get a shared instance of the DbProfiler
$profiler = $di->getProfiler();

//Listen all the database events
$eventsManager->attach('db', function($event, $connection) use ($profiler) {

if ($event->getType() == 'beforeQuery') {
$profiler->startProfile($connection->getSQLStatement());

}
if ($event->getType() == 'afterQuery') {

$profiler->stopProfile();
}

});

$connection = new \Phalcon\Db\Adapter\Pdo\Mysql(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));

//Assign the eventsManager to the db adapter instance

154 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$connection->setEventsManager($eventsManager);

return $connection;
});

Profiling some queries:

<?php

// Send some SQL statements to the database
Robots::find();
Robots::find(array("order" => "name"));
Robots::find(array("limit" => 30));

//Get the generated profiles from the profiler
$profiles = $di->get('profiler')->getProfiles();

foreach ($profiles as $profile) {
echo "SQL Statement: ", $profile->getSQLStatement(), "\n";
echo "Start Time: ", $profile->getInitialTime(), "\n";
echo "Final Time: ", $profile->getFinalTime(), "\n";
echo "Total Elapsed Time: ", $profile->getTotalElapsedSeconds(), "\n";

}

Each generated profile contains the duration in miliseconds that each instruction takes to complete as well as the
generated SQL statement.

2.11.23 Injecting services into Models

You may be required to access the application services within a model, the following example explains how to do that:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function notSave()
{

//Obtain the flash service from the DI container
$flash = $this->getDI()->getFlash();

//Show validation messages
foreach ($this->getMesages() as $message) {

$flash->error($message);
}

}

}

The “notSave” event is triggered every time that a “create” or “update” action fails. So we’re flashing the validation
messages obtaining the “flash” service from the DI container. By doing this, we don’t have to print messages after
each save.

2.11. Working with Models 155



Phalcon PHP Framework Documentation, Release 1.3.0

2.11.24 Disabling/Enabling Features

In the ORM we have implemented a mechanism that allow you to enable/disable specific features or options globally
on the fly. According to how you use the ORM you can disable that you aren’t using. These options can also be
temporarily disabled if required:

<?php

\Phalcon\Mvc\Model::setup(array(
'events' => false,
'columnRenaming' => false

));

The available options are:

Option Description De-
fault

events Enables/Disables callbacks, hooks and event notifications from all the models true
columnRenaming Enables/Disables the column renaming true
notNullValidations The ORM automatically validate the not null columns present in the mapped

table
true

virtualFor-
eignKeys

Enables/Disables the virtual foreign keys true

phqlLiterals Enables/Disables literals in the PHQL parser true

2.11.25 Stand-Alone component

Using Phalcon\Mvc\Model in a stand-alone mode can be demonstrated below:

<?php

use Phalcon\DI,
Phalcon\Db\Adapter\Pdo\Sqlite as Connection,
Phalcon\Mvc\Model\Manager as ModelsManager,
Phalcon\Mvc\Model\Metadata\Memory as MetaData,
Phalcon\Mvc\Model;

$di = new DI();

//Setup a connection
$di->set('db', new Connection(array(

"dbname" => "sample.db"
)));

//Set a models manager
$di->set('modelsManager', new ModelsManager());

//Use the memory meta-data adapter or other
$di->set('modelsMetadata', new MetaData());

//Create a model
class Robots extends Model
{

}

156 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Use the model
echo Robots::count();

2.12 Phalcon Query Language (PHQL)

Phalcon Query Language, PhalconQL or simply PHQL is a high-level, object-oriented SQL dialect that allows to write
queries using a standardized SQL-like language. PHQL is implemented as a parser (written in C) that translates syntax
in that of the target RDBMS.

To achieve the highest performance possible, Phalcon provides a parser that uses the same technology as SQLite. This
technology provides a small in-memory parser with a very low memory footprint that is also thread-safe.

The parser first checks the syntax of the pass PHQL statement, then builds an intermediate representation of the
statement and finally it converts it to the respective SQL dialect of the target RDBMS.

In PHQL, we’ve implemented a set of features to make your access to databases more secure:

• Bound parameters are part of the PHQL language helping you to secure your code

• PHQL only allows one SQL statement to be executed per call preventing injections

• PHQL ignores all SQL comments which are often used in SQL injections

• PHQL only allows data manipulation statements, avoiding altering or dropping tables/databases by mistake or
externally without authorization

• PHQL implements a high-level abstraction allowing you to handle tables as models and fields as class attributes

2.12.1 Usage Example

To better explain how PHQL works consider the following example. We have two models “Cars” and “Brands”:

<?php

class Cars extends Phalcon\Mvc\Model
{

public $id;

public $name;

public $brand_id;

public $price;

public $year;

public $style;

/**
* This model is mapped to the table sample_cars

*/
public function getSource()
{

return 'sample_cars';
}

/**

2.12. Phalcon Query Language (PHQL) 157

http://en.wikipedia.org/wiki/Lemon_Parser_Generator


Phalcon PHP Framework Documentation, Release 1.3.0

* A car only has a Brand, but a Brand have many Cars

*/
public function initialize()
{

$this->belongsTo('brand_id', 'Brands', 'id');
}

}

And every Car has a Brand, so a Brand has many Cars:

<?php

class Brands extends Phalcon\Mvc\Model
{

public $id;

public $name;

/**
* The model Brands is mapped to the "sample_brands" table

*/
public function getSource()
{

return 'sample_brands';
}

/**
* A Brand can have many Cars

*/
public function initialize()
{

$this->hasMany('id', 'Cars', 'brand_id');
}

}

2.12.2 Creating PHQL Queries

PHQL queries can be created just instantiating the class Phalcon\Mvc\Model\Query:

<?php

// Instantiate the Query
$query = new Phalcon\Mvc\Model\Query("SELECT * FROM Cars", $di);

// Execute the query returning a result if any
$cars = $query->execute();

From a controller or a view, it’s easy create/execute them using an injected models manager:

<?php

//Executing a simple query
$query = $this->modelsManager->createQuery("SELECT * FROM Cars");
$cars = $query->execute();

//With bound parameters
$query = $this->modelsManager->createQuery("SELECT * FROM Cars WHERE name = :name:");

158 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$cars = $query->execute(array(
'name' => 'Audi'

));

Or simply execute it:

<?php

//Executing a simple query
$cars = $this->modelsManager->executeQuery("SELECT * FROM Cars");

//Executing with bound parameters
$cars = $this->modelsManager->executeQuery("SELECT * FROM Cars WHERE name = :name:", array(

'name' => 'Audi'
));

2.12.3 Selecting Records

As the familiar SQL, PHQL allows querying of records using the SELECT statement we know, except that instead of
specifying tables, we use the models classes:

<?php

$query = $manager->createQuery("SELECT * FROM Cars ORDER BY Cars.name");
$query = $manager->createQuery("SELECT Cars.name FROM Cars ORDER BY Cars.name");

Classes in namespaces are also allowed:

<?php

$phql = "SELECT * FROM Formula\Cars ORDER BY Formula\Cars.name";
$query = $manager->createQuery($phql);

$phql = "SELECT Formula\Cars.name FROM Formula\Cars ORDER BY Formula\Cars.name";
$query = $manager->createQuery($phql);

$phql = "SELECT c.name FROM Formula\Cars c ORDER BY c.name";
$query = $manager->createQuery($phql);

Most of the SQL standard is supported by PHQL even nonstandard directives as LIMIT:

<?php

$phql = "SELECT c.name FROM Cars AS c "
. "WHERE c.brand_id = 21 ORDER BY c.name LIMIT 100";

$query = $manager->createQuery($phql);

Result Types

Depending on the type of columns we query, the result type will vary. If you retrieve a single whole object, then the
object returned is a Phalcon\Mvc\Model\Resultset\Simple. This kind of resultset is a set of complete model objects:

<?php

$phql = "SELECT c.* FROM Cars AS c ORDER BY c.name";
$cars = $manager->executeQuery($phql);

2.12. Phalcon Query Language (PHQL) 159



Phalcon PHP Framework Documentation, Release 1.3.0

foreach ($cars as $car) {
echo "Name: ", $car->name, "\n";

}

This is exactly the same as:

<?php

$cars = Cars::find(array("order" => "name"));
foreach ($cars as $car) {

echo "Name: ", $car->name, "\n";
}

Complete objects can be modified and re-saved in the database because they represent a complete record of the asso-
ciated table. There are other types of queries that do not return complete objects, for example:

<?php

$phql = "SELECT c.id, c.name FROM Cars AS c ORDER BY c.name";
$cars = $manager->executeQuery($phql);
foreach ($cars as $car) {

echo "Name: ", $car->name, "\n";
}

We are only requesting some fields in the table therefore those cannot be considered an entire object. In this case, also
returns a resulset type Phalcon\Mvc\Model\Resultset\Simple. However, each element is a standard object that only
contain the two columns that were requested.

These values that don’t represent complete objects we call them scalars. PHQL allows you to query all types of scalars:
fields, functions, literals, expressions, etc..:

<?php

$phql = "SELECT CONCAT(c.id, ' ', c.name) AS id_name FROM Cars AS c ORDER BY c.name";
$cars = $manager->executeQuery($phql);
foreach ($cars as $car) {

echo $car->id_name, "\n";
}

As we can query complete objects or scalars, also we can query both at once:

<?php

$phql = "SELECT c.price*0.16 AS taxes, c.* FROM Cars AS c ORDER BY c.name";
$result = $manager->executeQuery($phql);

The result in this case is an object Phalcon\Mvc\Model\Resultset\Complex. This allows access to both complete
objects and scalars at once:

<?php

foreach ($result as $row) {
echo "Name: ", $row->cars->name, "\n";
echo "Price: ", $row->cars->price, "\n";
echo "Taxes: ", $row->taxes, "\n";

}

Scalars are mapped as properties of each “row”, while complete objects are mapped as properties with the name of its
related model.

160 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Joins

It’s easy to request records from multiple models using PHQL. Most kinds of Joins are supported. As we defined
relationships in the models. PHQL adds these conditions automatically:

<?php

$phql = "SELECT Cars.name AS car_name, Brands.name AS brand_name FROM Cars JOIN Brands";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {

echo $row->car_name, "\n";
echo $row->brand_name, "\n";

}

By default, an INNER JOIN is assumed. You can specify the type of JOIN in the query:

<?php

$phql = "SELECT Cars.*, Brands.* FROM Cars INNER JOIN Brands";
$rows = $manager->executeQuery($phql);

$phql = "SELECT Cars.*, Brands.* FROM Cars LEFT JOIN Brands";
$rows = $manager->executeQuery($phql);

$phql = "SELECT Cars.*, Brands.* FROM Cars LEFT OUTER JOIN Brands";
$rows = $manager->executeQuery($phql);

$phql = "SELECT Cars.*, Brands.* FROM Cars CROSS JOIN Brands";
$rows = $manager->executeQuery($phql);

Also is possible set manually the conditions of the JOIN:

<?php

$phql = "SELECT Cars.*, Brands.* FROM Cars INNER JOIN Brands ON Brands.id = Cars.brands_id";
$rows = $manager->executeQuery($phql);

Also, the joins can be created using multiple tables in the FROM clause:

<?php

$phql = "SELECT Cars.*, Brands.* FROM Cars, Brands WHERE Brands.id = Cars.brands_id";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {

echo "Car: ", $row->cars->name, "\n";
echo "Brand: ", $row->brands->name, "\n";

}

If an alias is used to rename the models in the query, those will be used to name the attributes in the every row of the
result:

<?php

$phql = "SELECT c.*, b.* FROM Cars c, Brands b WHERE b.id = c.brands_id";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {

echo "Car: ", $row->c->name, "\n";
echo "Brand: ", $row->b->name, "\n";

}

2.12. Phalcon Query Language (PHQL) 161



Phalcon PHP Framework Documentation, Release 1.3.0

When the joined model has a many-to-many relation to the ‘from’ model, implicitly the intermediate model is added
to the generated query:

<?php

$phql = 'SELECT Brands.name, Songs.name FROM Artists ' .
'JOIN Songs WHERE Artists.genre = "Trip-Hop"';

$result = $this->modelsManager->query($phql);

Produce the following SQL in MySQL:

SELECT `brands`.`name`, `songs`.`name` FROM `artists`
INNER JOIN `albums` ON `albums`.`artists_id` = `artists`.`id`
INNER JOIN `songs` ON `albums`.`songs_id` = `songs`.`id`
WHERE `artists`.`genre` = 'Trip-Hop'

Aggregations

The following examples show how to use aggregations in PHQL:

<?php

// How much are the prices of all the cars?
$phql = "SELECT SUM(price) AS summatory FROM Cars";
$row = $manager->executeQuery($phql)->getFirst();
echo $row['summatory'];

// How many cars are by each brand?
$phql = "SELECT Cars.brand_id, COUNT(*) FROM Cars GROUP BY Cars.brand_id";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {

echo $row->brand_id, ' ', $row["1"], "\n";
}

// How many cars are by each brand?
$phql = "SELECT Brands.name, COUNT(*) FROM Cars JOIN Brands GROUP BY 1";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {

echo $row->name, ' ', $row["1"], "\n";
}

$phql = "SELECT MAX(price) AS maximum, MIN(price) AS minimum FROM Cars";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {

echo $row["maximum"], ' ', $row["minimum"], "\n";
}

// Count distinct used brands
$phql = "SELECT COUNT(DISTINCT brand_id) AS brandId FROM Cars";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {

echo $row->brandId, "\n";
}

Conditions

Conditions allow us to filter the set of records we want to query. The WHERE clause allows to do that:

162 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

// Simple conditions
$phql = "SELECT * FROM Cars WHERE Cars.name = 'Lamborghini Espada'";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.price > 10000";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE TRIM(Cars.name) = 'Audi R8'";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.name LIKE 'Ferrari%'";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.name NOT LIKE 'Ferrari%'";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.price IS NULL";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.id IN (120, 121, 122)";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.id NOT IN (430, 431)";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.id BETWEEN 1 AND 100";
$cars = $manager->executeQuery($phql);

Also, as part of PHQL, prepared parameters automatically escape the input data, introducing more security:

<?php

$phql = "SELECT * FROM Cars WHERE Cars.name = :name:";
$cars = $manager->executeQuery($phql, array("name" => 'Lamborghini Espada'));

$phql = "SELECT * FROM Cars WHERE Cars.name = ?0";
$cars = $manager->executeQuery($phql, array(0 => 'Lamborghini Espada'));

2.12.4 Inserting Data

With PHQL is possible insert data using the familiar INSERT statement:

<?php

// Inserting without columns
$phql = "INSERT INTO Cars VALUES (NULL, 'Lamborghini Espada', "

. "7, 10000.00, 1969, 'Grand Tourer')";
$manager->executeQuery($phql);

// Specifyng columns to insert
$phql = "INSERT INTO Cars (name, brand_id, year, style) "

. "VALUES ('Lamborghini Espada', 7, 1969, 'Grand Tourer')";
$manager->executeQuery($phql);

// Inserting using placeholders

2.12. Phalcon Query Language (PHQL) 163



Phalcon PHP Framework Documentation, Release 1.3.0

$phql = "INSERT INTO Cars (name, brand_id, year, style) "
. "VALUES (:name:, :brand_id:, :year:, :style)";

$manager->executeQuery($sql,
array(

'name' => 'Lamborghini Espada',
'brand_id' => 7,
'year' => 1969,
'style' => 'Grand Tourer',

)
);

Phalcon not just only transform the PHQL statements into SQL. All events and business rules defined in the model are
executed as if we created individual objects manually. Let’s add a business rule on the model cars. A car cannot cost
less than $ 10,000:

<?php

use Phalcon\Mvc\Model\Message;

class Cars extends Phalcon\Mvc\Model
{

public function beforeCreate()
{

if ($this->price < 10000)
{

$this->appendMessage(new Message("A car cannot cost less than $ 10,000"));
return false;

}
}

}

If we made the following INSERT in the models Cars, the operation will not be successful because the price does not
meet the business rule that we implemented:

<?php

$phql = "INSERT INTO Cars VALUES (NULL, 'Nissan Versa', 7, 9999.00, 2012, 'Sedan')";
$result = $manager->executeQuery($phql);
if ($result->success() == false)
{

foreach ($result->getMessages() as $message)
{

echo $message->getMessage();
}

}

2.12.5 Updating Data

Updating rows is very similar than inserting rows. As you may know, the instruction to update records is UPDATE.
When a record is updated the events related to the update operation will be executed for each row.

<?php

// Updating a single column
$phql = "UPDATE Cars SET price = 15000.00 WHERE id = 101";

164 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$manager->executeQuery($phql);

// Updating multiples columns
$phql = "UPDATE Cars SET price = 15000.00, type = 'Sedan' WHERE id = 101";
$manager->executeQuery($phql);

// Updating multiples rows
$phql = "UPDATE Cars SET price = 7000.00, type = 'Sedan' WHERE brands_id > 5";
$manager->executeQuery($phql);

// Using placeholders
$phql = "UPDATE Cars SET price = ?0, type = ?1 WHERE brands_id > ?2";
$manager->executeQuery($phql, array(

0 => 7000.00,
1 => 'Sedan',
2 => 5

));

An UPDATE statement performs the update in two phases:

• First, if the UPDATE has a WHERE clause it retrieves all the objects that match these criteria,

• Second, based on the queried objects it updates/changes the requested attributes storing them to the relational
database

This way of operation allows that events, virtual foreign keys and validations take part of the updating process. In
summary, the following code:

<?php

$phql = "UPDATE Cars SET price = 15000.00 WHERE id > 101";
$success = $manager->executeQuery($phql);

is somewhat equivalent to:

<?php

$messages = null;

$process = function() use (&$messages) {
foreach (Cars::find("id > 101") as $car) {

$car->price = 15000;
if ($car->save() == false) {

$messages = $car->getMessages();
return false;

}
}
return true;

};

$success = $process();

2.12.6 Deleting Data

When a record is deleted the events related to the delete operation will be executed for each row:

<?php

2.12. Phalcon Query Language (PHQL) 165



Phalcon PHP Framework Documentation, Release 1.3.0

// Deleting a single row
$phql = "DELETE FROM Cars WHERE id = 101";
$manager->executeQuery($phql);

// Deleting multiple rows
$phql = "DELETE FROM Cars WHERE id > 100";
$manager->executeQuery($phql);

// Using placeholders
$phql = "DELETE FROM Cars WHERE id BETWEEN :initial: AND :final:";
$manager->executeQuery(

$phql,
array(

'initial' => 1,
'final' => 100

)
);

DELETE operations are also executed in two phases like UPDATEs.

2.12.7 Creating queries using the Query Builder

A builder is available to create PHQL queries without the need to write PHQL statements, also providing IDE facilities:

<?php

//Getting a whole set
$robots = $this->modelsManager->createBuilder()

->from('Robots')
->join('RobotsParts')
->orderBy('Robots.name')
->getQuery()
->execute();

//Getting the first row
$robots = $this->modelsManager->createBuilder()

->from('Robots')
->join('RobotsParts')
->orderBy('Robots.name')
->getQuery()
->getSingleResult();

That is the same as:

<?php

$phql = "SELECT Robots.*
FROM Robots JOIN RobotsParts p
ORDER BY Robots.name LIMIT 20";

$result = $manager->executeQuery($phql);

More examples of the builder:

<?php

$builder->from('Robots');
// 'SELECT Robots.* FROM Robots'

166 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

// 'SELECT Robots.*, RobotsParts.* FROM Robots, RobotsParts'
$builder->from(array('Robots', 'RobotsParts'));

// 'SELECT * FROM Robots'
$phql = $builder->columns('*')

->from('Robots');

// 'SELECT id FROM Robots'
$builder->columns('id')

->from('Robots');

// 'SELECT id, name FROM Robots'
$builder->columns(array('id', 'name'))

->from('Robots');

// 'SELECT Robots.* FROM Robots WHERE Robots.name = "Voltron"'
$builder->from('Robots')

->where('Robots.name = "Voltron"');

// 'SELECT Robots.* FROM Robots WHERE Robots.id = 100'
$builder->from('Robots')

->where(100);

// 'SELECT Robots.* FROM Robots WHERE Robots.type = "virtual" AND Robots.id > 50'
$builder->from('Robots')

->where('type = "virtual"')
->andWhere('id > 50');

// 'SELECT Robots.* FROM Robots WHERE Robots.type = "virtual" OR Robots.id > 50'
$builder->from('Robots')

->where('type = "virtual"')
->orWhere('id > 50');

// 'SELECT Robots.* FROM Robots GROUP BY Robots.name'
$builder->from('Robots')

->groupBy('Robots.name');

// 'SELECT Robots.* FROM Robots GROUP BY Robots.name, Robots.id'
$builder->from('Robots')

->groupBy(array('Robots.name', 'Robots.id'));

// 'SELECT Robots.name, SUM(Robots.price) FROM Robots GROUP BY Robots.name'
$builder->columns(array('Robots.name', 'SUM(Robots.price)'))

->from('Robots')
->groupBy('Robots.name');

// 'SELECT Robots.name, SUM(Robots.price) FROM Robots
// GROUP BY Robots.name HAVING SUM(Robots.price) > 1000'
$builder->columns(array('Robots.name', 'SUM(Robots.price)'))

->from('Robots')
->groupBy('Robots.name')
->having('SUM(Robots.price) > 1000');

// 'SELECT Robots.* FROM Robots JOIN RobotsParts');
$builder->from('Robots')

->join('RobotsParts');

// 'SELECT Robots.* FROM Robots JOIN RobotsParts AS p');

2.12. Phalcon Query Language (PHQL) 167



Phalcon PHP Framework Documentation, Release 1.3.0

$builder->from('Robots')
->join('RobotsParts', null, 'p');

// 'SELECT Robots.* FROM Robots JOIN RobotsParts ON Robots.id = RobotsParts.robots_id AS p');
$builder->from('Robots')

->join('RobotsParts', 'Robots.id = RobotsParts.robots_id', 'p');

// 'SELECT Robots.* FROM Robots
// JOIN RobotsParts ON Robots.id = RobotsParts.robots_id AS p
// JOIN Parts ON Parts.id = RobotsParts.parts_id AS t'
$builder->from('Robots')

->join('RobotsParts', 'Robots.id = RobotsParts.robots_id', 'p')
->join('Parts', 'Parts.id = RobotsParts.parts_id', 't');

// 'SELECT r.* FROM Robots AS r'
$builder->addFrom('Robots', 'r');

// 'SELECT Robots.*, p.* FROM Robots, Parts AS p'
$builder->from('Robots')

->addFrom('Parts', 'p');

// 'SELECT r.*, p.* FROM Robots AS r, Parts AS p'
$builder->from(array('r' => 'Robots'))

->addFrom('Parts', 'p');

// 'SELECT r.*, p.* FROM Robots AS r, Parts AS p');
$builder->from(array('r' => 'Robots', 'p' => 'Parts'));

// 'SELECT Robots.* FROM Robots LIMIT 10'
$builder->from('Robots')

->limit(10);

// 'SELECT Robots.* FROM Robots LIMIT 10 OFFSET 5'
$builder->from('Robots')

->limit(10, 5);

// 'SELECT Robots.* FROM Robots WHERE id BETWEEN 1 AND 100'
$builder->from('Robots')

->betweenWhere('id', 1, 100);

// 'SELECT Robots.* FROM Robots WHERE id IN (1, 2, 3)'
$builder->from('Robots')

->inWhere('id', array(1, 2, 3));

// 'SELECT Robots.* FROM Robots WHERE id NOT IN (1, 2, 3)'
$builder->from('Robots')

->notInWhere('id', array(1, 2, 3));

// 'SELECT Robots.* FROM Robots WHERE name LIKE '%Art%'
$builder->from('Robots')

->where('name LIKE :name:', array('name' => '%' . $name . '%'));

// 'SELECT r.* FROM Store\Robots WHERE r.name LIKE '%Art%'
$builder->from(['r' => 'Store\Robots'])

->where('r.name LIKE :name:', array('name' => '%' . $name . '%'));

168 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Bound Parameters

Bound parameters in the query builder can be set as the query is constructed or past all at once when executing:

<?php

//Passing parameters in the query construction
$robots = $this->modelsManager->createBuilder()

->from('Robots')
->where('name = :name:', array('name' => $name))
->andWhere('type = :type:', array('type' => $type))
->getQuery()
->execute();

//Passing parameters in query execution
$robots = $this->modelsManager->createBuilder()

->from('Robots')
->where('name = :name:')
->andWhere('type = :type:')
->getQuery()
->execute(array('name' => $name, 'type' => $type));

2.12.8 Disallow literals in PHQL

Literals can be disabled in PHQL, this means that directly using strings, numbers and boolean values in PHQL strings
will be disallowed. If PHQL statements are created embedding external data on them, this could open the application
to potential SQL injections:

<?php

$login = 'voltron';
$phql = "SELECT * FROM Models\Users WHERE login = '$login'";
$result = $manager->executeQuery($phql);

If $login is changed to ‘ OR ‘’ = ‘, the produced PHQL is:

<?php

"SELECT * FROM Models\Users WHERE login = '' OR '' = ''"

Which is always true no matter what the login stored in the database is.

If literals are disallowed strings can be used as part of a PHQL statement, thus an exception will be thrown forcing the
developer to use bound parameters. The same query can be written in a secure way like this:

<?php

$phql = "SELECT Robots.* FROM Robots WHERE Robots.name = :name:";
$result = $manager->executeQuery($phql, array('name' => $name));

You can disallow literals in the following way:

<?php

Phalcon\Mvc\Model::setup(array('phqlLiterals' => false));

Bound parameters can be used even if literals are allowed or not. Disallowing them is just another security decision a
developer could take in web applications.

2.12. Phalcon Query Language (PHQL) 169



Phalcon PHP Framework Documentation, Release 1.3.0

2.12.9 Escaping Reserved Words

PHQL has a few reserved words, if you want to use any of them as attributes or models names, you need to escape
those words using the cross-database escaping delimiters ‘[’ and ‘]’:

<?php

$phql = "SELECT * FROM [Update]";
$result = $manager->executeQuery($phql);

$phql = "SELECT id, [Like] FROM Posts";
$result = $manager->executeQuery($phql);

The delimiters are dynamically translated to valid delimiters depending on the database system where the application
is currently running on.

2.12.10 PHQL Lifecycle

Being a high-level language, PHQL gives developers the ability to personalize and customize different aspects in order
to suit their needs. The following is the life cycle of each PHQL statement executed:

• The PHQL is parsed and converted into an Intermediate Representation (IR) which is independent of the SQL
implemented by database system

• The IR is converted to valid SQL according to the database system associated to the model

• PHQL statements are parsed once and cached in memory. Further executions of the same statement result in a
slightly faster execution

2.12.11 Using Raw SQL

A database system could offer specific SQL extensions that aren’t supported by PHQL, in this case, a raw SQL can be
appropiate:

<?php

use Phalcon\Mvc\Model\Resultset\Simple as Resultset;

class Robots extends Phalcon\Mvc\Model
{

public static function findByCreateInterval()
{

// A raw SQL statement
$sql = "SELECT * FROM robots WHERE id > 0";

// Base model
$robot = new Robots();

// Execute the query
return new Resultset(null, $robot, $robot->getReadConnection()->query($sql));

}
}

If Raw SQL queries are common in your application a generic method could be added to your model:

170 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

use Phalcon\Mvc\Model\Resultset\Simple as Resultset;

class Robots extends Phalcon\Mvc\Model
{

public static function findByRawSql($conditions, $params=null)
{

// A raw SQL statement
$sql = "SELECT * FROM robots WHERE $conditions";

// Base model
$robot = new Robots();

// Execute the query
return new Resultset(null, $robot, $robot->getReadConnection()->query($sql, $params));

}
}

The above findByRawSql could be used as follows:

<?php

$robots = Robots::findByRawSql('id > ?', array(10));

2.12.12 Troubleshooting

Some things to keep in mind when using PHQL:

• Classes are case-sensitive, if a class is not defined with the same name as it was created this could lead to an
unexpected behavior in operating systems with case-sensitive file systems such as Linux.

• Correct charset must be defined in the connection to bind parameters with success

• Aliased classes aren’t replaced by full namespaced classes since this only occurs in PHP code and not inside
strings

• If column renaming is enabled avoid using column aliases with the same name as columns to be renamed, this
may confuse the query resolver

2.13 Caching in the ORM

Every application is different, we could have models whose data change frequently and others that rarely change.
Accessing database systems is often one of the most common bottlenecks in terms of performance. This is due to
the complex connection/communication processes that PHP must do in each request to obtain data from the database.
Therefore, if we want to achieve good performance we need to add some layers of caching where the application
requires it.

This chapter explains the possible points where it is possible to implement caching to improve performance. The
framework gives you the tools to implement the cache where you demand of it according to the architecture of your
application.

2.13. Caching in the ORM 171



Phalcon PHP Framework Documentation, Release 1.3.0

2.13.1 Caching Resultsets

A well established technique to avoid the continuous access to the database is to cache resultsets that don’t change
frequently using a system with faster access (usually memory).

When Phalcon\Mvc\Model requires a service to cache resultsets, it will request it to the Dependency Injector Container
with the convention name “modelsCache”.

As Phalcon provides a component to cache any kind of data, we’ll explain how to integrate it with Models. First, you
must register it as a service in the services container:

<?php

//Set the models cache service
$di->set('modelsCache', function() {

//Cache data for one day by default
$frontCache = new \Phalcon\Cache\Frontend\Data(array(

"lifetime" => 86400
));

//Memcached connection settings
$cache = new \Phalcon\Cache\Backend\Memcache($frontCache, array(

"host" => "localhost",
"port" => "11211"

));

return $cache;
});

You have complete control in creating and customizing the cache before being used by registering the service as an
anonymous function. Once the cache setup is properly defined you could cache resultsets as follows:

<?php

// Get products without caching
$products = Products::find();

// Just cache the resultset. The cache will expire in 1 hour (3600 seconds)
$products = Products::find(array(

"cache" => array("key" => "my-cache")
));

// Cache the resultset for only for 5 minutes
$products = Products::find(array(

"cache" => array("key" => "my-cache", "lifetime" => 300)
));

// Using a custom cache
$products = Products::find(array("cache" => $myCache));

Caching could be also applied to resultsets generated using relationships:

<?php

// Query some post
$post = Post::findFirst();

// Get comments related to a post, also cache it
$comments = $post->getComments(array(

172 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

"cache" => array("key" => "my-key")
));

// Get comments related to a post, setting lifetime
$comments = $post->getComments(array(

"cache" => array("key" => "my-key", "lifetime" => 3600)
));

When a cached resultset needs to be invalidated, you can simply delete it from the cache using the previously specified
key.

Note that not all resultsets must be cached. Results that change very frequently should not be cached since they
are invalidated very quickly and caching in that case impacts performance. Additionally, large datasets that do not
change frequently could be cached, but that is a decision that the developer has to make based on the available caching
mechanism and whether the performance impact to simply retrieve that data in the first place is acceptable.

2.13.2 Overriding find/findFirst

As seen above, these methods are available in models that inherit Phalcon\Mvc\Model:

<?php

class Robots extends Phalcon\Mvc\Model
{

public static function find($parameters=null)
{

return parent::find($parameters);
}

public static function findFirst($parameters=null)
{

return parent::findFirst($parameters);
}

}

By doing this, you’re intercepting all the calls to these methods, this way, you can add a cache layer or run the query if
there is no cache. For example, a very basic cache implementation, uses a static property to avoid that a record would
be queried several times in a same request:

<?php

class Robots extends Phalcon\Mvc\Model
{

protected static $_cache = array();

/**
* Implement a method that returns a string key based

* on the query parameters

*/
protected static function _createKey($parameters)
{

$uniqueKey = array();
foreach ($parameters as $key => $value) {

if (is_scalar($value)) {

2.13. Caching in the ORM 173



Phalcon PHP Framework Documentation, Release 1.3.0

$uniqueKey[] = $key . ':' . $value;
} else {

if (is_array($value)) {
$uniqueKey[] = $key . ':[' . self::_createKey($value) .']';

}
}

}
return join(',', $uniqueKey);

}

public static function find($parameters=null)
{

//Create an unique key based on the parameters
$key = self::_createKey($parameters);

if (!isset(self::$_cache[$key])) {
//Store the result in the memory cache
self::$_cache[$key] = parent::find($parameters);

}

//Return the result in the cache
return self::$_cache[$key];

}

public static function findFirst($parameters=null)
{

// ...
}

}

Access the database is several times slower than calculate a cache key, you’re free in implement the key generation
strategy you find better for your needs. Note that a good key avoids collisions as much as possible, this means that
different keys returns unrelated records to the find parameters.

In the above example, we used a cache in memory, it is useful as a first level cache. Once we have the memory cache,
we can implement a second level cache layer like APC/XCache or a NoSQL database:

<?php

public static function find($parameters=null)
{

//Create an unique key based on the parameters
$key = self::_createKey($parameters);

if (!isset(self::$_cache[$key])) {

//We're using APC as second cache
if (apc_exists($key)) {

$data = apc_fetch($key);

//Store the result in the memory cache
self::$_cache[$key] = $data;

return $data;
}

174 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//There are no memory or apc cache
$data = parent::find($parameters);

//Store the result in the memory cache
self::$_cache[$key] = $data;

//Store the result in APC
apc_store($key, $data);

return $data;
}

//Return the result in the cache
return self::$_cache[$key];

}

This gives you full control on how the the caches must be implemented for each model, if this strategy is common to
several models you can create a base class for all of them:

<?php

class CacheableModel extends Phalcon\Mvc\Model
{

protected static function _createKey($parameters)
{

// .. create a cache key based on the parameters
}

public static function find($parameters=null)
{

//.. custom caching strategy
}

public static function findFirst($parameters=null)
{

//.. custom caching strategy
}

}

Then use this class as base class for each ‘Cacheable’ model:

<?php

class Robots extends CacheableModel
{

}

2.13.3 Forcing Cache

Earlier we saw how Phalcon\Mvc\Model has a built-in integration with the caching component provided by the frame-
work. To make a record/resultset cacheable we pass the key ‘cache’ in the array of parameters:

<?php

// Cache the resultset for only for 5 minutes

2.13. Caching in the ORM 175



Phalcon PHP Framework Documentation, Release 1.3.0

$products = Products::find(array(
"cache" => array("key" => "my-cache", "lifetime" => 300)

));

This gives us the freedom to cache specific queries, however if we want to cache globally every query performed over
the model, we can override the find/findFirst method to force every query to be cached:

<?php

class Robots extends Phalcon\Mvc\Model
{

protected static function _createKey($parameters)
{

// .. create a cache key based on the parameters
}

public static function find($parameters=null)
{

//Convert the parameters to an array
if (!is_array($parameters)) {

$parameters = array($parameters);
}

//Check if a cache key wasn't passed
//and create the cache parameters
if (!isset($parameters['cache'])) {

$parameters['cache'] = array(
"key" => self::_createKey($parameters),
"lifetime" => 300

);
}

return parent::find($parameters);
}

public static function findFirst($parameters=null)
{

//...
}

}

2.13.4 Caching PHQL Queries

All queries in the ORM, no matter how high level syntax we used to create them are handled internally using PHQL.
This language gives you much more freedom to create all kinds of queries. Of course these queries can be cached:

<?php

$phql = "SELECT * FROM Cars WHERE name = :name:";

$query = $this->modelsManager->createQuery($phql);

$query->cache(array(
"key" => "cars-by-name",

176 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

"lifetime" => 300
));

$cars = $query->execute(array(
'name' => 'Audi'

));

If you don’t want to use the implicit cache just save the resulset into your favorite cache backend:

<?php

$phql = "SELECT * FROM Cars WHERE name = :name:";

$cars = $this->modelsManager->executeQuery($phql, array(
'name' => 'Audi'

));

apc_store('my-cars', $cars);

2.13.5 Reusable Related Records

Some models may have relationships to other models. This allows us to easily check the records that relate to instances
in memory:

<?php

//Get some invoice
$invoice = Invoices::findFirst();

//Get the customer related to the invoice
$customer = $invoice->customer;

//Print his/her name
echo $customer->name, "\n";

This example is very simple, a customer is queried and can be used as required, for example, to show its name. This
also applies if we retrieve a set of invoices to show customers that correspond to these invoices:

<?php

//Get a set of invoices
// SELECT * FROM invoices
foreach (Invoices::find() as $invoice) {

//Get the customer related to the invoice
// SELECT * FROM customers WHERE id = ?
$customer = $invoice->customer;

//Print his/her name
echo $customer->name, "\n";

}

A customer may have one or more bills, this means that the customer may be unnecessarily more than once. To avoid
this, we could mark the relationship as reusable, this way, we tell the ORM to automatically reuse the records instead
of re-querying them again and again:

2.13. Caching in the ORM 177



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

class Invoices extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->belongsTo("customers_id", "Customer", "id", array(
'reusable' => true

));
}

}

This cache works in memory only, this means that cached data are released when the request is terminated. You can
add a more sophisticated cache for this scenario overriding the models manager:

<?php

class CustomModelsManager extends \Phalcon\Mvc\Model\Manager
{

/**
* Returns a reusable object from the cache

*
* @param string $modelName

* @param string $key

* @return object

*/
public function getReusableRecords($modelName, $key){

//If the model is Products use the APC cache
if ($modelName == 'Products'){

return apc_fetch($key);
}

//For the rest, use the memory cache
return parent::getReusableRecords($modelName, $key);

}

/**
* Stores a reusable record in the cache

*
* @param string $modelName

* @param string $key

* @param mixed $records

*/
public function setReusableRecords($modelName, $key, $records){

//If the model is Products use the APC cache
if ($modelName == 'Products'){

apc_store($key, $records);
return;

}

//For the rest, use the memory cache
parent::setReusableRecords($modelName, $key, $records);

}

178 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

}

Do not forget to register the custom models manager in the DI:

<?php

$di->setShared('modelsManager', function() {
return new CustomModelsManager();

});

2.13.6 Caching Related Records

When a related record is queried, the ORM internally builds the appropiate condition and gets the required records
using find/findFirst in the target model according to the following table:

Type Description | Implicit Method
Belongs-To Returns a model instance of the related record directly | findFirst
Has-One Returns a model instance of the related record directly | findFirst
Has-Many Returns a collection of model instances of the referenced model | find

This means that when you get a related record you could intercept how these data are obtained by implementing the
corresponding method:

<?php

//Get some invoice
$invoice = Invoices::findFirst();

//Get the customer related to the invoice
$customer = $invoice->customer; // Invoices::findFirst('...');

//Same as above
$customer = $invoice->getCustomer(); // Invoices::findFirst('...');

Accordingly, we could replace the findFirst method in the model Invoices and implement the cache we consider most
appropriate:

<?php

class Invoices extends Phalcon\Mvc\Model
{

public static function findFirst($parameters=null)
{

//.. custom caching strategy
}

}

2.13.7 Caching Related Records Recursively

In this scenario, we assume that everytime we query a result we also retrieve their associated records. If we store the
records found together with their related entities perhaps we could reduce a bit the overhead required to obtain all
entities:

<?php

2.13. Caching in the ORM 179



Phalcon PHP Framework Documentation, Release 1.3.0

class Invoices extends Phalcon\Mvc\Model
{

protected static function _createKey($parameters)
{

// .. create a cache key based on the parameters
}

protected static function _getCache($key)
{

// returns data from a cache
}

protected static function _setCache($key)
{

// stores data in the cache
}

public static function find($parameters=null)
{

//Create a unique key
$key = self::_createKey($parameters);

//Check if there are data in the cache
$results = self::_getCache($key);

// Valid data is an object
if (is_object($results)) {

return $results;
}

$results = array();

$invoices = parent::find($parameters);
foreach ($invoices as $invoice) {

//Query the related customer
$customer = $invoice->customer;

//Assign it to the record
$invoice->customer = $customer;

$results[] = $invoice;
}

//Store the invoices in the cache + their customers
self::_setCache($key, $results);

return $results;
}

public function initialize()
{

// add relations and initialize other stuff
}

}

Getting the invoices from the cache already obtains the customer data in just one hit, reducing the overall overhead of

180 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

the operation. Note that this process can also be performed with PHQL following an alternative solution:

<?php

class Invoices extends \Phalcon\Mvc\Model
{

public function initialize()
{

// add relations and initialize other stuff
}

protected static function _createKey($conditions, $params)
{

// .. create a cache key based on the parameters
}

public function getInvoicesCustomers($conditions, $params=null)
{

$phql = "SELECT Invoices.*, Customers.*
FROM Invoices JOIN Customers WHERE " . $conditions;

$query = $this->getModelsManager()->executeQuery($phql);

$query->cache(array(
"key" => self::_createKey($conditions, $params),
"lifetime" => 300

));

return $query->execute($params);
}

}

2.13.8 Caching based on Conditions

In this scenario, the cache is implemented conditionally according to current conditions received. According to the
range where the primary key is located we choose a different cache backend:

Type Cache Backend
1 - 10000 mongo1
10000 - 20000 mongo2
> 20000 mongo3

The easiest way is adding an static method to the model that chooses the right cache to be used:

<?php

class Robots extends \Phalcon\Mvc\Model
{

public static function queryCache($initial, $final)
{

if ($initial >= 1 && $final < 10000) {
return self::find(array(

'id >= ' . $initial . ' AND id <= '.$final,
'cache' => array('service' => 'mongo1')

));

2.13. Caching in the ORM 181



Phalcon PHP Framework Documentation, Release 1.3.0

}
if ($initial >= 10000 && $final <= 20000) {

return self::find(array(
'id >= ' . $initial . ' AND id <= '.$final,
'cache' => array('service' => 'mongo2')

));
}
if ($initial > 20000) {

return self::find(array(
'id >= ' . $initial,
'cache' => array('service' => 'mongo3')

));
}

}

}

This approach solves the problem, however, if we want to add other parameters such orders or conditions we would
have to create a more complicated method. Additionally, this method does not work if the data is obtained using
related records or a find/findFirst:

<?php

$robots = Robots::find('id < 1000');
$robots = Robots::find('id > 100 AND type = "A"');
$robots = Robots::find('(id > 100 AND type = "A") AND id < 2000');

$robots = Robots::find(array(
'(id > ?0 AND type = "A") AND id < ?1',
'bind' => array(100, 2000),
'order' => 'type'

));

To achieve this we need to intercept the intermediate representation (IR) generated by the PHQL parser and thus
customize the cache everything possible:

The first is create a custom builder, so we can generate a totally customized query:

<?php

class CustomQueryBuilder extends Phalcon\Mvc\Model\Query\Builder
{

public function getQuery()
{

$query = new CustomQuery($this->getPhql());
$query->setDI($this->getDI());
return $query;

}

}

Instead of directly returning a Phalcon\Mvc\Model\Query, our custom builder returns a CustomQuery instance, this
class looks like:

<?php

class CustomQuery extends Phalcon\Mvc\Model\Query
{

182 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

/**
* The execute method is overrided

*/
public function execute($params=null, $types=null)
{

//Parse the intermediate representation for the SELECT
$ir = $this->parse();

//Check if the query has conditions
if (isset($ir['where'])) {

//The fields in the conditions can have any order
//We need to recursively check the conditions tree
//to find the info we're looking for
$visitor = new CustomNodeVisitor();

//Recursively visits the nodes
$visitor->visit($ir['where']);

$initial = $visitor->getInitial();
$final = $visitor->getFinal();

//Select the cache according to the range
//...

//Check if the cache has data
//...

}

//Execute the query
$result = $this->_executeSelect($ir, $params, $types);

//cache the result
//...

return $result;
}

}

Implementing a helper (CustomNodeVisitor) that recursively checks the conditions looking for fields that tell us the
possible range to be used in the cache:

<?php

class CustomNodeVisitor
{

protected $_initial = 0;

protected $_final = 25000;

public function visit($node)
{

switch ($node['type']) {

case 'binary-op':

2.13. Caching in the ORM 183



Phalcon PHP Framework Documentation, Release 1.3.0

$left = $this->visit($node['left']);
$right = $this->visit($node['right']);
if (!$left || !$right) {

return false;
}

if ($left=='id') {
if ($node['op'] == '>') {

$this->_initial = $right;
}
if ($node['op'] == '=') {

$this->_initial = $right;
}
if ($node['op'] == '>=') {

$this->_initial = $right;
}
if ($node['op'] == '<') {

$this->_final = $right;
}
if ($node['op'] == '<=') {

$this->_final = $right;
}

}
break;

case 'qualified':
if ($node['name'] == 'id') {

return 'id';
}
break;

case 'literal':
return $node['value'];

default:
return false;

}
}

public function getInitial()
{

return $this->_initial;
}

public function getFinal()
{

return $this->_final;
}

}

Finally, we can replace the find method in the Robots model to use the custom classes we’ve created:

<?php

class Robots extends Phalcon\Mvc\Model
{

public static function find($parameters=null)
{

184 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

if (!is_array($parameters)) {
$parameters = array($parameters);

}

$builder = new CustomQueryBuilder($parameters);
$builder->from(get_called_class());

if (isset($parameters['bind'])) {
return $builder->getQuery()->execute($parameters['bind']);

} else {
return $builder->getQuery()->execute();

}

}
}

2.13.9 Caching of PHQL planning

As well as most moderns database systems PHQL internally caches the execution plan, if the same statement is
executed several times PHQL reuses the previously generated plan improving performance, for a developer to take
better advantage of this is highly recommended build all your SQL statements passing variable parameters as bound
parameters:

<?php

for ($i = 1; $i <= 10; $i++) {

$phql = "SELECT * FROM Store\Robots WHERE id = " . $i;
$robots = $this->modelsManager->executeQuery($phql);

//...
}

In the above example, ten plans were generated increasing the memory usage and processing in the application.
Rewriting the code to take advantage of bound parameters reduces the processing by both ORM and database system:

<?php

$phql = "SELECT * FROM Store\Robots WHERE id = ?0";

for ($i = 1; $i <= 10; $i++) {

$robots = $this->modelsManager->executeQuery($phql, array($i));

//...
}

Performance can be also improved reusing the PHQL query:

<?php

$phql = "SELECT * FROM Store\Robots WHERE id = ?0";
$query = $this->modelsManager->createQuery($phql);

for ($i = 1; $i <= 10; $i++) {

$robots = $query->execute($phql, array($i));

2.13. Caching in the ORM 185



Phalcon PHP Framework Documentation, Release 1.3.0

//...
}

Execution plans for queries involving prepared statements are also cached by most database systems reducing the
overall execution time, also protecting your application against SQL Injections.

2.14 ODM (Object-Document Mapper)

In addition to its ability to map tables in relational databases, Phalcon can map documents from NoSQL databases.
The ODM offers a CRUD functionality, events, validations among other services.

Due to the absence of SQL queries and planners, NoSQL databases can see real improvements in performance using
the Phalcon approach. Additionally, there are no SQL building reducing the possibility of SQL injections.

The following NoSQL databases are supported:

Name Description
MongoDB MongoDB is a scalable, high-performance, open source NoSQL database.

2.14.1 Creating Models

A model is a class that extends from Phalcon\Mvc\Collection. It must be placed in the models directory. A model file
must contain a single class; its class name should be in camel case notation:

<?php

class Robots extends \Phalcon\Mvc\Collection
{

}

If you’re using PHP 5.4/5.5 is recommended declare each column that makes part of the model in order
to save memory and reduce the memory allocation.

By default model “Robots” will refer to the collection “robots”. If you want to manually specify another name for the
mapping collection, you can use the getSource() method:

<?php

class Robots extends \Phalcon\Mvc\Collection
{

public function getSource()
{

return "the_robots";
}

}

2.14.2 Understanding Documents To Objects

Every instance of a model represents a document in the collection. You can easily access collection data by reading
object properties. For example, for a collection “robots” with the documents:

186 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Prepared_statement
http://en.wikipedia.org/wiki/SQL_injection
http://www.mongodb.org/


Phalcon PHP Framework Documentation, Release 1.3.0

$ mongo test
MongoDB shell version: 1.8.2
connecting to: test
> db.robots.find()
{ "_id" : ObjectId("508735512d42b8c3d15ec4e1"), "name" : "Astro Boy", "year" : 1952,

"type" : "mechanical" }
{ "_id" : ObjectId("5087358f2d42b8c3d15ec4e2"), "name" : "Bender", "year" : 1999,

"type" : "mechanical" }
{ "_id" : ObjectId("508735d32d42b8c3d15ec4e3"), "name" : "Wall-E", "year" : 2008 }
>

2.14.3 Models in Namespaces

Namespaces can be used to avoid class name collision. In this case it is necessary to indicate the name of the related
collection using getSource:

<?php

namespace Store\Toys;

class Robots extends \Phalcon\Mvc\Collection
{

public function getSource()
{

return "robots";
}

}

You could find a certain document by its id and then print its name:

<?php

// Find record with _id = "5087358f2d42b8c3d15ec4e2"
$robot = Robots::findById("5087358f2d42b8c3d15ec4e2");

// Prints "Bender"
echo $robot->name;

Once the record is in memory, you can make modifications to its data and then save changes:

<?php

$robot = Robots::findFirst(array(
array('name' => 'Astroy Boy')

));
$robot->name = "Voltron";
$robot->save();

2.14.4 Setting a Connection

Connections are retrieved from the services container. By default, Phalcon tries to find the connection in a service
called “mongo”:

2.14. ODM (Object-Document Mapper) 187



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

// Simple database connection to localhost
$di->set('mongo', function() {

$mongo = new Mongo();
return $mongo->selectDb("store");

}, true);

// Connecting to a domain socket, falling back to localhost connection
$di->set('mongo', function() {

$mongo = new Mongo("mongodb:///tmp/mongodb-27017.sock,localhost:27017");
return $mongo->selectDb("store");

}, true);

2.14.5 Finding Documents

As Phalcon\Mvc\Collection relies on the Mongo PHP extension you have the same facilities to query documents and
convert them transparently to model instances:

<?php

// How many robots are there?
$robots = Robots::find();
echo "There are ", count($robots), "\n";

// How many mechanical robots are there?
$robots = Robots::find(array(

array("type" => "mechanical")
));
echo "There are ", count($robots), "\n";

// Get and print mechanical robots ordered by name upward
$robots = Robots::find(array(

array("type" => "mechanical"),
"sort" => array("name" => 1)

));

foreach ($robots as $robot) {
echo $robot->name, "\n";

}

// Get first 100 mechanical robots ordered by name
$robots = Robots::find(array(

array("type" => "mechanical"),
"sort" => array("name" => 1),
"limit" => 100

));

foreach ($robots as $robot) {
echo $robot->name, "\n";

}

You could also use the findFirst() method to get only the first record matching the given criteria:

<?php

// What's the first robot in robots collection?

188 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$robot = Robots::findFirst();
echo "The robot name is ", $robot->name, "\n";

// What's the first mechanical robot in robots collection?
$robot = Robots::findFirst(array(

array("type" => "mechanical")
));
echo "The first mechanical robot name is ", $robot->name, "\n";

Both find() and findFirst() methods accept an associative array specifying the search criteria:

<?php

// First robot where type = "mechanical" and year = "1999"
$robot = Robots::findFirst(array(

"type" => "mechanical",
"year" => "1999"

));

// All virtual robots ordered by name downward
$robots = Robots::find(array(

"conditions" => array("type" => "virtual"),
"sort" => array("name" => -1)

));

The available query options are:

If you have experience with SQL databases, you may want to check the SQL to Mongo Mapping Chart.

2.14.6 Aggregations

A model can return calculations using aggregation framework provided by Mongo. The aggregated values are calculate
without having to use MapReduce. With this option is easy perform tasks such as totaling or averaging field values:

<?php

$data = Article::aggregate(array(
array(

'$project' => array('category' => 1)
),
array(

'$group' => array(
'_id' => array('category' => '$category'),
'id' => array('$max' => '$_id')

)
)

));

2.14.7 Creating/Updating Records

The method Phalcon\Mvc\Collection::save() allows you to create/update documents according to whether they already
exist in the collection associated with a model. The ‘save’ method is called internally by the create and update methods
of Phalcon\Mvc\Collection.

Also the method executes associated validators and events that are defined in the model:

2.14. ODM (Object-Document Mapper) 189

http://www.php.net/manual/en/mongo.sqltomongo.php
http://docs.mongodb.org/manual/applications/aggregation/


Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$robot = new Robots();
$robot->type = "mechanical";
$robot->name = "Astro Boy";
$robot->year = 1952;
if ($robot->save() == false) {

echo "Umh, We can't store robots right now: \n";
foreach ($robot->getMessages() as $message) {

echo $message, "\n";
}

} else {
echo "Great, a new robot was saved successfully!";

}

The “_id” property is automatically updated with the MongoId object created by the driver:

<?php

$robot->save();
echo "The generated id is: ", $robot->getId();

Validation Messages

Phalcon\Mvc\Collection has a messaging subsystem that provides a flexible way to output or store the validation
messages generated during the insert/update processes.

Each message consists of an instance of the class Phalcon\Mvc\Model\Message. The set of messages generated can
be retrieved with the method getMessages(). Each message provides extended information like the field name that
generated the message or the message type:

<?php

if ($robot->save() == false) {
foreach ($robot->getMessages() as $message) {

echo "Message: ", $message->getMessage();
echo "Field: ", $message->getField();
echo "Type: ", $message->getType();

}
}

Validation Events and Events Manager

Models allow you to implement events that will be thrown when performing an insert or update. They help define
business rules for a certain model. The following are the events supported by Phalcon\Mvc\Collection and their order
of execution:

190 Chapter 2. Table of Contents

http://www.php.net/manual/en/class.mongoid.php


Phalcon PHP Framework Documentation, Release 1.3.0

Opera-
tion

Name Can stop
operation?

Explanation

Insert-
ing/Updating

beforeValida-
tion

YES Is executed before the validation process and the final
insert/update to the database

Inserting beforeValida-
tionOnCreate

YES Is executed before the validation process only when an insertion
operation is being made

Updating beforeValida-
tionOnUpdate

YES Is executed before the fields are validated for not nulls or foreign
keys when an updating operation is being made

Insert-
ing/Updating

onValidation-
Fails

YES
(already
stopped)

Is executed before the validation process only when an insertion
operation is being made

Inserting afterValida-
tionOnCreate

YES Is executed after the validation process when an insertion
operation is being made

Updating afterValida-
tionOnUpdate

YES Is executed after the validation process when an updating
operation is being made

Insert-
ing/Updating

afterValidation YES Is executed after the validation process

Insert-
ing/Updating

beforeSave YES Runs before the required operation over the database system

Updating beforeUpdate YES Runs before the required operation over the database system
only when an updating operation is being made

Inserting beforeCreate YES Runs before the required operation over the database system
only when an inserting operation is being made

Updating afterUpdate NO Runs after the required operation over the database system only
when an updating operation is being made

Inserting afterCreate NO Runs after the required operation over the database system only
when an inserting operation is being made

Insert-
ing/Updating

afterSave NO Runs after the required operation over the database system

To make a model to react to an event, we must to implement a method with the same name of the event:

<?php

class Robots extends \Phalcon\Mvc\Collection
{

public function beforeValidationOnCreate()
{

echo "This is executed before creating a Robot!";
}

}

Events can be useful to assign values before performing an operation, for example:

<?php

class Products extends \Phalcon\Mvc\Collection
{

public function beforeCreate()
{

// Set the creation date
$this->created_at = date('Y-m-d H:i:s');

}

2.14. ODM (Object-Document Mapper) 191



Phalcon PHP Framework Documentation, Release 1.3.0

public function beforeUpdate()
{

// Set the modification date
$this->modified_in = date('Y-m-d H:i:s');

}

}

Additionally, this component is integrated with Phalcon\Events\Manager, this means we can create listeners that run
when an event is triggered.

<?php

$eventsManager = new Phalcon\Events\Manager();

//Attach an anonymous function as a listener for "model" events
$eventsManager->attach('collection', function($event, $robot) {

if ($event->getType() == 'beforeSave') {
if ($robot->name == 'Scooby Doo') {

echo "Scooby Doo isn't a robot!";
return false;

}
}
return true;

});

$robot = new Robots();
$robot->setEventsManager($eventsManager);
$robot->name = 'Scooby Doo';
$robot->year = 1969;
$robot->save();

In the example given above the EventsManager only acted as a bridge between an object and a listener (the anonymous
function). If we want all objects created in our application use the same EventsManager, then we need to assign this
to the Models Manager:

<?php

//Registering the collectionManager service
$di->set('collectionManager', function() {

$eventsManager = new Phalcon\Events\Manager();

// Attach an anonymous function as a listener for "model" events
$eventsManager->attach('collection', function($event, $model) {

if (get_class($model) == 'Robots') {
if ($event->getType() == 'beforeSave') {

if ($model->name == 'Scooby Doo') {
echo "Scooby Doo isn't a robot!";
return false;

}
}

}
return true;

});

// Setting a default EventsManager
$modelsManager = new Phalcon\Mvc\Collection\Manager();
$modelsManager->setEventsManager($eventsManager);

192 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

return $modelsManager;

}, true);

Implementing a Business Rule

When an insert, update or delete is executed, the model verifies if there are any methods with the names of the events
listed in the table above.

We recommend that validation methods are declared protected to prevent that business logic implementation from
being exposed publicly.

The following example implements an event that validates the year cannot be smaller than 0 on update or insert:

<?php

class Robots extends \Phalcon\Mvc\Collection
{

public function beforeSave()
{

if ($this->year < 0) {
echo "Year cannot be smaller than zero!";
return false;

}
}

}

Some events return false as an indication to stop the current operation. If an event doesn’t return anything, Phal-
con\Mvc\Collection will assume a true value.

Validating Data Integrity

Phalcon\Mvc\Collection provides several events to validate data and implement business rules. The special “valida-
tion” event allows us to call built-in validators over the record. Phalcon exposes a few built-in validators that can be
used at this stage of validation.

The following example shows how to use it:

<?php

use Phalcon\Mvc\Model\Validator\InclusionIn,
Phalcon\Mvc\Model\Validator\Numericality;

class Robots extends \Phalcon\Mvc\Collection
{

public function validation()
{

$this->validate(new InclusionIn(
array(

"field" => "type",
"message" => "Type must be: mechanical or virtual",
"domain" => array("Mechanical", "Virtual")

)

2.14. ODM (Object-Document Mapper) 193



Phalcon PHP Framework Documentation, Release 1.3.0

));

$this->validate(new Numericality(
array(

"field" => "price",
"message" => "Price must be numeric"

)
));

return $this->validationHasFailed() != true;
}

}

The example given above performs a validation using the built-in validator “InclusionIn”. It checks the value of the
field “type” in a domain list. If the value is not included in the method, then the validator will fail and return false.
The following built-in validators are available:

Name Explanation Example
Email Validates that field contains a valid email format Example
ExclusionIn Validates that a value is not within a list of possible values Example
InclusionIn Validates that a value is within a list of possible values Example
Numericality Validates that a field has a numeric format Example
Regex Validates that the value of a field matches a regular expression Example
StringLength Validates the length of a string Example

In addition to the built-in validatiors, you can create your own validators:

<?php

class UrlValidator extends \Phalcon\Mvc\Collection\Validator
{

public function validate($model)
{

$field = $this->getOption('field');

$value = $model->$field;
$filtered = filter_var($value, FILTER_VALIDATE_URL);
if (!$filtered) {

$this->appendMessage("The URL is invalid", $field, "UrlValidator");
return false;

}
return true;

}

}

Adding the validator to a model:

<?php

class Customers extends \Phalcon\Mvc\Collection
{

public function validation()
{

$this->validate(new UrlValidator(array(
"field" => "url",

194 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

The idea of creating validators is make them reusable across several models. A validator can also be as simple as:

<?php

class Robots extends \Phalcon\Mvc\Collection
{

public function validation()
{

if ($this->type == "Old") {
$message = new Phalcon\Mvc\Model\Message(

"Sorry, old robots are not allowed anymore",
"type",
"MyType"

);
$this->appendMessage($message);
return false;

}
return true;

}

}

2.14.8 Deleting Records

The method Phalcon\Mvc\Collection::delete() allows to delete a document. You can use it as follows:

<?php

$robot = Robots::findFirst();
if ($robot != false) {

if ($robot->delete() == false) {
echo "Sorry, we can't delete the robot right now: \n";
foreach ($robot->getMessages() as $message) {

echo $message, "\n";
}

} else {
echo "The robot was deleted successfully!";

}
}

You can also delete many documents by traversing a resultset with a foreach:

<?php

$robots = Robots::find(array(
array("type" => "mechanical")

));
foreach ($robots as $robot) {

if ($robot->delete() == false) {

2.14. ODM (Object-Document Mapper) 195



Phalcon PHP Framework Documentation, Release 1.3.0

echo "Sorry, we can't delete the robot right now: \n";
foreach ($robot->getMessages() as $message) {

echo $message, "\n";
}

} else {
echo "The robot was deleted successfully!";

}
}

The following events are available to define custom business rules that can be executed when a delete operation is
performed:

Operation Name Can stop operation? Explanation
Deleting beforeDelete YES Runs before the delete operation is made
Deleting afterDelete NO Runs after the delete operation was made

2.14.9 Validation Failed Events

Another type of events is available when the data validation process finds any inconsistency:

Operation Name Explanation
Insert or Update notSave Triggered when the insert/update operation fails for any reason
Insert, Delete or Update onValidationFails Triggered when any data manipulation operation fails

2.14.10 Implicit Ids vs. User Primary Keys

By default Phalcon\Mvc\Collection assumes that the _id attribute is automatically generated using MongoIds. If a
model uses custom primary keys this behavior can be overriden:

<?php

class Robots extends Phalcon\Mvc\Collection
{

public function initialize()
{

$this->useImplicitObjectIds(false);
}

}

2.14.11 Setting multiple databases

In Phalcon, all models can belong to the same database connection or have an individual one. Actually, when Phal-
con\Mvc\Collection needs to connect to the database it requests the “mongo” service in the application’s services
container. You can overwrite this service setting it in the initialize method:

<?php

// This service returns a mongo database at 192.168.1.100
$di->set('mongo1', function() {

$mongo = new Mongo("mongodb://scott:nekhen@192.168.1.100");
return $mongo->selectDb("management");

}, true);

// This service returns a mongo database at localhost

196 Chapter 2. Table of Contents

http://www.php.net/manual/en/class.mongoid.php


Phalcon PHP Framework Documentation, Release 1.3.0

$di->set('mongo2', function() {
$mongo = new Mongo("mongodb://localhost");
return $mongo->selectDb("invoicing");

}, true);

Then, in the Initialize method, we define the connection service for the model:

<?php

class Robots extends \Phalcon\Mvc\Collection
{

public function initialize()
{

$this->setConnectionService('mongo1');
}

}

2.14.12 Injecting services into Models

You may be required to access the application services within a model, the following example explains how to do that:

<?php

class Robots extends \Phalcon\Mvc\Collection
{

public function notSave()
{

// Obtain the flash service from the DI container
$flash = $this->getDI()->getShared('flash');

// Show validation messages
foreach ($this->getMesages() as $message){

$flash->error((string) $message);
}

}

}

The “notSave” event is triggered whenever a “creating” or “updating” action fails. We’re flashing the validation
messages obtaining the “flash” service from the DI container. By doing this, we don’t have to print messages after
each saving.

2.15 Using Views

Views represent the user interface of your application. Views are often HTML files with embedded PHP code that
perform tasks related solely to the presentation of the data. Views handle the job of providing data to the web browser
or other tool that is used to make requests from your application.

The Phalcon\Mvc\View and Phalcon\Mvc\View\Simple are responsible for the managing the view layer of your MVC
application.

2.15. Using Views 197



Phalcon PHP Framework Documentation, Release 1.3.0

2.15.1 Integrating Views with Controllers

Phalcon automatically passes the execution to the view component as soon as a particular controller has completed
its cycle. The view component will look in the views folder for a folder named as the same name of the last con-
troller executed and then for a file named as the last action executed. For instance, if a request is made to the URL
http://127.0.0.1/blog/posts/show/301, Phalcon will parse the URL as follows:

Server Address 127.0.0.1
Phalcon Directory blog
Controller posts
Action show
Parameter 301

The dispatcher will look for a “PostsController” and its action “showAction”. A simple controller file for this example:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function showAction($postId)
{

// Pass the $postId parameter to the view
$this->view->setVar("postId", $postId);

}

}

The setVar allows us to create view variables on demand so that they can be used in the view template. The example
above demonstrates how to pass the $postId parameter to the respective view template.

2.15.2 Hierarchical Rendering

Phalcon\Mvc\View supports a hierarchy of files and is the default component for view rendering in Phalcon. This
hierarchy allows for common layout points (commonly used views), as well as controller named folders defining
respective view templates.

This component uses by default PHP itself as the template engine, therefore views should have the .phtml extension.
If the views directory is app/views then view component will find automatically for these 3 view files.

Name File Description
Action
View

app/views/posts/show.phtmlThis is the view related to the action. It only will be shown when the “show” action
was executed.

Con-
troller
Layout

app/views/layouts/posts.phtmlThis is the view related to the controller. It only will be shown for every action
executed within the controller “posts”. All the code implemented in the layout will
be reused for all the actions in this controller.

Main
Layout

app/views/index.phtmlThis is main action it will be shown for every controller or action executed within
the application.

You are not required to implement all of the files mentioned above. Phalcon\Mvc\View will simply move to the next
view level in the hierarchy of files. If all three view files are implemented, they will be processed as follows:

198 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<!-- app/views/posts/show.phtml -->

<h3>This is show view!</h3>

<p>I have received the parameter <?php echo $postId ?></p>

<!-- app/views/layouts/posts.phtml -->

<h2>This is the "posts" controller layout!</h2>

<?php echo $this->getContent() ?>

<!-- app/views/index.phtml -->
<html>

<head>
<title>Example</title>

</head>
<body>

<h1>This is main layout!</h1>

<?php echo $this->getContent() ?>

</body>
</html>

Note the lines where the method $this->getContent() was called. This method instructs Phalcon\Mvc\View on where
to inject the contents of the previous view executed in the hierarchy. For the example above, the output will be:

2.15. Using Views 199



Phalcon PHP Framework Documentation, Release 1.3.0

The generated HTML by the request will be:

<!-- app/views/index.phtml -->
<html>

<head>
<title>Example</title>

</head>
<body>

<h1>This is main layout!</h1>

<!-- app/views/layouts/posts.phtml -->

<h2>This is the "posts" controller layout!</h2>

<!-- app/views/posts/show.phtml -->

<h3>This is show view!</h3>

<p>I have received the parameter 101</p>

</body>
</html>

Using Templates

Templates are views that can be used to share common view code. They act as controller layouts, so you need to place
them in the layouts directory.

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function initialize()
{

$this->view->setTemplateAfter('common');
}

public function lastAction()
{

$this->flash->notice("These are the latest posts");
}

}

<!-- app/views/index.phtml -->
<!DOCTYPE html>
<html>

<head>
<title>Blog's title</title>

</head>
<body>

<?php echo $this->getContent() ?>
</body>

</html>

<!-- app/views/layouts/common.phtml -->

<ul class="menu">

200 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<li><a href="/">Home</a></li>
<li><a href="/articles">Articles</a></li>
<li><a href="/contact">Contact us</a></li>

</ul>

<div class="content"><?php echo $this->getContent() ?></div>

<!-- app/views/layouts/posts.phtml -->

<h1>Blog Title</h1>

<?php echo $this->getContent() ?>

<!-- app/views/layouts/posts/last.phtml -->

<article>
<h2>This is a title</h2>
<p>This is the post content</p>

</article>

<article>
<h2>This is another title</h2>
<p>This is another post content</p>

</article>

The final output will be the following:

<!-- app/views/index.phtml -->
<!DOCTYPE html>
<html>

<head>
<title>Blog's title</title>

</head>
<body>

<!-- app/views/layouts/common.phtml -->

<ul class="menu">
<li><a href="/">Home</a></li>
<li><a href="/articles">Articles</a></li>
<li><a href="/contact">Contact us</a></li>

</ul>

<div class="content">

<!-- app/views/layouts/posts.phtml -->

<h1>Blog Title</h1>

<!-- app/views/layouts/posts/last.phtml -->

<article>
<h2>This is a title</h2>
<p>This is the post content</p>

</article>

<article>
<h2>This is another title</h2>

2.15. Using Views 201



Phalcon PHP Framework Documentation, Release 1.3.0

<p>This is another post content</p>
</article>

</div>

</body>
</html>

Control Rendering Levels

As seen above, Phalcon\Mvc\View supports a view hierarchy. You might need to control the level of rendering pro-
duced by the view component. The method PhalconMvc\View::setRenderLevel() offers this functionality.

This method can be invoked from the controller or from a superior view layer to interfere with the rendering process.

<?php

use Phalcon\Mvc\Controller,
Phalcon\Mvc\View;

class PostsController extends Controller
{

public function indexAction()
{

}

public function findAction()
{

// This is an Ajax response so it doesn't generate any kind of view
$this->view->setRenderLevel(View::LEVEL_NO_RENDER);

//...
}

public function showAction($postId)
{

// Shows only the view related to the action
$this->view->setRenderLevel(View::LEVEL_ACTION_VIEW);

}

}

The available render levels are:

Class Constant Description Or-
der

LEVEL_NO_RENDER Indicates to avoid generating any kind of presentation.
LEVEL_ACTION_VIEW Generates the presentation to the view associated to the action. 1
LEVEL_BEFORE_TEMPLATE Generates presentation templates prior to the controller layout. 2
LEVEL_LAYOUT Generates the presentation to the controller layout. 3
LEVEL_AFTER_TEMPLATE Generates the presentation to the templates after the controller

layout.
4

LEVEL_MAIN_LAYOUT Generates the presentation to the main layout. File
views/index.phtml

5

202 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Disabling render levels

You can permanently or temporarily disable render levels. A level could be permanently disabled if it isn’t used at all
in the whole application:

<?php

use Phalcon\Mvc\View;

$di->set('view', function(){

$view = new View();

//Disable several levels
$view->disableLevel(array(

View::LEVEL_LAYOUT => true,
View::LEVEL_MAIN_LAYOUT => true

));

return $view;

}, true);

Or disable temporarily in some part of the application:

<?php

use Phalcon\Mvc\View,
Phalcon\Mvc\Controller;

class PostsController extends Controller
{

public function indexAction()
{

}

public function findAction()
{

$this->view->disableLevel(View::LEVEL_MAIN_LAYOUT);
}

}

Picking Views

As mentioned above, when Phalcon\Mvc\View is managed by Phalcon\Mvc\Application the view rendered is the one
related with the last controller and action executed. You could override this by using the Phalcon\Mvc\View::pick()
method:

<?php

class ProductsController extends \Phalcon\Mvc\Controller
{

public function listAction()
{

2.15. Using Views 203



Phalcon PHP Framework Documentation, Release 1.3.0

// Pick "views-dir/products/search" as view to render
$this->view->pick("products/search");

// Pick "views-dir/products/list" as view to render
$this->view->pick(array('products'));

// Pick "views-dir/products/list" as view to render
$this->view->pick(array(1 => 'search'));

}

}

Disabling the view

If your controller doesn’t produce any output in the view (or not even have one) you may disable the view component
avoiding unnecessary processing:

<?php

class UsersController extends \Phalcon\Mvc\Controller
{

public function closeSessionAction()
{

//Close session
//...

//An HTTP Redirect
$this->response->redirect('index/index');

//Disable the view to avoid rendering
$this->view->disable();

}

}

You can return a ‘response’ object to avoid disable the view manually:

<?php

class UsersController extends \Phalcon\Mvc\Controller
{

public function closeSessionAction()
{

//Close session
//...

//An HTTP Redirect
return $this->response->redirect('index/index');

}

}

204 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.15.3 Simple Rendering

Phalcon\Mvc\View\Simple is an alternative component to Phalcon\Mvc\View. It keeps most of the philosophy of
Phalcon\Mvc\View but lacks of a hierarchy of files which is, in fact, the main feature of its counterpart.

This component allows the developer to have control of when a view is rendered and its location. In addition, this
component can leverage of view inheritance available in template engines such as Volt and others.

The default component must be replaced in the service container:

<?php

$di->set('view', function() {

$view = new Phalcon\Mvc\View\Simple();

$view->setViewsDir('../app/views/');

return $view;

}, true);

Automatic rendering must be disabled in Phalcon\Mvc\Application (if needed):

<?php

try {

$application = new Phalcon\Mvc\Application($di);

$application->useImplicitView(false);

echo $application->handle()->getContent();

} catch (\Exception $e) {
echo $e->getMessage();

}

To render a view is necessary to call the render method explicitly indicating the relative path to the view you want to
display:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

//Render 'views-dir/index.phtml'
echo $this->view->render('index');

//Render 'views-dir/posts/show.phtml'
echo $this->view->render('posts/show');

//Render 'views-dir/index.phtml' passing variables
echo $this->view->render('index', array('posts' => Posts::find()));

//Render 'views-dir/posts/show.phtml' passing variables
echo $this->view->render('posts/show', array('posts' => Posts::find()));

}

2.15. Using Views 205



Phalcon PHP Framework Documentation, Release 1.3.0

}

2.15.4 Using Partials

Partial templates are another way of breaking the rendering process into simpler more manageable chunks that can be
reused by different parts of the application. With a partial, you can move the code for rendering a particular piece of a
response to its own file.

One way to use partials is to treat them as the equivalent of subroutines: as a way to move details out of a view so that
your code can be more easily understood. For example, you might have a view that looks like this:

<div class="top"><?php $this->partial("shared/ad_banner") ?></div>

<div class="content">
<h1>Robots</h1>

<p>Check out our specials for robots:</p>
...

</div>

<div class="footer"><?php $this->partial("shared/footer") ?></div>

Method partial() does accept a second parameter as an array of variables/parameters that only will exists in the scope
of the partial:

<?php $this->partial("shared/ad_banner", array('id' => $site->id, 'size' => 'big')) ?>

2.15.5 Transfer values from the controller to views

Phalcon\Mvc\View is available in each controller using the view variable ($this->view). You can use that object to set
variables directly to the view from a controller action by using the setVar() method.

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function showAction()
{

//Pass all the posts to the views
$this->view->setVar("posts", Posts::find());

//Using the magic setter
$this->view->posts = Posts::find();

//Passing more than one variable at the same time
$this->view->setVars(array(

'title' => $post->title,
'content' => $post->content

));

206 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

}

}

A variable with the name of the first parameter of setVar() will be created in the view, ready to be used. The variable
can be of any type, from a simple string, integer etc. variable to a more complex structure such as array, collection etc.

<div class="post">
<?php

foreach ($posts as $post) {
echo "<h1>", $post->title, "</h1>";

}

?>
</div>

2.15.6 Using models in the view layer

Application models are always available at the view layer. The Phalcon\Loader will instantiate them at runtime auto-
matically:

<div class="categories">
<?php

foreach (Categories::find("status = 1") as $category) {
echo "<span class='category'>", $category->name, "</span>";

}

?>
</div>

Although you may perform model manipulation operations such as insert() or update() in the view layer, it is not
recommended since it is not possible to forward the execution flow to another controller in the case of an error or an
exception.

2.15.7 Caching View Fragments

Sometimes when you develop dynamic websites and some areas of them are not updated very often, the output is
exactly the same between requests. Phalcon\Mvc\View offers caching a part or the whole rendered output to increase
performance.

Phalcon\Mvc\View integrates with Phalcon\Cache to provide an easier way to cache output fragments. You could
manually set the cache handler or set a global handler:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function showAction()
{

//Cache the view using the default settings
$this->view->cache(true);

}

2.15. Using Views 207



Phalcon PHP Framework Documentation, Release 1.3.0

public function showArticleAction()
{

// Cache this view for 1 hour
$this->view->cache(array(

"lifetime" => 3600
));

}

public function resumeAction()
{

//Cache this view for 1 day with the key "resume-cache"
$this->view->cache(

array(
"lifetime" => 86400,
"key" => "resume-cache",

)
);

}

public function downloadAction()
{

//Passing a custom service
$this->view->cache(

array(
"service" => "myCache",
"lifetime" => 86400,
"key" => "resume-cache",

)
);

}

}

When we do not define a key to the cache, the component automatically creates one doing a md5 to view name is
currently rendered. It is a good practice to define a key for each action so you can easily identify the cache associated
with each view.

When the View component needs to cache something it will request a cache service to the services container. The
service name convention for this service is “viewCache”:

<?php

use Phalcon\Cache\Frontend\Output as OutputFrontend,
Phalcon\Cache\Backend\Memcache as MemcacheBackend;

//Set the views cache service
$di->set('viewCache', function() {

//Cache data for one day by default
$frontCache = new OutputFrontend(array(

"lifetime" => 86400
));

//Memcached connection settings
$cache = new MemcacheBackend($frontCache, array(

"host" => "localhost",
"port" => "11211"

));

208 Chapter 2. Table of Contents

http://php.net/manual/en/function.md5.php


Phalcon PHP Framework Documentation, Release 1.3.0

return $cache;
});

The frontend must always be Phalcon\Cache\Frontend\Output and the service ‘viewCache’ must be reg-
istered as always open (not shared) in the services container (DI)

When using view caching is also useful to prevent that controllers perform the processes that produce the data to be
displayed in the views.

To achieve this we must identify uniquely each cache with a key. First we verify that the cache does not exist or has
expired to make the calculations/queries to display data in the view:

<?php

class DownloadController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

//Check whether the cache with key "downloads" exists or has expired
if ($this->view->getCache()->exists('downloads')) {

//Query the latest downloads
$latest = Downloads::find(array(

'order' => 'created_at DESC'
));

$this->view->latest = $latest;
}

//Enable the cache with the same key "downloads"
$this->view->cache(array(

'key' => 'downloads'
));

}

}

The PHP alternative site is an example of implementing the caching of fragments.

2.15.8 Template Engines

Template Engines helps designers to create views without use a complicated syntax. Phalcon includes a powerful and
fast templating engine called Volt.

Additionally, Phalcon\Mvc\View allows you to use other template engines instead of plain PHP or Volt.

Using a different template engine, usually requires complex text parsing using external PHP libraries in order to
generate the final output for the user. This usually increases the number of resources that your application are using.

If an external template engine is used, Phalcon\Mvc\View provides exactly the same view hierarchy and it’s still
possible to access the API inside these templates with a little more effort.

This component uses adapters, these help Phalcon to speak with those external template engines in a unified way, let’s
see how to do that integration.

2.15. Using Views 209

https://github.com/phalcon/php-site


Phalcon PHP Framework Documentation, Release 1.3.0

Creating your own Template Engine Adapter

There are many template engines, which you might want to integrate or create one of your own. The first step to start
using an external template engine is create an adapter for it.

A template engine adapter is a class that acts as bridge between Phalcon\Mvc\View and the template engine itself. Usu-
ally it only needs two methods implemented: __construct() and render(). The first one receives the Phalcon\Mvc\View
instance that creates the engine adapter and the DI container used by the application.

The method render() accepts an absolute path to the view file and the view parameters set using $this->view->setVar().
You could read or require it when it’s necessary.

<?php

class MyTemplateAdapter extends \Phalcon\Mvc\View\Engine
{

/**
* Adapter constructor

*
* @param \Phalcon\Mvc\View $view

* @param \Phalcon\DI $di

*/
public function __construct($view, $di)
{

//Initiliaze here the adapter
parent::__construct($view, $di);

}

/**
* Renders a view using the template engine

*
* @param string $path

* @param array $params

*/
public function render($path, $params)
{

// Access view
$view = $this->_view;

// Access options
$options = $this->_options;

//Render the view
//...

}

}

Changing the Template Engine

You can replace or add more a template engine from the controller as follows:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

210 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public function indexAction()
{

// Set the engine
$this->view->registerEngines(

array(
".my-html" => "MyTemplateAdapter"

)
);

}

public function showAction()
{

// Using more than one template engine
$this->view->registerEngines(

array(
".my-html" => 'MyTemplateAdapter',
".phtml" => 'Phalcon\Mvc\View\Engine\Php'

)
);

}

}

You can replace the template engine completely or use more than one template engine at the same time. The method
Phalcon\Mvc\View::registerEngines() accepts an array containing data that define the template engines. The key of
each engine is an extension that aids in distinguishing one from another. Template files related to the particular engine
must have those extensions.

The order that the template engines are defined with Phalcon\Mvc\View::registerEngines() defines the relevance of
execution. If Phalcon\Mvc\View finds two views with the same name but different extensions, it will only render the
first one.

If you want to register a template engine or a set of them for each request in the application. You could register it when
the view service is created:

<?php

//Setting up the view component
$di->set('view', function() {

$view = new \Phalcon\Mvc\View();

//A trailing directory separator is required
$view->setViewsDir('../app/views/');

$view->registerEngines(array(
".my-html" => 'MyTemplateAdapter'

));

return $view;

}, true);

There are adapters available for several template engines on the Phalcon Incubator

2.15. Using Views 211

https://github.com/phalcon/incubator/tree/master/Library/Phalcon/Mvc/View/Engine


Phalcon PHP Framework Documentation, Release 1.3.0

2.15.9 Injecting services in View

Every view executed is included inside a Phalcon\DI\Injectable instance, providing easy access to the application’s
service container.

The following example shows how to write a jQuery ajax request using a url with the framework conventions. The
service “url” (usually Phalcon\Mvc\Url) is injected in the view by accessing a property with the same name:

<script type="text/javascript">

$.ajax({
url: "<?php echo $this->url->get("cities/get") ?>"

})
.done(function() {

alert("Done!");
});

</script>

2.15.10 Stand-Alone Component

All the components in Phalcon can be used as glue components individually because they are loosely coupled to each
other:

Hierarchical Rendering

Using Phalcon\Mvc\View in a stand-alone mode can be demonstrated below

<?php

$view = new \Phalcon\Mvc\View();

//A trailing directory separator is required
$view->setViewsDir("../app/views/");

// Passing variables to the views, these will be created as local variables
$view->setVar("someProducts", $products);
$view->setVar("someFeatureEnabled", true);

//Start the output buffering
$view->start();

//Render all the view hierarchy related to the view products/list.phtml
$view->render("products", "list");

//Finish the output buffering
$view->finish();

echo $view->getContent();

A short syntax is also available:

<?php

$view = new \Phalcon\Mvc\View();

212 Chapter 2. Table of Contents

http://api.jquery.com/jQuery.ajax/


Phalcon PHP Framework Documentation, Release 1.3.0

echo $view->getRender('products', 'list',
array(

"someProducts" => $products,
"someFeatureEnabled" => true

),
function($view) {

//Set any extra options here
$view->setViewsDir("../app/views/");
$view->setRenderLevel(Phalcon\Mvc\View::LEVEL_LAYOUT);

}
);

Simple Rendering

Using Phalcon\Mvc\View\Simple in a stand-alone mode can be demonstrated below:

<?php

$view = new \Phalcon\Mvc\View\Simple();

//A trailing directory separator is required
$view->setViewsDir("../app/views/");

// Render a view and return its contents as a string
echo $view->render("templates/welcomeMail");

// Render a view passing parameters
echo $view->render("templates/welcomeMail", array(

'email' => $email,
'content' => $content

));

2.15.11 View Events

Phalcon\Mvc\View and Phalcon\Mvc\View are able to send events to an EventsManager if it is present. Events are
triggered using the type “view”. Some events when returning boolean false could stop the active operation. The
following events are supported:

Event Name Triggered Can stop operation?
beforeRender Triggered before starting the render process Yes
beforeRenderView Triggered before rendering an existing view Yes
afterRenderView Triggered after rendering an existing view No
afterRender Triggered after completing the render process No
notFoundView Triggered when a view was not found No

The following example demonstrates how to attach listeners to this component:

<?php

$di->set('view', function() {

//Create an events manager
$eventsManager = new Phalcon\Events\Manager();

//Attach a listener for type "view"
$eventsManager->attach("view", function($event, $view) {

2.15. Using Views 213



Phalcon PHP Framework Documentation, Release 1.3.0

echo $event->getType(), ' - ', $view->getActiveRenderPath(), PHP_EOL;
});

$view = new \Phalcon\Mvc\View();
$view->setViewsDir("../app/views/");

//Bind the eventsManager to the view component
$view->setEventsManager($eventsManager);

return $view;

}, true);

The following example shows how to create a plugin that clean/repair the HTML produced by the render process using
Tidy:

<?php

class TidyPlugin
{

public function afterRender($event, $view)
{

$tidyConfig = array(
'clean' => true,
'output-xhtml' => true,
'show-body-only' => true,
'wrap' => 0,

);

$tidy = tidy_parse_string($view->getContent(), $tidyConfig, 'UTF8');
$tidy->cleanRepair();

$view->setContent((string) $tidy);
}

}

//Attach the plugin as a listener
$eventsManager->attach("view:afterRender", new TidyPlugin());

2.16 View Helpers

Writing and maintaining HTML markup can quickly become a tedious task because of the naming conventions and nu-
merous attributes that have to be taken into consideration. Phalcon deals with this complexity by offering Phalcon\Tag,
which in turn offers view helpers to generate HTML markup.

This component can be used in a plain HTML+PHP view or in a Volt template.

This guide is not intended to be a complete documentation of available helpers and their arguments. Please
visit the Phalcon\Tag page in the API for a complete reference.

214 Chapter 2. Table of Contents

http://www.php.net/manual/en/book.tidy.php


Phalcon PHP Framework Documentation, Release 1.3.0

2.16.1 Document Type of Content

Phalcon provides Phalcon\Tag::setDoctype() helper to set document type of the content. Document type setting may
affect HTML output produced by other tag helpers. For example, if you set XHTML document type family, helpers
that return or output HTML tags will produce self-closing tags to follow valid XHTML standard.

Available document type constants in Phalcon\Tag namespace are:

Constant Document type
HTML32 HTML 3.2
HTML401_STRICT HTML 4.01 Strict
HTML401_TRANSITIONAL HTML 4.01 Transitional
HTML401_FRAMESET HTML 4.01 Frameset
HTML5 HTML 5
XHTML10_STRICT XHTML 1.0 Strict
XHTML10_TRANSITIONAL XHTML 1.0 Transitional
XHTML10_FRAMESET XHTML 1.0 Frameset
XHTML11 XHTML 1.1
XHTML20 XHTML 2.0
XHTML5 XHTML 5

Setting document type.

<?php $this->tag->setDoctype(\Phalcon\Tag::HTML401_STRICT); ?>

Getting document type.

<?= $this->tag->getDoctype() ?>
<html>
<!-- your HTML code -->
</html>

The following HTML will be produced.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<!-- your HTML code -->
</html>

Volt syntax:

{{ get_doctype() }}
<html>
<!-- your HTML code -->
</html>

2.16.2 Generating Links

A real common task in any web application or website is to produce links that allow us to navigate from one page to
another. When they are internal URLs we can create them in the following manner:

<!-- for the default route -->
<?= $this->tag->linkTo("products/search", "Search") ?>

<!-- with CSS attributes -->
<?= $this->tag->linkTo(array('products/edit/10', 'Edit', 'class' => 'edit-btn')) ?>

2.16. View Helpers 215



Phalcon PHP Framework Documentation, Release 1.3.0

<!-- for a named route -->
<?= $this->tag->linkTo(array(array('for' => 'show-product', 'title' => 123, 'name' => 'carrots'), 'Show')) ?>

Actually, all produced URLs are generated by the component Phalcon\Mvc\Url (or service “url” failing)

Same links generated with Volt:

<!-- for the default route -->
{{ link_to("products/search", "Search") }}

<!-- for a named route -->
{{ link_to(['for': 'show-product', 'id': 123, 'name': 'carrots'], 'Show') }}

<!-- for a named route with class -->
{{ link_to(['for': 'show-product', 'id': 123, 'name': 'carrots'], 'Show','class'=>'edit-btn') }}

2.16.3 Creating Forms

Forms in web applications play an essential part in retrieving user input. The following example shows how to
implement a simple search form using view helpers:

<!-- Sending the form by method POST -->
<?= $this->tag->form("products/search") ?>

<label for="q">Search:</label>
<?= $this->tag->textField("q") ?>
<?= $this->tag->submitButton("Search") ?>

</form>

<!-- Specyfing another method or attributes for the FORM tag -->
<?= $this->tag->form(array("products/search", "method" => "get")); ?>

<label for="q">Search:</label>
<?= $this->tag->textField("q"); ?>
<?= $this->tag->submitButton("Search"); ?>

</form>

This last code will generate the following HTML:

<form action="/store/products/search/" method="get">
<label for="q">Search:</label>
<input type="text" id="q" value="" name="q" />
<input type="submit" value="Search" />

</endform>

Same form generated in Volt:

<!-- Specyfing another method or attributes for the FORM tag -->
{{ form("products/search", "method": "get") }}

<label for="q">Search:</label>
{{ text_field("q") }}
{{ submit_button("Search") }}

</form>

Phalcon also provides a form builder to create forms in an object-oriented manner.

216 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.16.4 Helpers to Generate Form Elements

Phalcon provides a series of helpers to generate form elements such as text fields, buttons and more. The first parameter
of each helper is always the name of the element to be generated. When the form is submitted, the name will be passed
along with the form data. In a controller you can get these values using the same name by using the getPost() and
getQuery() methods on the request object ($this->request).

<?php echo $this->tag->textField("username") ?>

<?php echo $this->tag->textArea(array(
"comment",
"This is the content of the text-area",
"cols" => "6",
"rows" => 20

)) ?>

<?php echo $this->tag->passwordField(array(
"password",
"size" => 30

)) ?>

<?php echo $this->tag->hiddenField(array(
"parent_id",
"value"=> "5"

)) ?>

Volt syntax:

{{ text_field("username") }}

{{ text_area("comment", "This is the content", "cols": "6", "rows": 20) }}

{{ password_field("password", "size": 30) }}

{{ hidden_field("parent_id", "value": "5") }}

2.16.5 Making Select Boxes

Generating select boxes (select box) is easy, especially if the related data is stored in PHP associative arrays. The
helpers for select elements are Phalcon\Tag::select() and Phalcon\Tag::selectStatic(). Phalcon\Tag::select() has been
was specifically designed to work with Phalcon\Mvc\Model, while Phalcon\Tag::selectStatic() can with PHP arrays.

<?php

// Using data from a resultset
echo $this->tag->select(

array(
"productId",
Products::find("type = 'vegetables'"),
"using" => array("id", "name")

)
);

// Using data from an array
echo $this->tag->selectStatic(

array(
"status",

2.16. View Helpers 217



Phalcon PHP Framework Documentation, Release 1.3.0

array(
"A" => "Active",
"I" => "Inactive",

)
)

);

The following HTML will generated:

<select id="productId" name="productId">
<option value="101">Tomato</option>
<option value="102">Lettuce</option>
<option value="103">Beans</option>

</select>

<select id="status" name="status">
<option value="A">Active</option>
<option value="I">Inactive</option>

</select>

You can add an “empty” option to the generated HTML:

<?php

// Creating a Select Tag with an empty option
echo $this->tag->select(

array(
"productId",
Products::find("type = 'vegetables'"),
"using" => array("id", "name"),
"useEmpty" => true

)
);

<select id="productId" name="productId">
<option value="">Choose..</option>
<option value="101">Tomato</option>
<option value="102">Lettuce</option>
<option value="103">Beans</option>

</select>

<?php

// Creating a Select Tag with an empty option with default text
echo $this->tag->select(

array(
'productId',
Products::find("type = 'vegetables'"),
'using' => array('id', "name"),
'useEmpty' => true,
'emptyText' => 'Please, choose one...',
'emptyValue' => '@'

)
);

<select id="productId" name="productId">
<option value="@">Please, choose one..</option>
<option value="101">Tomato</option>
<option value="102">Lettuce</option>

218 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<option value="103">Beans</option>
</select>

Volt syntax for above example:

{# Creating a Select Tag with an empty option with default text #}
{{ select('productId', products, 'using': ['id', 'name'],

'useEmpty': true, 'emptyText': 'Please, choose one...', 'emptyValue': '@') }}

2.16.6 Assigning HTML attributes

All the helpers accept an array as their first parameter which can contain additional HTML attributes for the element
generated.

<?php $this->tag->textField(
array(

"price",
"size" => 20,
"maxlength" => 30,
"placeholder" => "Enter a price",

)
) ?>

or using Volt:

{{ text_field("price", "size": 20, "maxlength": 30, "placeholder": "Enter a price") }}

The following HTML is generated:

<input type="text" name="price" id="price" size="20" maxlength="30"
placeholder="Enter a price" />

2.16.7 Setting Helper Values

From Controllers

It is a good programming principle for MVC frameworks to set specific values for form elements in the view. You
can set those values directly from the controller using Phalcon\Tag::setDefault(). This helper preloads a value for any
helpers present in the view. If any helper in the view has a name that matches the preloaded value, it will use it, unless
a value is directly assigned on the helper in the view.

<?php

class ProductsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

$this->tag->setDefault("color", "Blue");
}

}

At the view, a selectStatic helper matches the same index used to preset the value. In this case “color”:

2.16. View Helpers 219



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

echo $this->tag->selectStatic(
array(

"color",
array(

"Yellow" => "Yellow",
"Blue" => "Blue",
"Red" => "Red"

)
)

);

This will generate the following select tag with the value “Blue” selected:

<select id="color" name="color">
<option value="Yellow">Yellow</option>
<option value="Blue" selected="selected">Blue</option>
<option value="Red">Red</option>

</select>

From the Request

A special feature that the Phalcon\Tag helpers have is that they keep the values of form helpers between requests. This
way you can easily show validation messages without losing entered data.

Specifying values directly

Every form helper supports the parameter “value”. With it you can specify a value for the helper directly. When this
parameter is present, any preset value using setDefault() or via request will be ignored.

2.16.8 Changing dynamically the Document Title

Phalcon\Tag offers helpers to change dynamically the document title from the controller. The following example
demonstrates just that:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function initialize()
{

$this->tag->setTitle("Your Website");
}

public function indexAction()
{

$this->tag->prependTitle("Index of Posts - ");
}

}

220 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<html>
<head>

<?php echo $this->tag->getTitle(); ?>
</head>
<body>

</body>
</html>

The following HTML will generated:

<html>
<head>

<title>Index of Posts - Your Website</title>
</head>

<body>

</body>
</html>

2.16.9 Static Content Helpers

Phalcon\Tag also provide helpers to generate tags such as script, link or img. They aid in quick and easy generation of
the static resources of your application

Images

<?php

// Generate <img src="/your-app/img/hello.gif">
echo $this->tag->image("img/hello.gif");

// Generate <img alt="alternative text" src="/your-app/img/hello.gif">
echo $this->tag->image(

array(
"img/hello.gif",
"alt" => "alternative text"

)
);

Volt syntax:

{# Generate <img src="/your-app/img/hello.gif"> #}
{{ image("img/hello.gif") }}

{# Generate <img alt="alternative text" src="/your-app/img/hello.gif"> #}
{{ image("img/hello.gif", "alt": "alternative text") }}

Stylesheets

<?php

// Generate <link rel="stylesheet" href="http://fonts.googleapis.com/css?family=Rosario" type="text/css">
echo $this->tag->stylesheetLink("http://fonts.googleapis.com/css?family=Rosario", false);

2.16. View Helpers 221



Phalcon PHP Framework Documentation, Release 1.3.0

// Generate <link rel="stylesheet" href="/your-app/css/styles.css" type="text/css">
echo $this->tag->stylesheetLink("css/styles.css");

Volt syntax:

{# Generate <link rel="stylesheet" href="http://fonts.googleapis.com/css?family=Rosario" type="text/css"> #}
{{ stylesheet_link("http://fonts.googleapis.com/css?family=Rosario", false) }}

{# Generate <link rel="stylesheet" href="/your-app/css/styles.css" type="text/css"> #}
{{ stylesheet_link("css/styles.css") }}

Javascript

<?php

// Generate <script src="http://localhost/javascript/jquery.min.js" type="text/javascript"></script>
echo $this->tag->javascriptInclude("http://localhost/javascript/jquery.min.js", false);

// Generate <script src="/your-app/javascript/jquery.min.js" type="text/javascript"></script>
echo $this->tag->javascriptInclude("javascript/jquery.min.js");

Volt syntax:

{# Generate <script src="http://localhost/javascript/jquery.min.js" type="text/javascript"></script> #}
{{ javascript_include("http://localhost/javascript/jquery.min.js", false) }}

{# Generate <script src="/your-app/javascript/jquery.min.js" type="text/javascript"></script> #}
{{ javascript_include("javascript/jquery.min.js") }}

HTML5 elements - generic HTML helper

Phalcon offers a generic HTML helper that allows the generation of any kind of HTML element. It is up to the
developer to produce a valid HTML element name to the helper.

<?php

// Generate
// <canvas id="canvas1" width="300" class="cnvclass">
// This is my canvas
// </canvas>
echo $this->tag->tagHtml("canvas", array("id" => "canvas1", "width" => "300", "class" => "cnvclass"), false, true, true);
echo "This is my canvas";
echo $this->tag->tagHtmlClose("canvas");

Volt syntax:

{# Generate
<canvas id="canvas1" width="300" class="cnvclass">
This is my canvas
</canvas> #}
{{ tag_html("canvas", ["id": "canvas1", width": "300", "class": "cnvclass"], false, true, true) }}

This is my canvas
{{ tag_html_close("canvas") }}

222 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.16.10 Tag Service

Phalcon\Tag is available via the ‘tag’ service, this means you can access it from any part of the application where the
services container is located:

<?php echo $this->tag->linkTo('pages/about', 'About') ?>

You can easily add new helpers to a custom component replacing the service ‘tag’ in the services container:

<?php

class MyTags extends \Phalcon\Tag
{

//...

//Create a new helper
static public function myAmazingHelper($parameters)
{

//...
}

//Override an existing method
static public function textField($parameters)
{

//...
}

}

Then change the definition of the service ‘tag’:

<?php

$di['tag'] = function() {
return new MyTags();

};

2.16.11 Creating your own helpers

You can easily create your own helpers. First, start by creating a new folder within the same directory as your
controllers and models. Give it a title that is relative to what you are creating. For our example here, we can call it
“customhelpers”. Next we will create a new file titled MyTags.php within this new directory. At this point, we have
a structure that looks similar to : /app/customhelpers/MyTags.php. In MyTags.php, we will extend the
Phalcon\Tag and implement your own helper. Below is a simple example of a custom helper:

<?php

class MyTags extends \Phalcon\Tag
{

/**
* Generates a widget to show a HTML5 audio tag

*
* @param array

* @return string

*/
static public function audioField($parameters)
{

2.16. View Helpers 223



Phalcon PHP Framework Documentation, Release 1.3.0

// Converting parameters to array if it is not
if (!is_array($parameters)) {

$parameters = array($parameters);
}

// Determining attributes "id" and "name"
if (!isset($parameters[0])) {

$parameters[0] = $parameters["id"];
}

$id = $parameters[0];
if (!isset($parameters["name"])) {

$parameters["name"] = $id;
} else {

if (!$parameters["name"]) {
$parameters["name"] = $id;

}
}

// Determining widget value,
// \Phalcon\Tag::setDefault() allows to set the widget value
if (isset($parameters["value"])) {

$value = $parameters["value"];
unset($parameters["value"]);

} else {
$value = self::getValue($id);

}

// Generate the tag code
$code = '<audio id="'.$id.'" value="'.$value.'" ';
foreach ($parameters as $key => $attributeValue) {

if (!is_integer($key)) {
$code.= $key.'="'.$attributeValue.'" ';

}
}
$code.=" />";

return $code;
}

}

After creating our custom helper, we will autoload the new directory that contains our helper class from our “in-
dex.php” located in the public directory.

<?php

try {

$loader = new \Phalcon\Loader();
$loader->registerDirs(array(

'../app/controllers',
'../app/models',
'../app/customhelpers' // Add the new helpers folder

))->register();

$di = new Phalcon\DI\FactoryDefault();

224 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

// Assign our new tag a definition so we can call it
$di->set('MyTags', function()
{

return new MyTags();
});

$application = new \Phalcon\Mvc\Application($di);
echo $application->handle()->getContent();

} catch(\Phalcon\Exception $e) {
echo "PhalconException: ", $e->getMessage();

}

}

Now you are ready to use your new helper within your views:

<body>

<?php
echo MyTags::audioField(array(

'name' => 'test',
'id' => 'audio_test',
'src' => '/path/to/audio.mp3'
));

?>

</body>

In next chapter, we’ll talk about Volt a faster template engine for PHP, where you can use a more friendly syntax for
using helpers provided by Phalcon\Tag.

2.17 Assets Management

Phalcon\Assets is a component that allows the developer to manage static resources such as css stylesheets or javascript
libraries in a web application.

Phalcon\Assets\Manager is available in the services container, so you can add resources from any part of the applica-
tion where the container is available.

2.17.1 Adding Resources

Assets supports two built-in resources: css and javascripts. You can create other resources if you need. The assets
manager internally stores two default collections of resources one for javascript and another for css.

You can easily add resources to these collections like follows:

<?php

class IndexController extends Phalcon\Mvc\Controller
{

public function index()
{

//Add some local CSS resources
$this->assets

2.17. Assets Management 225



Phalcon PHP Framework Documentation, Release 1.3.0

->addCss('css/style.css')
->addCss('css/index.css');

//and some local javascript resources
$this->assets

->addJs('js/jquery.js')
->addJs('js/bootstrap.min.js');

}
}

Then in the views added resources can be printed:

<html>
<head>

<title>Some amazing website</title>
<?php $this->assets->outputCss() ?>

</head>
<body>

<!-- ... -->

<?php $this->assets->outputJs() ?>
</body>

<html>

2.17.2 Local/Remote resources

Local resources are those who’re provided by the same application and they’re located in the document root of the
application. URLs in local resources are generated by the ‘url’ service, usually Phalcon\Mvc\Url.

Remote resources are those such as common library like jquery, bootstrap, etc. that are provided by a CDN.

<?php

//Add some local CSS resources
$this->assets

->addCss('//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/css/bootstrap-combined.min.css', false)
->addCss('css/style.css', true);

2.17.3 Collections

Collections groups resources of the same type, the assets manager implicitly creates two collections: css and js. You
can create additional collections to group specific resources for ease of placing those resources in the views:

<?php

//Javascripts in the header
$this->assets

->collection('header')
->addJs('js/jquery.js')
->addJs('js/bootstrap.min.js');

//Javascripts in the footer
$this->assets

->collection('footer')

226 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

->addJs('js/jquery.js')
->addJs('js/bootstrap.min.js');

Then in the views:

<html>
<head>

<title>Some amazing website</title>
<?php $this->assets->outputJs('header') ?>

</head>
<body>

<!-- ... -->

<?php $this->assets->outputJs('footer') ?>
</body>

<html>

2.17.4 Prefixes

Collections can be URL-prefixed, this allows to easily change from a server to other at any moment:

<?php

$scripts = $this->assets->collection('footer');

if ($config->enviroment == 'development') {
$scripts->setPrefix('/');

} else {
$scripts->setPrefix('http:://cdn.example.com/');

}

$scripts->addJs('js/jquery.js')
->addJs('js/bootstrap.min.js');

A chaineable syntax is available too:

<?php

$scripts = $assets
->collection('header')
->setPrefix('http://cdn.example.com/')
->setLocal(false)
->addJs('js/jquery.js')
->addJs('js/bootstrap.min.js');

2.17.5 Minification/Filtering

Phalcon\Assets provides built-in minification of Javascript and CSS resources. The developer can create a collection
of resources instructing the Assets Manager which ones must be filtered and which ones must be left as they are. In
addition to the above, Jsmin by Douglas Crockford is part of the core extension offering minification of javascript files
for maximum performance. In the CSS land, CSSMin by Ryan Day is also available to minify CSS files:

The following example shows how to minify a collection of resources:

2.17. Assets Management 227



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$manager

//These Javascripts are located in the page's bottom
->collection('jsFooter')

//The name of the final output
->setTargetPath('final.js')

//The script tag is generated with this URI
->setTargetUri('production/final.js')

//This is a remote resource that does not need filtering
->addJs('code.jquery.com/jquery-1.10.0.min.js', true, false)

//These are local resources that must be filtered
->addJs('common-functions.js')
->addJs('page-functions.js')

//Join all the resources in a single file
->join(true)

//Use the built-in Jsmin filter
->addFilter(new Phalcon\Assets\Filters\Jsmin())

//Use a custom filter
->addFilter(new MyApp\Assets\Filters\LicenseStamper());

It starts getting a collection of resources from the assets manager, a collection can contain javascript or css resources
but not both. Some resources may be remote, that is, they’re obtained by HTTP from a remote source for further
filtering. It is recommended to convert the external resources to local eliminating the overhead of obtaining them.

<?php

//These Javascripts are located in the page's bottom
$js = $manager->collection('jsFooter');

As seen above, method addJs is used to add resources to the collection, the second parameter indicates whether the
resource is external or not and the third parameter indicates whether the resource should be filtered or left as is:

<?php

// This a remote resource that does not need filtering
$js->addJs('code.jquery.com/jquery-1.10.0.min.js', true, false);

// These are local resources that must be filtered
$js->addJs('common-functions.js');
$js->addJs('page-functions.js');

Filters are registered in the collection, multiple filters are allowed, content in resources are filtered in the same order
as filters were registered:

<?php

//Use the built-in Jsmin filter
$js->addFilter(new Phalcon\Assets\Filters\Jsmin());

//Use a custom filter

228 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$js->addFilter(new MyApp\Assets\Filters\LicenseStamper());

Note that both built-in and custom filters can be transparently applied to collections. Last step is decide if all the
resources in the collection must be joined in a single file or serve each of them individually. To tell the collection that
all resources must be joined you can use the method ‘join’:

<?php

// This a remote resource that does not need filtering
$js->join(true);

//The name of the final file path
$js->setTargetPath('public/production/final.js');

//The script html tag is generated with this URI
$js->setTargetUri('production/final.js');

If resources are going to be joined, we need also to define which file will be used to store the resources and which uri
will be used to show it. These settings are set up with setTargetPath() and setTargetUri().

Built-In Filters

Phalcon provides 2 built-in filters to minify both javascript and css respectively, their C-backend provide the minimum
overhead to perform this task:

Filter Description
Phal-
con\Assets\Filters\Jsmin

Minifies Javascript removing unnecessary characters that are ignored by Javascript
interpreters/compilers

Phal-
con\Assets\Filters\Cssmin

Minifies CSS removing unnecessary characters that are already ignored by browsers

Custom Filters

In addition to built-in filters, a developer can create his own filters. These can take advantage of existing and more
advanced tools like YUI, Sass, Closure, etc.:

<?php

use Phalcon\Assets\FilterInterface;

/**
* Filters CSS content using YUI

*
* @param string $contents

* @return string

*/
class CssYUICompressor implements FilterInterface
{

protected $_options;

/**
* CssYUICompressor constructor

*
* @param array $options

*/

2.17. Assets Management 229

http://yui.github.io/yuicompressor/
http://sass-lang.com/
https://developers.google.com/closure/compiler/?hl=fr


Phalcon PHP Framework Documentation, Release 1.3.0

public function __construct($options)
{

$this->_options = $options;
}

/**
* Do the filtering

*
* @param string $contents

* @return string

*/
public function filter($contents)
{

//Write the string contents into a temporal file
file_put_contents('temp/my-temp-1.css', $contents);

system(
$this->_options['java-bin'] .
' -jar ' .
$this->_options['yui'] .
' --type css '.
'temp/my-temp-file-1.css ' .
$this->_options['extra-options'] .
' -o temp/my-temp-file-2.css'

);

//Return the contents of file
return file_get_contents("temp/my-temp-file-2.css");

}
}

Usage:

<?php

//Get some CSS collection
$css = $this->assets->get('head');

//Add/Enable the YUI compressor filter in the collection
$css->addFilter(new CssYUICompressor(array(

'java-bin' => '/usr/local/bin/java',
'yui' => '/some/path/yuicompressor-x.y.z.jar',
'extra-options' => '--charset utf8'

)));

2.17.6 Custom Output

Methods outputJs and outputCss are available to generate the necessary HTML code according to each type of re-
sources. You can override this method or print the resources manually in the following way:

<?php

foreach ($this->assets->collection('js') as $resource) {
echo \Phalcon\Tag::javascriptInclude($resource->getPath());

}

230 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.18 Volt: Template Engine

Volt is an ultra-fast and designer friendly templating language written in C for PHP. It provides you a set of helpers
to write views in an easy way. Volt is highly integrated with other components of Phalcon, just as you can use it as a
stand-alone component in your applications.

Volt is inspired by Jinja, originally created by Armin Ronacher. Therefore many developers will be in familiar territory
using the same syntax they have been using with similar template engines. Volt’s syntax and features have been
enhanced with more elements and of course with the performance that developers have been accustomed to while
working with Phalcon.

2.18.1 Introduction

Volt views are compiled to pure PHP code, so basically they save the effort of writing PHP code manually:

{# app/views/products/show.volt #}

{% block last_products %}

{% for product in products %}

* Name: {{ product.name|e }}
{% if product.status == "Active" %}

Price: {{ product.price + product.taxes/100 }}
{% endif %}

{% endfor %}

{% endblock %}

2.18. Volt: Template Engine 231

http://jinja.pocoo.org/
https://github.com/mitsuhiko


Phalcon PHP Framework Documentation, Release 1.3.0

2.18.2 Activating Volt

As other template engines, you may register Volt in the view component, using a new extension or reusing the standard
.phtml:

<?php

//Registering Volt as template engine
$di->set('view', function() {

$view = new \Phalcon\Mvc\View();

$view->setViewsDir('../app/views/');

$view->registerEngines(array(
".volt" => 'Phalcon\Mvc\View\Engine\Volt'

));

return $view;
});

Use the standard ”.phtml” extension:

<?php

$view->registerEngines(array(
".phtml" => 'Phalcon\Mvc\View\Engine\Volt'

));

2.18.3 Basic Usage

A view consists of Volt code, PHP and HTML. A set of special delimiters is available to enter into Volt mode. {% ...
%} is used to execute statements such as for-loops or assign values and {{ ... }}, prints the result of an expression to
the template.

Below is a minimal template that illustrates a few basics:

{# app/views/posts/show.phtml #}
<!DOCTYPE html>
<html>

<head>
<title>{{ title }} - An example blog</title>

</head>
<body>

{% if show_navigation %}
<ul id="navigation">
{% for item in menu %}

<li><a href="{{ item.href }}">{{ item.caption }}</a></li>
{% endfor %}
</ul>

{% endif %}

<h1>{{ post.title }}</h1>

<div class="content">
{{ post.content }}

</div>

232 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

</body>
</html>

Using Phalcon\Mvc\View you can pass variables from the controller to the views. In the above example, three variables
were passed to the view: title, menu and post:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function showAction()
{

$post = Post::findFirst();

$this->view->title = $post->title;
$this->view->post = $post;
$this->view->menu = Menu::find();
$this->view->show_navigation = true;

}

}

2.18.4 Variables

Object variables may have attributes which can be accessed using the syntax: foo.bar. If you are passing arrays, you
have to use the square bracket syntax: foo[’bar’]

{{ post.title }} {# for $post->title #}
{{ post['title'] }} {# for $post['title'] #}

2.18.5 Filters

Variables can be formatted or modified using filters. The pipe operator | is used to apply filters to variables:

{{ post.title|e }}
{{ post.content|striptags }}
{{ name|capitalize|trim }}

The following is the list of available built-in filters in Volt:

2.18. Volt: Template Engine 233



Phalcon PHP Framework Documentation, Release 1.3.0

Filter Description
e Applies Phalcon\Escaper->escapeHtml to the value
escape Applies Phalcon\Escaper->escapeHtml to the value
escape_css Applies Phalcon\Escaper->escapeCss to the value
escape_js Applies Phalcon\Escaper->escapeJs to the value
escape_attr Applies Phalcon\Escaper->escapeHtmlAttr to the value
trim Applies the trim PHP function to the value. Removing extra spaces
left_trim Applies the ltrim PHP function to the value. Removing extra spaces
right_trim Applies the rtrim PHP function to the value. Removing extra spaces
striptags Applies the striptags PHP function to the value. Removing HTML tags
slashes Applies the slashes PHP function to the value. Escaping values
stripslashes Applies the stripslashes PHP function to the value. Removing escaped quotes
capitalize Capitalizes a string by applying the ucwords PHP function to the value
lower Change the case of a string to lowercase
upper Change the case of a string to uppercase
length Counts the string length or how many items are in an array or object
nl2br Changes newlines \n by line breaks (<br />). Uses the PHP function nl2br
sort Sorts an array using the PHP function asort
keys Returns the array keys using array_keys
join Joins the array parts using a separator join
format Formats a string using sprintf.
json_encode Converts a value into its JSON representation
json_decode Converts a value from its JSON representation to a PHP representation
abs Applies the abs PHP function to a value.
url_encode Applies the urlencode PHP function to the value
default Sets a default value in case that the evaluated expression is null
convert_encoding Converts a string from one charset to another

Examples:

{# e or escape filter #}
{{ "<h1>Hello<h1>"|e }}
{{ "<h1>Hello<h1>"|escape }}

{# trim filter #}
{{ " hello "|trim }}

{# striptags filter #}
{{ "<h1>Hello<h1>"|striptags }}

{# slashes filter #}
{{ "'this is a string'"|slashes }}

{# stripslashes filter #}
{{ "\'this is a string\'"|stripslashes }}

{# capitalize filter #}
{{ "hello"|capitalize }}

{# lower filter #}
{{ "HELLO"|lower }}

{# upper filter #}
{{ "hello"|upper }}

{# length filter #}

234 Chapter 2. Table of Contents

http://php.net/manual/en/function.trim.php
http://php.net/manual/en/function.ltrim.php
http://php.net/manual/en/function.rtrim.php
http://php.net/manual/en/function.striptags.php
http://php.net/manual/en/function.slashes.php
http://php.net/manual/en/function.stripslashes.php
http://php.net/manual/en/function.ucwords.php
http://php.net/manual/en/function.nl2br.php
http://php.net/manual/en/function.asort.php
http://php.net/manual/en/function.array-keys.php
http://php.net/manual/en/function.join.php
http://php.net/manual/en/function.sprintf.php
http://php.net/manual/en/function.json-encode.php
http://php.net/manual/en/function.json-encode.php
http://php.net/manual/en/function.abs.php
http://php.net/manual/en/function.urlencode.php


Phalcon PHP Framework Documentation, Release 1.3.0

{{ "robots"|length }}
{{ [1, 2, 3]|length }}

{# nl2br filter #}
{{ "some\ntext"|nl2br }}

{# sort filter #}
{% set sorted=[3, 1, 2]|sort %}

{# keys filter #}
{% set keys=['first': 1, 'second': 2, 'third': 3]|keys %}

{# json_encode filter #}
{% robots|json_encode %}

{# json_decode filter #}
{% set decoded='{"one":1,"two":2,"three":3}'|json_decode %}

{# url_encode filter #}
{{ post.permanent_link|url_encode }}

{# convert_encoding filter #}
{{ "désolé"|convert_encoding('utf8', 'latin1') }}

2.18.6 Comments

Comments may also be added to a template using the {# ... #} delimiters. All text inside them is just ignored in the
final output:

{# note: this is a comment
{% set price = 100; %}

#}

2.18.7 List of Control Structures

Volt provides a set of basic but powerful control structures for use in templates:

For

Loop over each item in a sequence. The following example shows how to traverse a set of “robots” and print his/her
name:

<h1>Robots</h1>
<ul>
{% for robot in robots %}
<li>{{ robot.name|e }}</li>

{% endfor %}
</ul>

for-loops can also be nested:

<h1>Robots</h1>
{% for robot in robots %}
{% for part in robot.parts %}

2.18. Volt: Template Engine 235



Phalcon PHP Framework Documentation, Release 1.3.0

Robot: {{ robot.name|e }} Part: {{ part.name|e }} <br/>
{% endfor %}

{% endfor %}

You can get the element “keys” as in the PHP counterpart using the following syntax:

{% set numbers = ['one': 1, 'two': 2, 'three': 3] %}

{% for name, value in numbers %}
Name: {{ name }} Value: {{ value }}

{% endfor %}

An “if” evaluation can be optionally set:

{% set numbers = ['one': 1, 'two': 2, 'three': 3] %}

{% for value in numbers if value < 2 %}
Name: {{ name }} Value: {{ value }}

{% endfor %}

{% for name, value in numbers if name != 'two' %}
Name: {{ name }} Value: {{ value }}

{% endfor %}

If an ‘else’ is defined inside the ‘for’, it will be executed if the expression in the iterator result in zero iterations:

<h1>Robots</h1>
{% for robot in robots %}

Robot: {{ robot.name|e }} Part: {{ part.name|e }} <br/>
{% else %}

There are no robots to show
{% endfor %}

Alternative syntax:

<h1>Robots</h1>
{% for robot in robots %}

Robot: {{ robot.name|e }} Part: {{ part.name|e }} <br/>
{% elsefor %}

There are no robots to show
{% endfor %}

Loop Controls

The ‘break’ and ‘continue’ statements can be used to exit from a loop or force an iteration in the current block:

{# skip the even robots #}
{% for index, robot in robots %}

{% if index is even %}
{% continue %}

{% endif %}
...

{% endfor %}

{# exit the foreach on the first even robot #}
{% for index, robot in robots %}

{% if index is even %}
{% break %}

236 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{% endif %}
...

{% endfor %}

If

As PHP, an “if” statement checks if an expression is evaluated as true or false:

<h1>Cyborg Robots</h1>
<ul>
{% for robot in robots %}
{% if robot.type == "cyborg" %}
<li>{{ robot.name|e }}</li>
{% endif %}

{% endfor %}
</ul>

The else clause is also supported:

<h1>Robots</h1>
<ul>
{% for robot in robots %}
{% if robot.type == "cyborg" %}
<li>{{ robot.name|e }}</li>
{% else %}
<li>{{ robot.name|e }} (not a cyborg)</li>
{% endif %}

{% endfor %}
</ul>

The ‘elseif’ control flow structure can be used together with if to emulate a ‘switch’ block:

{% if robot.type == "cyborg" %}
Robot is a cyborg

{% elseif robot.type == "virtual" %}
Robot is virtual

{% elseif robot.type == "mechanical" %}
Robot is mechanical

{% endif %}

Loop Context

A special variable is available inside ‘for’ loops providing you information about

Variable Description
loop.index The current iteration of the loop. (1 indexed)
loop.index0 The current iteration of the loop. (0 indexed)
loop.revindex The number of iterations from the end of the loop (1 indexed)
loop.revindex0 The number of iterations from the end of the loop (0 indexed)
loop.first True if in the first iteration.
loop.last True if in the last iteration.
loop.length The number of items to iterate

{% for robot in robots %}
{% if loop.first %}

<table>

2.18. Volt: Template Engine 237



Phalcon PHP Framework Documentation, Release 1.3.0

<tr>
<th>#</th>
<th>Id</th>
<th>Name</th>

</tr>
{% endif %}

<tr>
<td>{{ loop.index }}</td>
<td>{{ robot.id }}</td>
<td>{{ robot.name }}</td>

</tr>
{% if loop.last %}

</table>
{% endif %}

{% endfor %}

2.18.8 Assignments

Variables may be changed in a template using the instruction “set”:

{% set fruits = ['Apple', 'Banana', 'Orange'] %}
{% set name = robot.name %}

Multiple assignments are allowed in the same instruction:

{% set fruits = ['Apple', 'Banana', 'Orange'], name = robot.name, active = true %}

Additionally, you can use compound assignment operators:

{% set price += 100.00 %}
{% set age *= 5 %}

The following operators are available:

Operator Description
= Standard Assignment
+= Addition assignment
-= Subtraction assignment

*=
Multiplication assignment

/= Division assignment

2.18.9 Expressions

Volt provides a basic set of expression support, including literals and common operators.

A expression can be evaluated and printed using the ‘{{‘ and ‘}}’ delimiters:

{{ (1 + 1) * 2 }}

If an expression needs to be evaluated without be printed the ‘do’ statement can be used:

{% do (1 + 1) * 2 %}

238 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Literals

The following literals are supported:

Filter Description
“this is a string” Text between double quotes or single quotes are handled as strings
100.25 Numbers with a decimal part are handled as doubles/floats
100 Numbers without a decimal part are handled as integers
false Constant “false” is the boolean false value
true Constant “true” is the boolean true value
null Constant “null” is the Null value

Arrays

Whether you’re using PHP 5.3, 5.4 or 5.5, you can create arrays by enclosing a list of values in square brackets:

{# Simple array #}
{{ ['Apple', 'Banana', 'Orange'] }}

{# Other simple array #}
{{ ['Apple', 1, 2.5, false, null] }}

{# Multi-Dimensional array #}
{{ [[1, 2], [3, 4], [5, 6]] }}

{# Hash-style array #}
{{ ['first': 1, 'second': 4/2, 'third': '3'] }}

Curly braces also can be used to define arrays or hashes:

{% set myArray = {'Apple', 'Banana', 'Orange'} %}
{% set myHash = {'first': 1, 'second': 4/2, 'third': '3'} %}

Math

You may make calculations in templates using the following operators:

Operator Description
+ Perform an adding operation. {{ 2 + 3 }} returns 5
- Perform a substraction operation {{ 2 - 3 }} returns -1
* Perform a multiplication operation {{ 2 * 3 }} returns 6
/ Perform a division operation {{ 10 / 2 }} returns 5
% Calculate the remainder of an integer division {{ 10 % 3 }} returns 1

Comparisons

The following omparison operators are available:

2.18. Volt: Template Engine 239



Phalcon PHP Framework Documentation, Release 1.3.0

Operator Description
== Check whether both operands are equal
!= Check whether both operands aren’t equal
<> Check whether both operands aren’t equal
> Check whether left operand is greater than right operand
< Check whether left operand is less than right operand
<= Check whether left operand is less or equal than right operand
>= Check whether left operand is greater or equal than right operand
=== Check whether both operands are identical
!== Check whether both operands aren’t identical

Logic

Logic operators are useful in the “if” expression evaluation to combine multiple tests:

Operator Description
or Return true if the left or right operand is evaluated as true
and Return true if both left and right operands are evaluated as true
not Negates an expression
( expr ) Parenthesis groups expressions

Other Operators

Additional operators seen the following operators are available:

Operator Description
~ Concatenates both operands {{ “hello ” ~ “world” }}
| Applies a filter in the right operand to the left {{ “hello”|uppercase }}
.. Creates a range {{ ‘a’..’z’ }} {{ 1..10 }}
is Same as == (equals), also performs tests
in To check if an expression is contained into other expressions if “a” in “abc”
is not Same as != (not equals)
‘a’ ? ‘b’ : ‘c’ Ternary operator. The same as the PHP ternary operator
++ Increments a value
– Decrements a value

The following example shows how to use operators:

{% set robots = ['Voltron', 'Astro Boy', 'Terminator', 'C3PO'] %}

{% for index in 0..robots|length %}
{% if robots[index] is defined %}

{{ "Name: " ~ robots[index] }}
{% endif %}

{% endfor %}

2.18.10 Tests

Tests can be used to test if a variable has a valid expected value. The operator “is” is used to perform the tests:

{% set robots = ['1': 'Voltron', '2': 'Astro Boy', '3': 'Terminator', '4': 'C3PO'] %}

{% for position, name in robots %}

240 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{% if position is odd %}
{{ value }}

{% endif %}
{% endfor %}

The following built-in tests are available in Volt:

Test Description
defined Checks if a variable is defined (isset)
empty Checks if a variable is empty
even Checks if a numeric value is even
odd Checks if a numeric value is odd
numeric Checks if value is numeric
scalar Checks if value is scalar (not an array or object)
iterable Checks if a value is iterable. Can be traversed by a “for” statement
divisibleby Checks if a value is divisible by other value
sameas Checks if a value is identical to other value
type Checks if a value is of the specified type

More examples:

{% if robot is defined %}
The robot variable is defined

{% endif %}

{% if robot is empty %}
The robot is null or isn't defined

{% endif }

{% for key, name in [1: 'Voltron', 2: 'Astroy Boy', 3: 'Bender'] %}
{% if key is even %}

{{ name }}
{% endif }

{% endfor %}

{% for key, name in [1: 'Voltron', 2: 'Astroy Boy', 3: 'Bender'] %}
{% if key is odd %}

{{ name }}
{% endif }

{% endfor %}

{% for key, name in [1: 'Voltron', 2: 'Astroy Boy', 'third': 'Bender'] %}
{% if key is numeric %}

{{ name }}
{% endif }

{% endfor %}

{% set robots = [1: 'Voltron', 2: 'Astroy Boy'] %}
{% if robots is iterable %}

{% for robot in robots %}
...

{% endfor %}
{% endif %}

{% set world = "hello" %}
{% if world is sameas("hello") %}

{{ "it's hello" }}
{% endif %}

2.18. Volt: Template Engine 241



Phalcon PHP Framework Documentation, Release 1.3.0

{% set external = false %}
{% if external is type('boolean') %}

{{ "external is false or true" }}
{% endif %}

2.18.11 Macros

Macros can be used to reuse logic in a template, they act as PHP functions, can receive parameters and return values:

{%- macro related_bar(related_links) %}
<ul>

{%- for rellink in related_links %}
<li><a href="{{ url(link.url) }}" title="{{ link.title|striptags }}">{{ link.text }}</a></li>

{%- endfor %}
</ul>

{%- endmacro %}

{# Print related links #}
{{ related_bar(links) }}

<div>This is the content</div>

{# Print related links again #}
{{ related_bar(links) }}

When calling macros, parameters can be passed by name:

{%- macro error_messages(message, field, type) %}
<div>

<span class="error-type">{{ type }}</span>
<span class="error-field">{{ field }}</span>
<span class="error-message">{{ message }}</span>

</div>
{%- endmacro %}

{# Call the macro #}
{{ error_messages('type': 'Invalid', 'message': 'The name is invalid', 'field': 'name') }}

Macros can return values:

{%- macro my_input(name, class) %}
{% return text_field(name, 'class': class) %}

{%- endmacro %}

{# Call the macro #}
{{ '<p>' ~ my_input('name', 'input-text') ~ '</p>' }}

And receive optional parameters:

{%- macro my_input(name, class="input-text") %}
{% return text_field(name, 'class': class) %}

{%- endmacro %}

{# Call the macro #}
{{ '<p>' ~ my_input('name') ~ '</p>' }}
{{ '<p>' ~ my_input('name', 'input-text') ~ '</p>' }}

242 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.18.12 Using Tag Helpers

Volt is highly integrated with Phalcon\Tag, so it’s easy to use the helpers provided by that component in a Volt template:

{{ javascript_include("js/jquery.js") }}

{{ form('products/save', 'method': 'post') }}

<label>Name</label>
{{ text_field("name", "size": 32) }}

<label>Type</label>
{{ select("type", productTypes, 'using': ['id', 'name']) }}

{{ submit_button('Send') }}

</form>

The following PHP is generated:

<?php echo Phalcon\Tag::javascriptInclude("js/jquery.js") ?>

<?php echo Phalcon\Tag::form(array('products/save', 'method' => 'post')); ?>

<label>Name</label>
<?php echo Phalcon\Tag::textField(array('name', 'size' => 32)); ?>

<label>Type</label>
<?php echo Phalcon\Tag::select(array('type', $productTypes, 'using' => array('id', 'name'))); ?>

<?php echo Phalcon\Tag::submitButton('Send'); ?>

</form>

To call a Phalcon\Tag helper, you only need to call an uncamelized version of the method:

2.18. Volt: Template Engine 243



Phalcon PHP Framework Documentation, Release 1.3.0

Method Volt function
Phalcon\Tag::linkTo link_to
Phalcon\Tag::textField text_field
Phalcon\Tag::passwordField password_field
Phalcon\Tag::hiddenField hidden_field
Phalcon\Tag::fileField file_field
Phalcon\Tag::checkField check_field
Phalcon\Tag::radioField radio_field
Phalcon\Tag::dateField date_field
Phalcon\Tag::emailField email_field
Phalcon\Tag::numberField number_field
Phalcon\Tag::submitButton submit_button
Phalcon\Tag::selectStatic select_static
Phalcon\Tag::select select
Phalcon\Tag::textArea text_area
Phalcon\Tag::form form
Phalcon\Tag::endForm end_form
Phalcon\Tag::getTitle get_title
Phalcon\Tag::stylesheetLink stylesheet_link
Phalcon\Tag::javascriptInclude javascript_include
Phalcon\Tag::image image
Phalcon\Tag::friendlyTitle friendly_title

2.18.13 Functions

The following built-in functions are available in Volt:

Name Description
content Includes the content produced in a previous rendering stage
get_content Same as ‘content’
partial Dynamically loads a partial view in the current template
super Render the contents of the parent block
time Calls the PHP function with the same name
date Calls the PHP function with the same name
dump Calls the PHP function ‘var_dump’
version Returns the current version of the framework
constant Reads a PHP constant
url Generate a URL using the ‘url’ service

2.18.14 View Integration

Also, Volt is integrated with Phalcon\Mvc\View, you can play with the view hierarchy and include partials as well:

{{ content() }}

<!-- Simple include of a partial -->
<div id="footer">{{ partial("partials/footer") }}</div>

<!-- Passing extra variables -->
<div id="footer">{{ partial("partials/footer", ['links': $links]) }}</div>

A partial is included in runtime, Volt also provides “include”, this compiles the content of a view and returns its
contents as part of the view which was included:

244 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{# Simple include of a partial #}
<div id="footer">{% include "partials/footer" %}</div>

{# Passing extra variables #}
<div id="footer">{% include "partials/footer" with ['links': links] %}</div>

Include

‘include’ has a special behavior that will help us improve performance a bit when using Volt, if you specify the
extension when including the file and it exists when the template is compiled, Volt can inline the contents of the
template in the parent template where it’s included. Templates aren’t inlined if the ‘include’ have variables passed
with ‘with’:

{# The contents of 'partials/footer.volt' is compiled and inlined #}
<div id="footer">{% include "partials/footer.volt" %}</div>

2.18.15 Template Inheritance

With template inheritance you can create base templates that can be extended by others templates allowing to reuse
code. A base template define blocks than can be overridden by a child template. Let’s pretend that we have the
following base template:

{# templates/base.volt #}
<!DOCTYPE html>
<html>

<head>
{% block head %}

<link rel="stylesheet" href="style.css" />
{% endblock %}
<title>{% block title %}{% endblock %} - My Webpage</title>

</head>
<body>

<div id="content">{% block content %}{% endblock %}</div>
<div id="footer">

{% block footer %}&copy; Copyright 2012, All rights reserved.{% endblock %}
</div>

</body>
</html>

From other template we could extend the base template replacing the blocks:

{% extends "templates/base.volt" %}

{% block title %}Index{% endblock %}

{% block head %}<style type="text/css">.important { color: #336699; }</style>{% endblock %}

{% block content %}
<h1>Index</h1>
<p class="important">Welcome on my awesome homepage.</p>

{% endblock %}

Not all blocks must be replaced at a child template, only those that are needed. The final output produced will be the
following:

2.18. Volt: Template Engine 245



Phalcon PHP Framework Documentation, Release 1.3.0

<!DOCTYPE html>
<html>

<head>
<style type="text/css">.important { color: #336699; }</style>
<title>Index - My Webpage</title>

</head>
<body>

<div id="content">
<h1>Index</h1>
<p class="important">Welcome on my awesome homepage.</p>

</div>
<div id="footer">

&copy; Copyright 2012, All rights reserved.
</div>

</body>
</html>

Multiple Inheritance

Extended templates can extend other templates. The following example illustrates this:

{# main.volt #}
<!DOCTYPE html>
<html>

<head>
<title>Title</title>

</head>
<body>

{% block content %}{% endblock %}
</body>

</html>

Template “layout.volt” extends “main.volt”

{# layout.volt #}
{% extends "main.volt" %}

{% block content %}

<h1>Table of contents</h1>

{% endblock %}

Finally a view that extends “layout.volt”:

{# index.volt #}
{% extends "layout.volt" %}

{% block content %}

{{ super() }}

<ul>
<li>Some option</li>
<li>Some other option</li>

</ul>

{% endblock %}

246 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Rendering “index.volt” produces:

<!DOCTYPE html>
<html>

<head>
<title>Title</title>

</head>
<body>

<h1>Table of contents</h1>

<ul>
<li>Some option</li>
<li>Some other option</li>

</ul>

</body>
</html>

Note the call to the function “super()”. With that function it’s possible to render the contents of the parent block.

As partials, the path set to “extends” is a relative path under the current views directory (i.e. app/views/).

By default, and for performance reasons, Volt only checks for changes in the children templates to know
when to re-compile to plain PHP again, so it is recommended initialize Volt with the option ‘compileAl-
ways’ => true. Thus, the templates are compiled always taking into account changes in the parent tem-
plates.

2.18.16 Autoescape mode

You can enable auto-escaping of all variables printed in a block using the autoescape mode:

Manually escaped: {{ robot.name|e }}

{% autoescape true %}
Autoescaped: {{ robot.name }}
{% autoescape false %}

No Autoescaped: {{ robot.name }}
{% endautoescape %}

{% endautoescape %}

2.18.17 Setting up the Volt Engine

Volt can be configured to alter its default behavior, the following example explain how to do that:

<?php

use Phalcon\Mvc\View,
Phalcon\Mvc\View\Engine\Volt;

//Register Volt as a service
$di->set('voltService', function($view, $di) {

$volt = new Volt($view, $di);

$volt->setOptions(array(
"compiledPath" => "../app/compiled-templates/",

2.18. Volt: Template Engine 247



Phalcon PHP Framework Documentation, Release 1.3.0

"compiledExtension" => ".compiled"
));

return $volt;
});

//Register Volt as template engine
$di->set('view', function() {

$view = new View();

$view->setViewsDir('../app/views/');

$view->registerEngines(array(
".volt" => 'voltService'

));

return $view;
});

If you do not want to reuse Volt as a service you can pass an anonymous function to register the engine instead of a
service name:

<?php

//Register Volt as template engine with an anonymous function
$di->set('view', function() {

$view = new \Phalcon\Mvc\View();

$view->setViewsDir('../app/views/');

$view->registerEngines(array(
".volt" => function($view, $di) {

$volt = new \Phalcon\Mvc\View\Engine\Volt($view, $di);

//set some options here

return $volt;
}

));

return $view;
});

The following options are available in Volt:

248 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Option Description De-
fault

compiledPath A writable path where the compiled PHP templates will be placed ./
compiledEx-
tension

An additional extension appended to the compiled PHP file .php

compiledSep-
arator

Volt replaces the directory separators / and \ by this separator in order to create a single
file in the compiled directory

%%

stat Whether Phalcon must check if exists differences between the template file and its
compiled path

true

compileAl-
ways

Tell Volt if the templates must be compiled in each request or only when they change false

prefix Allows to prepend a prefix to the templates in the compilation path null

The compilation path is generated according to the above options, if the developer wants total freedom defining the
compilation path, an anonymous function can be used to generate it, this function receives the relative path to the
template in the views directory. The following examples show how to change the compilation path dynamically:

<?php

// Just append the .php extension to the template path
// leaving the compiled templates in the same directory
$volt->setOptions(array(

'compiledPath' => function($templatePath) {
return $templatePath . '.php';

}
));

// Recursively create the same structure in another directory
$volt->setOptions(array(

'compiledPath' => function($templatePath) {
$dirName = dirname($templatePath);
if (!is_dir('cache/' . $dirName)) {

mkdir('cache/' . $dirName);
}
return 'cache/' . $dirName . '/'. $templatePath . '.php';

}
));

2.18.18 Extending Volt

Unlike other template engines, Volt itself is not required to run the compiled templates. Once the templates are
compiled there is no dependence on Volt. With performance independence in mind, Volt only acts as a compiler for
PHP templates.

The Volt compiler allow you to extend it adding more functions, tests or filters to the existing ones.

Functions

Functions act as normal PHP functions, a valid string name is required as function name. Functions can be added
using two strategies, returning a simple string or using an anonymous function. Always is required that the chosen
strategy returns a valid PHP string expression:

<?php

$volt = new \Phalcon\Mvc\View\Engine\Volt($view, $di);

2.18. Volt: Template Engine 249



Phalcon PHP Framework Documentation, Release 1.3.0

$compiler = $volt->getCompiler();

//This binds the function name 'shuffle' in Volt to the PHP function 'str_shuffle'
$compiler->addFunction('shuffle', 'str_shuffle');

Register the function with an anonymous function. This case we use $resolvedArgs to pass the arguments exactly as
were passed in the arguments:

<?php

$compiler->addFunction('widget', function($resolvedArgs, $exprArgs) {
return 'MyLibrary\Widgets::get(' . $resolvedArgs . ')';

});

Treat the arguments independently and unresolved:

<?php

$compiler->addFunction('repeat', function($resolvedArgs, $exprArgs) use ($compiler) {

//Resolve the first argument
$firstArgument = $compiler->expression($exprArgs[0]['expr']);

//Checks if the second argument was passed
if (isset($exprArgs[1])) {

$secondArgument = $compiler->expression($exprArgs[1]['expr']);
} else {

//Use '10' as default
$secondArgument = '10';

}

return 'str_repeat(' . $firstArgument . ', ' . $secondArgument . ')';
});

Generate the code based on some function availability:

<?php

$compiler->addFunction('contains_text', function($resolvedArgs, $exprArgs) {
if (function_exists('mb_stripos')) {

return 'mb_stripos(' . $resolvedArgs . ')';
} else {

return 'stripos(' . $resolvedArgs . ')';
}

});

Built-in functions can be overrided adding a function with its name:

<?php

//Replace built-in function dump
$compiler->addFunction('dump', 'print_r');

Filters

A filter has the following form in a template: leftExpr|name(optional-args). Adding new filters is similar as seen with
the functions:

250 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//This creates a filter 'hash' that uses the PHP function 'md5'
$compiler->addFilter('hash', 'md5');

<?php

$compiler->addFilter('int', function($resolvedArgs, $exprArgs) {
return 'intval(' . $resolvedArgs . ')';

});

Built-in filters can be overrided adding a function with its name:

<?php

//Replace built-in filter 'capitalize'
$compiler->addFilter('capitalize', 'lcfirst');

Extensions

With extensions the developer has more flexibility to extend the template engine, and override the compilation of a
specific instruction, change the behavior of an expression or operator, add functions/filters, and more.

An extension is a class that implements the events triggered by Volt as a method of itself.

For example, the class below allows to use any PHP function in Volt:

<?php

class PhpFunctionExtension
{

/**
* This method is called on any attempt to compile a function call

*/
public function compileFunction($name, $arguments)
{

if (function_exists($name)) {
return $name . '('. $arguments . ')';

}
}

}

The above class implements the method ‘compileFunction’ which is invoked before any attempt to compile a function
call in any template. The purpose of the extension is to verify if a function to be compiled is a PHP function allowing
to call it from the template. Events in extensions must return valid PHP code, this will be used as result of the
compilation instead of the one generated by Volt. If an event doesn’t return an string the compilation is done using the
default behavior provided by the engine.

The following compilation events are available to be implemented in extensions:

Event/Method Description
compileFunc-
tion

Triggered before trying to compile any function call in a template

compileFilter Triggered before trying to compile any filter call in a template
resolveExpres-
sion

Triggered before trying to compile any expression. This allows the developer to override
operators

compileState-
ment

Triggered before trying to compile any expression. This allows the developer to override any
statement

2.18. Volt: Template Engine 251



Phalcon PHP Framework Documentation, Release 1.3.0

Volt extensions must be in registered in the compiler making them available in compile time:

<?php

//Register the extension in the compiler
$compiler->addExtension(new PhpFunctionExtension());

2.18.19 Caching view fragments

With Volt it’s easy cache view fragments. This caching improves performance preventing that the contents of a block
from being executed by PHP each time the view is displayed:

{% cache "sidebar" %}
<!-- generate this content is slow so we are going to cache it -->

{% endcache %}

Setting a specific number of seconds:

{# cache the sidebar by 1 hour #}
{% cache "sidebar" 3600 %}

<!-- generate this content is slow so we are going to cache it -->
{% endcache %}

Any valid expression can be used as cache key:

{% cache ("article-" ~ post.id) 3600 %}

<h1>{{ post.title }}</h1>

<p>{{ post.content }}</p>

{% endcache %}

The caching is done by the Phalcon\Cache component via the view component. Learn more about how this integration
works in the section “Caching View Fragments”.

2.18.20 Inject Services into a Template

If a service container (DI) is available for Volt, you can use the services by only accessing the name of the service in
the template:

{# Inject the 'flash' service #}
<div id="messages">{{ flash.output() }}</div>

{# Inject the 'security' service #}
<input type="hidden" name="token" value="{{ security.getToken() }}">

2.18.21 Stand-alone component

Using Volt in a stand-alone mode can be demonstrated below:

<?php

//Create a compiler
$compiler = new \Phalcon\Mvc\View\Engine\Volt\Compiler();

252 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Optionally add some options
$compiler->setOptions(array(

//...
));

//Compile a template string returning PHP code
echo $compiler->compileString('{{ "hello" }}');

//Compile a template in a file specifying the destination file
$compiler->compileFile('layouts/main.volt', 'cache/layouts/main.volt.php');

//Compile a template in a file based on the options passed to the compiler
$compiler->compile('layouts/main.volt');

//Require the compiled templated (optional)
require $compiler->getCompiledTemplatePath();

2.18.22 External Resources

• A bundle for Sublime/Textmate is available here

• Album-O-Rama is a sample application using Volt as template engine, [Github]

• Our website is running using Volt as template engine, [Github]

• Phosphorum, the Phalcon’s forum, also uses Volt, [Github]

• Vökuró, is another sample application that use Volt, [Github]

2.19 MVC Applications

All the hard work behind orchestrating the operation of MVC in Phalcon is normally done by Phal-
con\Mvc\Application. This component encapsulates all the complex operations required in the background, instanti-
ating every component needed and integrating it with the project, to allow the MVC pattern to operate as desired.

2.19.1 Single or Multi Module Applications

With this component you can run various types of MVC structures:

Single Module

Single MVC applications consist of one module only. Namespaces can be used but are not necessary. An application
like this would have the following file structure:

single/
app/

controllers/
models/
views/

public/
css/
img/
js/

2.19. MVC Applications 253

https://github.com/phalcon/volt-sublime-textmate
http://album-o-rama.phalconphp.com
https://github.com/phalcon/album-o-rama
http://phalconphp.com
https://github.com/phalcon/website
http://forum.phalconphp.com
https://github.com/phalcon/forum
http://vokuro.phalconphp.com
https://github.com/phalcon/vokuro


Phalcon PHP Framework Documentation, Release 1.3.0

If namespaces are not used, the following bootstrap file could be used to orchestrate the MVC flow:

<?php

use Phalcon\Loader,
Phalcon\DI\FactoryDefault,
Phalcon\Mvc\Application,
Phalcon\Mvc\View;

$loader = new Loader();

$loader->registerDirs(
array(

'../apps/controllers/',
'../apps/models/'

)
)->register();

$di = new FactoryDefault();

// Registering the view component
$di->set('view', function() {

$view = new View();
$view->setViewsDir('../apps/views/');
return $view;

});

try {

$application = new Application($di);

echo $application->handle()->getContent();

} catch (\Exception $e) {
echo $e->getMessage();

}

If namespaces are used, the following bootstrap can be used:

<?php

use Phalcon\Loader,
Phalcon\Mvc\View,
Phalcon\DI\FactoryDefault,
Phalcon\Mvc\Dispatcher,
Phalcon\Mvc\Application;

$loader = new Loader();

// Use autoloading with namespaces prefixes
$loader->registerNamespaces(

array(
'Single\Controllers' => '../apps/controllers/',
'Single\Models' => '../apps/models/',

)
)->register();

$di = new FactoryDefault();

254 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

// Register the dispatcher setting a Namespace for controllers
$di->set('dispatcher', function() {

$dispatcher = new Dispatcher();
$dispatcher->setDefaultNamespace('Single\Controllers');
return $dispatcher;

});

// Registering the view component
$di->set('view', function() {

$view = new View();
$view->setViewsDir('../apps/views/');
return $view;

});

try {

$application = new Application($di);

echo $application->handle()->getContent();

} catch(\Exception $e){
echo $e->getMessage();

}

Multi Module

A multi-module application uses the same document root for more than one module. In this case the following file
structure can be used:

multiple/
apps/
frontend/

controllers/
models/
views/
Module.php

backend/
controllers/
models/
views/
Module.php

public/
css/
img/
js/

Each directory in apps/ have its own MVC structure. A Module.php is present to configure specific settings of each
module like autoloaders or custom services:

<?php

namespace Multiple\Backend;

use Phalcon\Loader,
Phalcon\Mvc\Dispatcher,
Phalcon\Mvc\View,
Phalcon\Mvc\ModuleDefinitionInterface;

2.19. MVC Applications 255



Phalcon PHP Framework Documentation, Release 1.3.0

class Module implements ModuleDefinitionInterface
{

/**
* Register a specific autoloader for the module

*/
public function registerAutoloaders()
{

$loader = new Loader();

$loader->registerNamespaces(
array(

'Multiple\Backend\Controllers' => '../apps/backend/controllers/',
'Multiple\Backend\Models' => '../apps/backend/models/',

)
);

$loader->register();
}

/**
* Register specific services for the module

*/
public function registerServices($di)
{

//Registering a dispatcher
$di->set('dispatcher', function() {

$dispatcher = new Dispatcher();
$dispatcher->setDefaultNamespace("Multiple\Backend\Controllers");
return $dispatcher;

});

//Registering the view component
$di->set('view', function() {

$view = new View();
$view->setViewsDir('../apps/backend/views/');
return $view;

});
}

}

A special bootstrap file is required to load the a multi-module MVC architecture:

<?php

use Phalcon\Mvc\Router,
Phalcon\Mvc\Application,
Phalcon\DI\FactoryDefault;

$di = new FactoryDefault();

//Specify routes for modules
$di->set('router', function () {

$router = new Router();

256 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$router->setDefaultModule("frontend");

$router->add("/login", array(
'module' => 'backend',
'controller' => 'login',
'action' => 'index',

));

$router->add("/admin/products/:action", array(
'module' => 'backend',
'controller' => 'products',
'action' => 1,

));

$router->add("/products/:action", array(
'controller' => 'products',
'action' => 1,

));

return $router;
});

try {

//Create an application
$application = new Application($di);

// Register the installed modules
$application->registerModules(

array(
'frontend' => array(

'className' => 'Multiple\Frontend\Module',
'path' => '../apps/frontend/Module.php',

),
'backend' => array(

'className' => 'Multiple\Backend\Module',
'path' => '../apps/backend/Module.php',

)
)

);

//Handle the request
echo $application->handle()->getContent();

} catch(\Exception $e){
echo $e->getMessage();

}

If you want to maintain the module configuration in the bootstrap file you can use an anonymous function to register
the module:

<?php

//Creating a view component
$view = new \Phalcon\Mvc\View();

//Set options to view component
//...

2.19. MVC Applications 257



Phalcon PHP Framework Documentation, Release 1.3.0

// Register the installed modules
$application->registerModules(

array(
'frontend' => function($di) use ($view) {

$di->setShared('view', function() use ($view) {
$view->setViewsDir('../apps/frontend/views/');
return $view;

});
},
'backend' => function($di) use ($view) {

$di->setShared('view', function() use ($view) {
$view->setViewsDir('../apps/backend/views/');
return $view;

});
}

)
);

When Phalcon\Mvc\Application have modules registered, always is necessary that every matched route returns a valid
module. Each registered module has an associated class offering functions to set the module itself up. Each module
class definition must implement two methods: registerAutoloaders() and registerServices(), they will be called by
Phalcon\Mvc\Application according to the module to be executed.

2.19.2 Understanding the default behavior

If you’ve been following the tutorial or have generated the code using Phalcon Devtools, you may recognize the
following bootstrap file:

<?php

try {

// Register autoloaders
//...

// Register services
//...

// Handle the request
$application = new \Phalcon\Mvc\Application($di);

echo $application->handle()->getContent();

} catch (\Exception $e) {
echo "Exception: ", $e->getMessage();

}

The core of all the work of the controller occurs when handle() is invoked:

<?php

echo $application->handle()->getContent();

258 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.19.3 Manual bootstraping

If you do not wish to use Phalcon\Mvc\Application, the code above can be changed as follows:

<?php

// Get the 'router' service
$router = $di['router'];

$router->handle();

$view = $di['view'];

$dispatcher = $di['dispatcher'];

// Pass the processed router parameters to the dispatcher
$dispatcher->setControllerName($router->getControllerName());
$dispatcher->setActionName($router->getActionName());
$dispatcher->setParams($router->getParams());

// Start the view
$view->start();

// Dispatch the request
$dispatcher->dispatch();

// Render the related views
$view->render(

$dispatcher->getControllerName(),
$dispatcher->getActionName(),
$dispatcher->getParams()

);

// Finish the view
$view->finish();

$response = $di['response'];

// Pass the output of the view to the response
$response->setContent($view->getContent());

// Send the request headers
$response->sendHeaders();

// Print the response
echo $response->getContent();

The following replacement of Phalcon\Mvc\Application lacks of a view component making it suitable for Rest APIs:

<?php

// Get the 'router' service
$router = $di['router'];

$router->handle();

$dispatcher = $di['dispatcher'];

// Pass the processed router parameters to the dispatcher

2.19. MVC Applications 259



Phalcon PHP Framework Documentation, Release 1.3.0

$dispatcher->setControllerName($router->getControllerName());
$dispatcher->setActionName($router->getActionName());
$dispatcher->setParams($router->getParams());

// Dispatch the request
$dispatcher->dispatch();

//Get the returned value by the lastest executed action
$response = $dispatcher->getReturnedValue();

//Check if the action returned is a 'response' object
if ($response instanceof Phalcon\Http\ResponseInterface) {

//Send the request
$response->send();

}

Yet another alternative that catch exceptions produced in the dispatcher forwarding to other actions consequently:

<?php

// Get the 'router' service
$router = $di['router'];

$router->handle();

$dispatcher = $di['dispatcher'];

// Pass the processed router parameters to the dispatcher
$dispatcher->setControllerName($router->getControllerName());
$dispatcher->setActionName($router->getActionName());
$dispatcher->setParams($router->getParams());

try {

// Dispatch the request
$dispatcher->dispatch();

} catch (Exception $e) {

//An exception has ocurred, dispatch some controller/action aimed for that

// Pass the processed router parameters to the dispatcher
$dispatcher->setControllerName('errors');
$dispatcher->setActionName('action503');

// Dispatch the request
$dispatcher->dispatch();

}

//Get the returned value by the lastest executed action
$response = $dispatcher->getReturnedValue();

//Check if the action returned is a 'response' object
if ($response instanceof Phalcon\Http\ResponseInterface) {

//Send the request

260 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$response->send();
}

Although the above implementations are a lot more verbose than the code needed while using Phal-
con\Mvc\Application, it offers an alternative in boostraping your application. Depending on your needs, you might
want to have full control of what should be instantiated or not, or replace certain components with those of your own
to extend the default functionality.

2.19.4 Application Events

Phalcon\Mvc\Application is able to send events to the EventsManager (if it is present). Events are triggered using the
type “application”. The following events are supported:

Event Name Triggered
boot Executed when the application handles its first request
beforeStartModule Before initialize a module, only when modules are registered
afterStartModule After initialize a module, only when modules are registered
beforeHandleRequest Before execute the dispatch loop
afterHandleRequest After execute the dispatch loop

The following example demonstrates how to attach listeners to this component:

<?php

use Phalcon\Events\Manager as EventsManager;

$eventsManager = new EventsManager();

$application->setEventsManager($eventsManager);

$eventsManager->attach(
"application",
function($event, $application) {

// ...
}

);

2.19.5 External Resources

• MVC examples on Github

2.20 Routing

The router component allows defining routes that are mapped to controllers or handlers that should receive the request.
A router simply parses a URI to determine this information. The router has two modes: MVC mode and match-only
mode. The first mode is ideal for working with MVC applications.

2.20.1 Defining Routes

Phalcon\Mvc\Router provides advanced routing capabilities. In MVC mode, you can define routes and map them to
controllers/actions that you require. A route is defined as follows:

2.20. Routing 261

https://github.com/phalcon/mvc


Phalcon PHP Framework Documentation, Release 1.3.0

<?php

// Create the router
$router = new \Phalcon\Mvc\Router();

//Define a route
$router->add(

"/admin/users/my-profile",
array(

"controller" => "users",
"action" => "profile",

)
);

//Another route
$router->add(

"/admin/users/change-password",
array(

"controller" => "users",
"action" => "changePassword",

)
);

$router->handle();

The method add() receives as first parameter a pattern and optionally a set of paths as second parameter. In this case,
if the URI is exactly: /admin/users/my-profile, then the “users” controller with its action “profile” will be executed.
Currently, the router does not execute the controller and action, it only collects this information to inform the correct
component (ie. Phalcon\Mvc\Dispatcher) that this is controller/action it should to execute.

An application can have many paths, define routes one by one can be a cumbersome task. In these cases we can create
more flexible routes:

<?php

// Create the router
$router = new \Phalcon\Mvc\Router();

//Define a route
$router->add(

"/admin/:controller/a/:action/:params",
array(

"controller" => 1,
"action" => 2,
"params" => 3,

)
);

In the example above, using wildcards we make a route valid for many URIs. For example, by accessing the following
URL (/admin/users/a/delete/dave/301) then:

Controller users
Action delete
Parameter dave
Parameter 301

The method add() receives a pattern that optionally could have predefined placeholders and regular expression modi-
fiers. All the routing patterns must start with a slash character (/). The regular expression syntax used is the same as
the PCRE regular expressions. Note that, it is not necessary to add regular expression delimiters. All routes patterns

262 Chapter 2. Table of Contents

http://www.php.net/manual/en/book.pcre.php


Phalcon PHP Framework Documentation, Release 1.3.0

are case-insensitive.

The second parameter defines how the matched parts should bind to the controller/action/parameters. Matching parts
are placeholders or subpatterns delimited by parentheses (round brackets). In the example given above, the first
subpattern matched (:controller) is the controller part of the route, the second the action and so on.

These placeholders help writing regular expressions that are more readable for developers and easier to understand.
The following placeholders are supported:

Place-
holder

Regular
Expression

Usage

/:module /([a-zA-Z0-9_-
]+)

Matches a valid module name with alpha-numeric characters only

/:con-
troller

/([a-zA-Z0-9_-
]+)

Matches a valid controller name with alpha-numeric characters only

/:action /([a-zA-Z0-9_]+) Matches a valid action name with alpha-numeric characters only
/:params (/.*)* Matches a list of optional words separated by slashes. Use only this

placeholder at the end of a route
/:names-
pace

/([a-zA-Z0-9_-
]+)

Matches a single level namespace name

/:int /([0-9]+) Matches an integer parameter

Controller names are camelized, this means that characters (-) and (_) are removed and the next character is uppercased.
For instance, some_controller is converted to SomeController.

Since you can add many routes as you need using add(), the order in which routes are added indicate their relevance,
lastest routes added have more relevance than first added. Internally, all defined routes are traversed in reverse order
until Phalcon\Mvc\Router finds the one that matches the given URI and processes it, while ignoring the rest.

Parameters with Names

The example below demonstrates how to define names to route parameters:

<?php

$router->add(
"/news/([0-9]{4})/([0-9]{2})/([0-9]{2})/:params",
array(

"controller" => "posts",
"action" => "show",
"year" => 1, // ([0-9]{4})
"month" => 2, // ([0-9]{2})
"day" => 3, // ([0-9]{2})
"params" => 4, // :params

)
);

In the above example, the route doesn’t define a “controller” or “action” part. These parts are replaced with fixed
values (“posts” and “show”). The user will not know the controller that is really dispatched by the request. Inside the
controller, those named parameters can be accessed as follows:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

2.20. Routing 263



Phalcon PHP Framework Documentation, Release 1.3.0

}

public function showAction()
{

// Return "year" parameter
$year = $this->dispatcher->getParam("year");

// Return "month" parameter
$month = $this->dispatcher->getParam("month");

// Return "day" parameter
$day = $this->dispatcher->getParam("day");

}

}

Note that the values of the parameters are obtained from the dispatcher. This happens because it is the component that
finally interacts with the drivers of your application. Moreover, there is also another way to create named parameters
as part of the pattern:

<?php

$router->add(
"/documentation/{chapter}/{name}.{type:[a-z]+}",
array(

"controller" => "documentation",
"action" => "show"

)
);

You can access their values in the same way as before:

<?php

class DocumentationController extends \Phalcon\Mvc\Controller
{

public function showAction()
{

// Returns "name" parameter
$name = $this->dispatcher->getParam("name");

// Returns "type" parameter
$type = $this->dispatcher->getParam("type");

}

}

Short Syntax

If you don’t like using an array to define the route paths, an alternative syntax is also available. The following examples
produce the same result:

264 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

// Short form
$router->add("/posts/{year:[0-9]+}/{title:[a-z\-]+}", "Posts::show");

// Array form
$router->add(

"/posts/([0-9]+)/([a-z\-]+)",
array(

"controller" => "posts",
"action" => "show",
"year" => 1,
"title" => 2,

)
);

Mixing Array and Short Syntax

Array and short syntax can be mixed to define a route, in this case note that named parameters automatically are added
to the route paths according to the position on which they were defined:

<?php

//First position must be skipped because it is used for
//the named parameter 'country'
$router->add('/news/{country:[a-z]{2}}/([a-z+])/([a-z\-+])',

array(
'section' => 2, //Positions start with 2
'article' => 3

)
);

Routing to Modules

You can define routes whose paths include modules. This is specially suitable to multi-module applications. It’s
possible define a default route that includes a module wildcard:

<?php

$router = new Phalcon\Mvc\Router(false);

$router->add('/:module/:controller/:action/:params', array(
'module' => 1,
'controller' => 2,
'action' => 3,
'params' => 4

));

In this case, the route always must have the module name as part of the URL. For example, the following URL:
/admin/users/edit/sonny, will be processed as:

Module admin
Controller users
Action edit
Parameter sonny

2.20. Routing 265



Phalcon PHP Framework Documentation, Release 1.3.0

Or you can bind specific routes to specific modules:

<?php

$router->add("/login", array(
'module' => 'backend',
'controller' => 'login',
'action' => 'index',

));

$router->add("/products/:action", array(
'module' => 'frontend',
'controller' => 'products',
'action' => 1,

));

Or bind them to specific namespaces:

<?php

$router->add("/:namespace/login", array(
'namespace' => 1,
'controller' => 'login',
'action' => 'index'

));

Namespaces/class names must be passed separated:

<?php

$router->add("/login", array(
'namespace' => 'Backend\Controllers',
'controller' => 'login',
'action' => 'index'

));

HTTP Method Restrictions

When you add a route using simply add(), the route will be enabled for any HTTP method. Sometimes we can restrict
a route to a specific method, this is especially useful when creating RESTful applications:

<?php

// This route only will be matched if the HTTP method is GET
$router->addGet("/products/edit/{id}", "Products::edit");

// This route only will be matched if the HTTP method is POST
$router->addPost("/products/save", "Products::save");

// This route will be matched if the HTTP method is POST or PUT
$router->add("/products/update")->via(array("POST", "PUT"));

Using convertions

Convertions allow to freely transform the route’s parameters before passing them to the dispatcher, the following
examples show how to use them:

266 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//The action name allows dashes, an action can be: /products/new-ipod-nano-4-generation
$router

->add('/products/{slug:[a-z\-]+}', array(
'controller' => 'products',
'action' => 'show'

))
->convert('slug', function($slug) {

//Transform the slug removing the dashes
return str_replace('-', '', $slug);

});

Groups of Routes

If a set of routes have common paths they can be grouped to easily maintain them:

<?php

$router = new \Phalcon\Mvc\Router();

//Create a group with a common module and controller
$blog = new \Phalcon\Mvc\Router\Group(array(

'module' => 'blog',
'controller' => 'index'

));

//All the routes start with /blog
$blog->setPrefix('/blog');

//Add a route to the group
$blog->add('/save', array(

'action' => 'save'
));

//Add another route to the group
$blog->add('/edit/{id}', array(

'action' => 'edit'
));

//This route maps to a controller different than the default
$blog->add('/blog', array(

'controller' => 'blog',
'action' => 'index'

));

//Add the group to the router
$router->mount($blog);

You can move groups of routes to separate files in order to improve the organization and code reusing in the application:

<?php

class BlogRoutes extends Phalcon\Mvc\Router\Group
{

public function initialize()
{

2.20. Routing 267



Phalcon PHP Framework Documentation, Release 1.3.0

//Default paths
$this->setPaths(array(

'module' => 'blog',
'namespace' => 'Blog\Controllers'

));

//All the routes start with /blog
$this->setPrefix('/blog');

//Add a route to the group
$this->add('/save', array(

'action' => 'save'
));

//Add another route to the group
$this->add('/edit/{id}', array(

'action' => 'edit'
));

//This route maps to a controller different than the default
$this->add('/blog', array(

'controller' => 'blog',
'action' => 'index'

));

}
}

Then mount the group in the router:

<?php

//Add the group to the router
$router->mount(new BlogRoutes());

2.20.2 Matching Routes

A valid URI must be passed to Router in order to let it checks the route that matches that given URI. By default, the
routing URI is taken from the $_GET[’_url’] variable that is created by the rewrite engine module. A couple of rewrite
rules that work very well with Phalcon are:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ index.php?_url=/$1 [QSA,L]

The following example shows how to use this component in stand-alone mode:

<?php

// Creating a router
$router = new \Phalcon\Mvc\Router();

// Define routes here if any
// ...

// Taking URI from $_GET["_url"]

268 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$router->handle();

// or Setting the URI value directly
$router->handle("/employees/edit/17");

// Getting the processed controller
echo $router->getControllerName();

// Getting the processed action
echo $router->getActionName();

//Get the matched route
$route = $router->getMatchedRoute();

2.20.3 Naming Routes

Each route that is added to the router is stored internally as an object Phalcon\Mvc\Router\Route. That class encapsu-
lates all the details of each route. For instance, we can give a name to a path to identify it uniquely in our application.
This is especially useful if you want to create URLs from it.

<?php

$route = $router->add("/posts/{year}/{title}", "Posts::show");

$route->setName("show-posts");

//or just

$router->add("/posts/{year}/{title}", "Posts::show")->setName("show-posts");

Then, using for example the component Phalcon\Mvc\Url we can build routes from its name:

<?php

// returns /posts/2012/phalcon-1-0-released
echo $url->get(array(

"for" => "show-posts",
"year" => "2012",
"title" => "phalcon-1-0-released"

));

2.20.4 Usage Examples

The following are examples of custom routes:

<?php

// matches "/system/admin/a/edit/7001"
$router->add(

"/system/:controller/a/:action/:params",
array(

"controller" => 1,
"action" => 2,
"params" => 3

)
);

2.20. Routing 269



Phalcon PHP Framework Documentation, Release 1.3.0

// matches "/es/news"
$router->add(

"/([a-z]{2})/:controller",
array(

"controller" => 2,
"action" => "index",
"language" => 1

)
);

// matches "/es/news"
$router->add(

"/{language:[a-z]{2}}/:controller",
array(

"controller" => 2,
"action" => "index"

)
);

// matches "/admin/posts/edit/100"
$router->add(

"/admin/:controller/:action/:int",
array(

"controller" => 1,
"action" => 2,
"id" => 3

)
);

// matches "/posts/2010/02/some-cool-content"
$router->add(

"/posts/([0-9]{4})/([0-9]{2})/([a-z\-]+)",
array(

"controller" => "posts",
"action" => "show",
"year" => 1,
"month" => 2,
"title" => 4

)
);

// matches "/manual/en/translate.adapter.html"
$router->add(

"/manual/([a-z]{2})/([a-z\.]+)\.html",
array(

"controller" => "manual",
"action" => "show",
"language" => 1,
"file" => 2

)
);

// matches /feed/fr/le-robots-hot-news.atom
$router->add(

"/feed/{lang:[a-z]+}/{blog:[a-z\-]+}\.{type:[a-z\-]+}",
"Feed::get"

);

270 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

// matches /api/v1/users/peter.json
$router->add('/api/(v1|v2)/{method:[a-z]+}/{param:[a-z]+}\.(json|xml)',

array(
'controller' => 'api',
'version' => 1,
'format' => 4

)
);

Beware of characters allowed in regular expression for controllers and namespaces. As these become class
names and in turn they’re passed through the file system could be used by attackers to read unauthorized
files. A safe regular expression is: /([a-zA-Z0-9_-]+)

2.20.5 Default Behavior

Phalcon\Mvc\Router has a default behavior providing a very simple routing that always expects a URI that matches
the following pattern: /:controller/:action/:params

For example, for a URL like this http://phalconphp.com/documentation/show/about.html, this router will translate it
as follows:

Controller documentation
Action show
Parameter about.html

If you don’t want use this routes as default in your application, you must create the router passing false as parameter:

<?php

// Create the router without default routes
$router = new \Phalcon\Mvc\Router(false);

2.20.6 Setting the default route

When your application is accessed without any route, the ‘/’ route is used to determine what paths must be used to
show the initial page in your website/application:

<?php

$router->add("/", array(
'controller' => 'index',
'action' => 'index'

));

2.20.7 Not Found Paths

If none of the routes specified in the router are matched, you can define a group of paths to be used in this scenario:

<?php

//Set 404 paths
$router->notFound(array(

"controller" => "index",
"action" => "route404"

));

2.20. Routing 271



Phalcon PHP Framework Documentation, Release 1.3.0

2.20.8 Setting default paths

It’s possible to define default values for common paths like module, controller or action. When a route is missing any
of those paths they can be automatically filled by the router:

<?php

//Setting a specific default
$router->setDefaultModule('backend');
$router->setDefaultNamespace('Backend\Controllers');
$router->setDefaultController('index');
$router->setDefaultAction('index');

//Using an array
$router->setDefaults(array(

'controller' => 'index',
'action' => 'index'

));

2.20.9 Dealing with extra/trailing slashes

Sometimes a route could be accessed with extra/trailing slashes and the end of the route, those extra slashes would
lead to produce a not-found status in the dispatcher. You can set up the router to automatically remove the slashes
from the end of handled route:

<?php

$router = new \Phalcon\Mvc\Router();

//Remove trailing slashes automatically
$router->removeExtraSlashes(true);

Or, you can modify specific routes to optionally accept trailing slashes:

<?php

$router->add(
'/{language:[a-z]{2}}/:controller[/]{0,1}',
array(

'controller' => 2,
'action' => 'index'

)
);

2.20.10 Match Callbacks

Sometimes, routes must be matched if they meet specific conditions, you can add arbitrary conditions to routes using
the ‘beforeMatch’ callback, if this function return false, the route will be treaded as non-matched:

<?php

$router->add('/login', array(
'module' => 'admin',
'controller' => 'session'

))->beforeMatch(function($uri, $route) {
//Check if the request was made with Ajax

272 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

if ($_SERVER['X_REQUESTED_WITH'] == 'xmlhttprequest') {
return false;

}
return true;

});

You can re-use these extra conditions in classes:

<?php

class AjaxFilter
{

public function check()
{

return $_SERVER['X_REQUESTED_WITH'] == 'xmlhttprequest';
}

}

And use this class instead of the anonymous function:

<?php

$router->add('/get/info/{id}', array(
'controller' => 'products',
'action' => 'info'

))->beforeMatch(array(new AjaxFilter(), 'check'));

2.20.11 Hostname Constraints

The router allow to set hostname contraints, this means that specific routes or a group of routes can be restricted to
only match if the route also meets the hostname constraint:

<?php

$router->add('/login', array(
'module' => 'admin',
'controller' => 'session',
'action' => 'login'

))->setHostName('admin.company.com');

Hostname can also be regular expressions:

<?php

$router->add('/login', array(
'module' => 'admin',
'controller' => 'session',
'action' => 'login'

))->setHostName('([a-z+]).company.com');

In groups of routes you can set up a hostname constraint that apply for every route in the group:

<?php

//Create a group with a common module and controller
$blog = new \Phalcon\Mvc\Router\Group(array(

'module' => 'blog',
'controller' => 'posts'

2.20. Routing 273



Phalcon PHP Framework Documentation, Release 1.3.0

));

//Hostname restriction
$blog->setHostName('blog.mycompany.com');

//All the routes start with /blog
$blog->setPrefix('/blog');

//Default route
$blog->add('/', array(

'action' => 'index'
));

//Add a route to the group
$blog->add('/save', array(

'action' => 'save'
));

//Add another route to the group
$blog->add('/edit/{id}', array(

'action' => 'edit'
));

//Add the group to the router
$router->mount($blog);

2.20.12 URI Sources

By default the URI information is obtained from the $_GET[’_url’] variable, this is passed by the Rewrite-Engine to
Phalcon, you can also use $_SERVER[’REQUEST_URI’] if required:

<?php

$router->setUriSource(Router::URI_SOURCE_GET_URL); // use $_GET['_url'] (default)
$router->setUriSource(Router::URI_SOURCE_SERVER_REQUEST_URI); // use $_SERVER['REQUEST_URI'] (default)

Or you can manually pass a URI to the ‘handle’ method:

<?php

$router->handle('/some/route/to/handle');

2.20.13 Testing your routes

Since this component has no dependencies, you can create a file as shown below to test your routes:

<?php

//These routes simulate real URIs
$testRoutes = array(

'/',
'/index',
'/index/index',
'/index/test',
'/products',
'/products/index/',

274 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

'/products/show/101',
);

$router = new Phalcon\Mvc\Router();

//Add here your custom routes
//...

//Testing each route
foreach ($testRoutes as $testRoute) {

//Handle the route
$router->handle($testRoute);

echo 'Testing ', $testRoute, '<br>';

//Check if some route was matched
if ($router->wasMatched()) {

echo 'Controller: ', $router->getControllerName(), '<br>';
echo 'Action: ', $router->getActionName(), '<br>';

} else {
echo 'The route wasn\'t matched by any route<br>';

}
echo '<br>';

}

2.20.14 Annotations Router

This component provides a variant that’s integrated with the annotations service. Using this strategy you can write the
routes directly in the controllers instead of adding them in the service registration:

<?php

$di['router'] = function() {

//Use the annotations router
$router = new \Phalcon\Mvc\Router\Annotations(false);

//Read the annotations from ProductsController if the uri starts with /api/products
$router->addResource('Products', '/api/products');

return $router;
};

The annotations can be defined in the following way:

<?php

/**
* @RoutePrefix("/api/products")

*/
class ProductsController
{

/**
* @Get("/")

2.20. Routing 275



Phalcon PHP Framework Documentation, Release 1.3.0

*/
public function indexAction()
{

}

/**
* @Get("/edit/{id:[0-9]+}", name="edit-robot")

*/
public function editAction($id)
{

}

/**
* @Route("/save", methods={"POST", "PUT"}, name="save-robot")

*/
public function saveAction()
{

}

/**
* @Route("/delete/{id:[0-9]+}", methods="DELETE",

* conversors={id="MyConversors::checkId"})

*/
public function deleteAction($id)
{

}

public function infoAction($id)
{

}

}

Only methods marked with valid annotations are used as routes. List of annotations supported:

Name Description Usage
RoutePre-
fix

A prefix to be prepended to each route uri. This annotation must be
placed at the class’ docblock

@RoutePre-
fix(“/api/products”)

Route This annotation marks a method as a route. This annotation must be
placed in a method docblock

@Route(“/api/products/show”)

Get This annotation marks a method as a route restricting the HTTP method
to GET

@Get(“/api/products/search”)

Post This annotation marks a method as a route restricting the HTTP method
to POST

@Post(“/api/products/save”)

Put This annotation marks a method as a route restricting the HTTP method
to PUT

@Put(“/api/products/save”)

Delete This annotation marks a method as a route restricting the HTTP method
to DELETE

@Delete(“/api/products/delete/{id}”)

Options This annotation marks a method as a route restricting the HTTP method
to OPTIONS

@Op-
tion(“/api/products/info”)

For annotations that add routes, the following parameters are supported:

276 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Name Description Usage
meth-
ods

Define one or more HTTP method that route
must meet with

@Route(“/api/products”, methods={“GET”,
“POST”})

name Define a name for the route @Route(“/api/products”, name=”get-products”)
paths An array of paths like the one passed to

Phalcon\Mvc\Router::add
@Route(“/posts/{id}/{slug}”,
paths={module=”backend”})

conver-
sors

A hash of conversors to be applied to the
parameters

@Route(“/posts/{id}/{slug}”,
conversors={id=”MyConversor::getId”})

If routes map to controllers in modules is better use the addModuleResource method:

<?php

$di['router'] = function() {

//Use the annotations router
$router = new \Phalcon\Mvc\Router\Annotations(false);

//Read the annotations from Backend\Controllers\ProductsController if the uri starts with /api/products
$router->addModuleResource('backend', 'Products', '/api/products');

return $router;
};

2.20.15 Registering Router instance

You can register router during service registration with Phalcon depedency injector to make it available inside con-
troller. You need to add code below in your bootstrap file (for example index.php or app/config/services.php if you
use Phalcon Developer Tools)

<?php

/**
* add routing capabilities

*/
$di->set('router', function(){

require __DIR__.'/../app/config/routes.php';
return $router;

});

You need to create app/config/routes.php and add router initialization code, for example:

<?php

$router = new \Phalcon\Mvc\Router();

$router->add("/login", array(
'controller' => 'login',
'action' => 'index',

));

$router->add("/products/:action", array(
'controller' => 'products',
'action' => 1,

));

return $router;

2.20. Routing 277

http://phalconphp.com/en/download/tools


Phalcon PHP Framework Documentation, Release 1.3.0

2.20.16 Implementing your own Router

The Phalcon\Mvc\RouterInterface interface must be implemented to create your own router replacing the one provided
by Phalcon.

2.21 Dispatching Controllers

Phalcon\Mvc\Dispatcher is the component responsible for instantiating controllers and executing the required actions
on them in an MVC application. Understanding its operation and capabilities helps us get more out of the services
provided by the framework.

2.21.1 The Dispatch Loop

This is an important process that has much to do with the MVC flow itself, especially with the controller part. The work
occurs within the controller dispatcher. The controller files are read, loaded, and instantiated. Then the required actions
are executed. If an action forwards the flow to another controller/action, the controller dispatcher starts again. To better
illustrate this, the following example shows approximately the process performed within Phalcon\Mvc\Dispatcher:

<?php

//Dispatch loop
while (!$finished) {

$finished = true;

$controllerClass = $controllerName . "Controller";

//Instantiating the controller class via autoloaders
$controller = new $controllerClass();

// Execute the action
call_user_func_array(array($controller, $actionName . "Action"), $params);

// '$finished' should be reloaded to check if the flow
// was forwarded to another controller
$finished = true;

}

The code above lacks validations, filters and additional checks, but it demonstrates the normal flow of operation in the
dispatcher.

Dispatch Loop Events

Phalcon\Mvc\Dispatcher is able to send events to an EventsManager if it is present. Events are triggered using the
type “dispatch”. Some events when returning boolean false could stop the active operation. The following events are
supported:

278 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Event
Name

Triggered Can stop
opera-
tion?

before-
Dis-
patchLoop

Triggered before entering in the dispatch loop. At this point the dispatcher
don’t know if the controller or the actions to be executed exist. The
Dispatcher only knows the information passed by the Router.

Yes Listeners

before-
Dispatch

Triggered after entering in the dispatch loop. At this point the dispatcher
don’t know if the controller or the actions to be executed exist. The
Dispatcher only knows the information passed by the Router.

Yes Listeners

beforeEx-
ecuteR-
oute

Triggered before executing the controller/action method. At this point the
dispatcher has been initialized the controller and know if the action exist.

Yes Listen-
ers/Controllers

initialize Allow to globally initialize the controller in the request No Con-
trollers

afterExe-
cuteRoute

Triggered after executing the controller/action method. As operation
cannot be stopped, only use this event to make clean up after execute the
action

No Listen-
ers/Controllers

be-
foreNot-
FoundAc-
tion

Triggered when the action was not found in the controller Yes Listeners

beforeEx-
ception

Triggered before the dispatcher throws any exception Yes Listeners

afterDis-
patch

Triggered after executing the controller/action method. As operation
cannot be stopped, only use this event to make clean up after execute the
action

Yes Listeners

afterDis-
patchLoop

Triggered after exiting the dispatch loop No Listeners

The INVO tutorial shows how to take advantage of dispatching events implementing a security filter with Acl

The following example demonstrates how to attach listeners to this component:

<?php

use Phalcon\Mvc\Dispatcher as MvcDispatcher,
Phalcon\Events\Manager as EventsManager;

$di->set('dispatcher', function(){

//Create an event manager
$eventsManager = new EventsManager();

//Attach a listener for type "dispatch"
$eventsManager->attach("dispatch", function($event, $dispatcher) {

//...
});

$dispatcher = new MvcDispatcher();

//Bind the eventsManager to the view component
$dispatcher->setEventsManager($eventsManager);

return $dispatcher;

}, true);

2.21. Dispatching Controllers 279



Phalcon PHP Framework Documentation, Release 1.3.0

An instantiated controller automatically acts as a listener for dispatch events, so you can implement methods as call-
backs:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function beforeExecuteRoute($dispatcher)
{

// Executed before every found action
}

public function afterExecuteRoute($dispatcher)
{

// Executed after every found action
}

}

2.21.2 Forwarding to other actions

The dispatch loop allows us to forward the execution flow to another controller/action. This is very useful to check if
the user can access to certain options, redirect users to other screens or simply reuse code.

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function saveAction($year, $postTitle)
{

// .. store some product and forward the user

// Forward flow to the index action
$this->dispatcher->forward(array(

"controller" => "post",
"action" => "index"

));
}

}

Keep in mind that making a “forward” is not the same as making an HTTP redirect. Although they apparently got the
same result. The “forward” doesn’t reload the current page, all the redirection occurs in a single request, while the
HTTP redirect needs two requests to complete the process.

More forwarding examples:

<?php

// Forward flow to another action in the current controller

280 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$this->dispatcher->forward(array(
"action" => "search"

));

// Forward flow to another action in the current controller
// passing parameters
$this->dispatcher->forward(array(

"action" => "search",
"params" => array(1, 2, 3)

));

A forward action accepts the following parameters:

Parameter Triggered
controller A valid controller name to forward to.
action A valid action name to forward to.
params An array of parameters for the action
namespace A valid namespace name where the controller is part of

2.21.3 Preparing Parameters

Thanks to the hooks points provided by Phalcon\Mvc\Dispatcher you can easily adapt your application to any URL
schema:

For example, you want your URLs look like: http://example.com/controller/key1/value1/key2/value

Parameters by default are passed as they come in the URL to actions, you can transform them to the desired schema:

<?php

use Phalcon\Dispatcher,
Phalcon\Mvc\Dispatcher as MvcDispatcher,
Phalcon\Events\Manager as EventsManager;

$di->set('dispatcher', function() {

//Create an EventsManager
$eventsManager = new EventsManager();

//Attach a listener
$eventsManager->attach("dispatch:beforeDispatchLoop", function($event, $dispatcher) {

$keyParams = array();
$params = $dispatcher->getParams();

//Use odd parameters as keys and even as values
foreach ($params as $number => $value) {

if ($number & 1) {
$keyParams[$params[$number - 1]] = $value;

}
}

//Override parameters
$dispatcher->setParams($keyParams);

});

$dispatcher = new MvcDispatcher();
$dispatcher->setEventsManager($eventsManager);

2.21. Dispatching Controllers 281

http://example.com/controller/key1/value1/key2/value


Phalcon PHP Framework Documentation, Release 1.3.0

return $dispatcher;
});

If the desired schema is: http://example.com/controller/key1:value1/key2:value, the following code is required:

<?php

use Phalcon\Dispatcher,
Phalcon\Mvc\Dispatcher as MvcDispatcher,
Phalcon\Events\Manager as EventsManager;

$di->set('dispatcher', function() {

//Create an EventsManager
$eventsManager = new EventsManager();

//Attach a listener
$eventsManager->attach("dispatch:beforeDispatchLoop", function($event, $dispatcher) {

$keyParams = array();
$params = $dispatcher->getParams();

//Explode each parameter as key,value pairs
foreach ($params as $number => $value) {

$parts = explode(':', $value);
$keyParams[$parts[0]] = $parts[1];

}

//Override parameters
$dispatcher->setParams($keyParams);

});

$dispatcher = new MvcDispatcher();
$dispatcher->setEventsManager($eventsManager);

return $dispatcher;
});

2.21.4 Getting Parameters

When a route provides named parameters you can receive them in a controller, a view or any other component that
extends Phalcon\DI\Injectable.

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function saveAction()
{

// Get the post's title passed in the URL as parameter

282 Chapter 2. Table of Contents

http://example.com/controller/key1:value1/key2:value


Phalcon PHP Framework Documentation, Release 1.3.0

// or prepared in an event
$title = $this->dispatcher->getParam("title");

// Get the post's year passed in the URL as parameter
// or prepared in an event also filtering it
$year = $this->dispatcher->getParam("year", "int");

}

}

2.21.5 Preparing actions

You can also define an arbitrary schema for actions before be dispatched.

Camelize action names

If the original URL is: http://example.com/admin/products/show-latest-products, and for example you want to
camelize ‘show-latest-products’ to ‘showLatestProducts’, the following code is required:

<?php

use Phalcon\Text,
Phalcon\Mvc\Dispatcher as MvcDispatcher,
Phalcon\Events\Manager as EventsManager;

$di->set('dispatcher', function() {

//Create an EventsManager
$eventsManager = new EventsManager();

//Camelize actions
$eventsManager->attach("dispatch:beforeDispatchLoop", function($event, $dispatcher) {

$dispatcher->setActionName(Text::camelize($dispatcher->getActionName()));
});

$dispatcher = new MvcDispatcher();
$dispatcher->setEventsManager($eventsManager);

return $dispatcher;
});

Remove legacy extensions

If the original URL always contains a ‘.php’ extension:

http://example.com/admin/products/show-latest-products.php http://example.com/admin/products/index.php

You can remove it before dispatch the controller/action combination:

<?php

use Phalcon\Mvc\Dispatcher as MvcDispatcher,
Phalcon\Events\Manager as EventsManager;

$di->set('dispatcher', function() {

2.21. Dispatching Controllers 283

http://example.com/admin/products/show-latest-products
http://example.com/admin/products/show-latest-products.php
http://example.com/admin/products/index.php


Phalcon PHP Framework Documentation, Release 1.3.0

//Create an EventsManager
$eventsManager = new EventsManager();

//Remove extension before dispatch
$eventsManager->attach("dispatch:beforeDispatchLoop", function($event, $dispatcher) {

//Remove extension
$action = preg_replace('/\.php$/', '', $dispatcher->getActionName());

//Override action
$dispatcher->setActionName($action);

});

$dispatcher = new MvcDispatcher();
$dispatcher->setEventsManager($eventsManager);

return $dispatcher;
});

Inject model instances

In this example, the developer wants to inspect the parameters that an action will receive in order to dynamically inject
model instances.

The controller looks like:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

/**
* Shows posts

*
* @param \Posts $post

*/
public function showAction(Posts $post)
{

$this->view->post = $post;
}

}

Method ‘showAction’ receives an instance of the model Posts, the developer could inspect this before dispatch the
action preparing the parameter accordingly:

<?php

use Phalcon\Text,
Phalcon\Mvc\Dispatcher as MvcDispatcher,
Phalcon\Events\Manager as EventsManager;

$di->set('dispatcher', function() {

//Create an EventsManager
$eventsManager = new EventsManager();

$eventsManager->attach("dispatch:beforeDispatchLoop", function($event, $dispatcher) {

284 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Possible controller class name
$controllerName = Text::camelize($dispatcher->getControllerName()) . 'Controller';

//Possible method name
$actionName = $dispatcher->getActionName() . 'Action';

try {

//Get the reflection for the method to be executed
$reflection = new \ReflectionMethod($controllerName, $actionName);

//Check parameters
foreach ($reflection->getParameters() as $parameter) {

//Get the expected model name
$className = $parameter->getClass()->name;

//Check if the parameter expects a model instance
if (is_subclass_of($className, 'Phalcon\Mvc\Model')) {

$model = $className::findFirstById($dispatcher->getParams()[0]);

//Override the parameters by the model instance
$dispatcher->setParams(array($model));

}
}

} catch (\Exception $e) {
//An exception has ocurred, maybe the class or action does not exist?

}

});

$dispatcher = new MvcDispatcher();
$dispatcher->setEventsManager($eventsManager);

return $dispatcher;
});

The above example has been simplified for academic purposes. A developer can improve it to inject any kind of
dependency or model in actions before be executed.

2.21.6 Handling Not-Found Exceptions

Using the EventsManager it’s possible to insert a hook point before the dispatcher throws an exception when the
controller/action combination wasn’t found:

<?php

use Phalcon\Dispatcher,
Phalcon\Mvc\Dispatcher as MvcDispatcher,
Phalcon\Events\Manager as EventsManager,
Phalcon\Mvc\Dispatcher\Exception as DispatchException;

$di->set('dispatcher', function() {

//Create an EventsManager

2.21. Dispatching Controllers 285



Phalcon PHP Framework Documentation, Release 1.3.0

$eventsManager = new EventsManager();

//Attach a listener
$eventsManager->attach("dispatch:beforeException", function($event, $dispatcher, $exception) {

//Handle 404 exceptions
if ($exception instanceof DispatchException) {

$dispatcher->forward(array(
'controller' => 'index',
'action' => 'show404'

));
return false;

}

//Handle other exceptions
$dispatcher->forward(array(

'controller' => 'index',
'action' => 'show503'

));

return false;
});

$dispatcher = new MvcDispatcher();

//Bind the EventsManager to the dispatcher
$dispatcher->setEventsManager($eventsManager);

return $dispatcher;

}, true);

Of course, this method can be moved onto independent plugin classes, allowing more than one class take actions when
an exception is produced in the dispatch loop:

<?php

use Phalcon\Mvc\Dispatcher,
Phalcon\Events\Event,
Phalcon\Mvc\Dispatcher\Exception as DispatchException;

class ExceptionsPlugin
{

public function beforeException(Event $event, Dispatcher $dispatcher, $exception)
{

//Handle 404 exceptions
if ($exception instanceof DispatchException) {

$dispatcher->forward(array(
'controller' => 'index',
'action' => 'show404'

));
return false;

}

//Handle other exceptions
$dispatcher->forward(array(

'controller' => 'index',

286 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

'action' => 'show503'
));

return false;
}

}

Only exceptions produced by the dispatcher and exceptions produced in the executed action are notified
in the ‘beforeException’ events. Exceptions produced in listeners or controller events are redirected to the
latest try/catch.

2.21.7 Implementing your own Dispatcher

The Phalcon\Mvc\DispatcherInterface interface must be implemented to create your own dispatcher replacing the one
provided by Phalcon.

2.22 Micro Applications

With Phalcon you can create “Micro-Framework like” applications. By doing this, you only need to write a minimal
amount of code to create a PHP application. Micro applications are suitable to implement small applications, APIs
and prototypes in a practical way.

<?php

$app = new Phalcon\Mvc\Micro();

$app->get('/say/welcome/{name}', function ($name) {
echo "<h1>Welcome $name!</h1>";

});

$app->handle();

2.22.1 Creating a Micro Application

Phalcon\Mvc\Micro is the class responsible for implementing a micro application.

<?php

$app = new Phalcon\Mvc\Micro();

2.22.2 Defining routes

After instantiating the object, you will need to add some routes. Phalcon\Mvc\Router manages routing internally.
Routes must always start with /. A HTTP method constraint is optionally required when defining routes, so as to
instruct the router to match only if the request also matches the HTTP methods. The following example shows how to
define a route for the method GET:

<?php

$app->get('/say/hello/{name}', function ($name) {
echo "<h1>Hello! $name</h1>";

});

2.22. Micro Applications 287



Phalcon PHP Framework Documentation, Release 1.3.0

The “get” method indicates that the associated HTTP method is GET. The route /say/hello/{name} also has a parameter
{$name} that is passed directly to the route handler (the anonymous function). Handlers are executed when a route
is matched. A handler could be any callable item in the PHP userland. The following example shows how to define
different types of handlers:

<?php

// With a function
function say_hello($name) {

echo "<h1>Hello! $name</h1>";
}

$app->get('/say/hello/{name}', "say_hello");

// With a static method
$app->get('/say/hello/{name}', "SomeClass::someSayMethod");

// With a method in an object
$myController = new MyController();
$app->get('/say/hello/{name}', array($myController, "someAction"));

//Anonymous function
$app->get('/say/hello/{name}', function ($name) {

echo "<h1>Hello! $name</h1>";
});

Phalcon\Mvc\Micro provides a set of methods to define the HTTP method (or methods) which the route is constrained
for:

<?php

//Matches if the HTTP method is GET
$app->get('/api/products', "get_products");

//Matches if the HTTP method is POST
$app->post('/api/products/add', "add_product");

//Matches if the HTTP method is PUT
$app->put('/api/products/update/{id}', "update_product");

//Matches if the HTTP method is DELETE
$app->delete('/api/products/remove/{id}', "delete_product");

//Matches if the HTTP method is OPTIONS
$app->options('/api/products/info/{id}', "info_product");

//Matches if the HTTP method is PATCH
$app->patch('/api/products/update/{id}', "info_product");

//Matches if the HTTP method is GET or POST
$app->map('/repos/store/refs',"action_product")->via(array('GET', 'POST'));

Routes with Parameters

Defining parameters in routes is very easy as demonstrated above. The name of the parameter has to be enclosed
in brackets. Parameter formatting is also available using regular expressions to ensure consistency of data. This is
demonstrated in the example below:

288 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//This route have two parameters and each of them have a format
$app->get('/posts/{year:[0-9]+}/{title:[a-zA-Z\-]+}', function ($year, $title) {

echo "<h1>Title: $title</h1>";
echo "<h2>Year: $year</h2>";

});

Starting Route

Normally, the starting route in an application is the route /, and it will more frequent to be accessed by the method
GET. This scenario is coded as follows:

<?php

//This is the start route
$app->get('/', function () {

echo "<h1>Welcome!</h1>";
});

Rewrite Rules

The following rules can be used together with Apache to rewrite the URis:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ index.php?_url=/$1 [QSA,L]

</IfModule>

2.22.3 Working with Responses

You are free to produce any kind of response in a handler: directly make an output, use a template engine, include a
view, return a json, etc.:

<?php

//Direct output
$app->get('/say/hello', function () {

echo "<h1>Hello! $name</h1>";
});

//Requiring another file
$app->get('/show/results', function () {

require 'views/results.php';
});

//Returning a JSON
$app->get('/get/some-json', function () {

echo json_encode(array("some", "important", "data"));
});

In addition to that, you have access to the service “response”, with which you can manipulate better the response:

2.22. Micro Applications 289



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$app->get('/show/data', function () use ($app) {

//Set the Content-Type header
$app->response->setContentType('text/plain')->sendHeaders();

//Print a file
readfile("data.txt");

});

Or create a response object and return it from the handler:

<?php

$app->get('/show/data', function () {

//Create a response
$response = new Phalcon\Http\Response();

//Set the Content-Type header
$response->setContentType('text/plain');

//Pass the content of a file
$response->setContent(file_get_contents("data.txt"));

//Return the response
return $response;

});

2.22.4 Making redirections

Redirections could be performed to forward the execution flow to another route:

<?php

//This route makes a redirection to another route
$app->post('/old/welcome', function () use ($app) {

$app->response->redirect("new/welcome")->sendHeaders();
});

$app->post('/new/welcome', function () use ($app) {
echo 'This is the new Welcome';

});

2.22.5 Generating URLs for Routes

Phalcon\Mvc\Url can be used to produce URLs based on the defined routes. You need to set up a name for the route;
by this way the “url” service can produce the corresponding URL:

<?php

//Set a route with the name "show-post"
$app->get('/blog/{year}/{title}', function ($year, $title) use ($app) {

290 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//.. show the post here

})->setName('show-post');

//produce an URL somewhere
$app->get('/', function() use ($app) {

echo '<a href="', $app->url->get(array(
'for' => 'show-post',
'title' => 'php-is-a-great-framework',
'year' => 2012

)), '">Show the post</a>';

});

2.22.6 Interacting with the Dependency Injector

In the micro application, a Phalcon\DI\FactoryDefault services container is created implicitly; additionally you can
create outside the application a container to manipulate its services:

<?php

use Phalcon\DI\FactoryDefault,
Phalcon\Mvc\Micro,
Phalcon\Config\Adapter\Ini as IniConfig;

$di = new FactoryDefault();

$di->set('config', function() {
return new IniConfig("config.ini");

});

$app = new Micro();

$app->setDI($di);

$app->get('/', function () use ($app) {
//Read a setting from the config
echo $app->config->app_name;

});

$app->post('/contact', function () use ($app) {
$app->flash->success('Yes!, the contact was made!');

});

The array-syntax is allowed to easily set/get services in the internal services container:

<?php

use Phalcon\Mvc\Micro,
Phalcon\Db\Adapter\Pdo\Mysql as MysqlAdapter;

$app = new Micro();

//Setup the database service
$app['db'] = function() {

return new MysqlAdapter(array(

2.22. Micro Applications 291



Phalcon PHP Framework Documentation, Release 1.3.0

"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "test_db"

));
};

$app->get('/blog', function () use ($app) {
$news = $app['db']->query('SELECT * FROM news');
foreach ($news as $new) {

echo $new->title;
}

});

2.22.7 Not-Found Handler

When an user tries to access a route that is not defined, the micro application will try to execute the “Not-Found”
handler. An example of that behavior is below:

<?php

$app->notFound(function () use ($app) {
$app->response->setStatusCode(404, "Not Found")->sendHeaders();
echo 'This is crazy, but this page was not found!';

});

2.22.8 Models in Micro Applications

Models can be used transparently in Micro Applications, only is required an autoloader to load models:

<?php

$loader = new \Phalcon\Loader();

$loader->registerDirs(array(
__DIR__ . '/models/'

))->register();

$app = new \Phalcon\Mvc\Micro();

$app->get('/products/find', function(){

foreach (Products::find() as $product) {
echo $product->name, '<br>';

}

});

$app->handle();

2.22.9 Micro Application Events

Phalcon\Mvc\Micro is able to send events to the EventsManager (if it is present). Events are triggered using the type
“micro”. The following events are supported:

292 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Event Name Triggered Can stop
operation?

beforeHan-
dleRoute

The main method is just called, at this point the application doesn’t know if
there is some matched route

Yes

beforeExe-
cuteRoute

A route has been matched and it contains a valid handler, at this point the
handler has not been executed

Yes

afterExe-
cuteRoute

Triggered after running the handler No

beforeNot-
Found

Triggered when any of the defined routes match the requested URI Yes

afterHandleR-
oute

Triggered after completing the whole process in a successful way Yes

In the following example, we explain how to control the application security using events:

<?php

use Phalcon\Mvc\Micro,
Phalcon\Events\Manager as EventsManager;

//Create a events manager
$eventManager = new EventsManager();

//Listen all the application events
$eventManager->attach('micro', function($event, $app) {

if ($event->getType() == 'beforeExecuteRoute') {
if ($app->session->get('auth') == false) {

$app->flashSession->error("The user isn't authenticated");
$app->response->redirect("/")->sendHeaders();

//Return (false) stop the operation
return false;

}
}

});

$app = new Micro();

//Bind the events manager to the app
$app->setEventsManager($eventManager);

2.22.10 Middleware events

In addition to the events manager, events can be added using the methods ‘before’, ‘after’ and ‘finish’:

<?php

$app = new Phalcon\Mvc\Micro();

//Executed before every route is executed
//Return false cancels the route execution
$app->before(function() use ($app) {

if ($app['session']->get('auth') == false) {
return false;

2.22. Micro Applications 293



Phalcon PHP Framework Documentation, Release 1.3.0

}
return true;

});

$app->map('/api/robots', function(){
return array(

'status' => 'OK'
);

});

$app->after(function() use ($app) {
//This is executed after the route was executed
echo json_encode($app->getReturnedValue());

});

$app->finish(function() use ($app) {
//This is executed when the request has been served

});

You can call the methods several times to add more events of the same type:

<?php

$app->finish(function() use ($app) {
//First 'finish' middleware

});

$app->finish(function() use ($app) {
//Second 'finish' middleware

});

Code for middlewares can be reused using separate classes:

<?php

use Phalcon\Mvc\Micro\MiddlewareInterface;

/**
* CacheMiddleware

*
* Caches pages to reduce processing

*/
class CacheMiddleware implements MiddlewareInterface
{

public function call($application)
{

$cache = $application['cache'];
$router = $application['router'];

$key = preg_replace('/^[a-zA-Z0-9]/', '', $router->getRewriteUri());

//Check if the request is cached
if ($cache->exists($key)) {

echo $cache->get($key);
return false;

}

return true;

294 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

}
}

Then add the instance to the application:

<?php

$app->before(new CacheMiddleware());

The following middleware events are available:

Event
Name

Triggered Can stop
operation?

before Before executing the handler. It can be used to control the access to the
application

Yes

after Executed after the handler is executed. It can be used to prepare the
response

No

finish Executed after sending the response. It can be used to perform clean-up No

2.22.11 Using Controllers as Handlers

Medium applications using the Micro\MVC approach may require organize handlers in controllers. You can use
Phalcon\Mvc\Micro\Collection to group handlers that belongs to controllers:

<?php

use Phalcon\Mvc\Micro\Collection as MicroCollection;

$posts = new MicroCollection();

//Set the main handler. ie. a controller instance
$posts->setHandler(new PostsController());

//Set a common prefix for all routes
$posts->setPrefix('/posts');

//Use the method 'index' in PostsController
$posts->get('/', 'index');

//Use the method 'show' in PostsController
$posts->get('/show/{slug}', 'show');

$app->mount($posts);

The controller ‘PostsController’ might look like this:

<?php

class PostsController extends Phalcon\Mvc\Controller
{

public function index()
{

//...
}

public function show($slug)

2.22. Micro Applications 295



Phalcon PHP Framework Documentation, Release 1.3.0

{
//...

}
}

In the above example the controller is directly instantiated, Collection also have the ability to lazy-load controllers,
this option provide better performance loading controllers only if the related routes are matched:

<?php

$posts->setHandler('PostsController', true);
$posts->setHandler('Blog\Controllers\PostsController', true);

2.22.12 Returning Responses

Handlers may return raw responses using Phalcon\Http\Response or a component that implements the relevant inter-
face. When responses are returned by handlers they are automatically sent by the application.

<?php

use Phalcon\Mvc\Micro,
Phalcon\Http\Response;

$app = new Micro();

//Return a response
$app->get('/welcome/index', function() {

$response = new Response();

$response->setStatusCode(401, "Unauthorized");

$response->setContent("Access is not authorized");

return $response;
});

2.22.13 Rendering Views

Phalcon\Mvc\View\Simple can be used to render views, the following example shows how to do that:

<?php

$app = new Phalcon\Mvc\Micro();

$app['view'] = function() {
$view = new \Phalcon\Mvc\View();
$view->setViewsDir('app/views/');
return $view;

};

//Return a rendered view
$app->get('/products/show', function() use ($app) {

// Render app/views/products/show.phtml passing some variables
echo $app['view']->render('products/show', array(

296 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

'id' => 100,
'name' => 'Artichoke'

));

});

2.22.14 Related Sources

• Creating a Simple REST API is a tutorial that explains how to create a micro application to implement a RESTful
web service.

• Stickers Store is a very simple micro-application making use of the micro-mvc approach [Github].

2.23 Working with Namespaces

Namespaces can be used to avoid class name collisions; this means that if you have two controllers in an application
with the same name, a namespace can be used to differentiate them. Namespaces are also useful for creating bundles
or modules.

2.23.1 Setting up the framework

Using namespaces has some implications when loading the appropriate controller. To adjust the framework behavior
to namespaces is necessary to perform one or all of the following tasks:

Use an autoload strategy that takes into account the namespaces, for example with Phalcon\Loader:

<?php

$loader->registerNamespaces(
array(

'Store\Admin\Controllers' => "../bundles/admin/controllers/",
'Store\Admin\Models' => "../bundles/admin/models/",

)
);

Specify it in the routes as a separate parameter in the route’s paths:

<?php

$router->add(
'/admin/users/my-profile',
array(

'namespace' => 'Store\Admin',
'controller' => 'Users',
'action' => 'profile',

)
);

Passing it as part of the route:

<?php

$router->add(
'/:namespace/admin/users/my-profile',

2.23. Working with Namespaces 297

http://store.phalconphp.com
https://github.com/phalcon/store
http://php.net/manual/en/language.namespaces.php


Phalcon PHP Framework Documentation, Release 1.3.0

array(
'namespace' => 1,
'controller' => 'Users',
'action' => 'profile',

)
);

If you are only working with the same namespace for every controller in your application, then you can define a default
namespace in the Dispatcher, by doing this, you don’t need to specify a full class name in the router path:

<?php

//Registering a dispatcher
$di->set('dispatcher', function() {

$dispatcher = new \Phalcon\Mvc\Dispatcher();
$dispatcher->setDefaultNamespace('Store\Admin\Controllers');
return $dispatcher;

});

2.23.2 Controllers in Namespaces

The following example shows how to implement a controller that use namespaces:

<?php

namespace Store\Admin\Controllers;

class UsersController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function profileAction()
{

}

}

2.23.3 Models in Namespaces

Take the following into consideration when using models in namespaces:

<?php

namespace Store\Models;

class Robots extends \Phalcon\Mvc\Model
{

}

If models have relationships they must include the namespace too:

298 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

namespace Store\Models;

class Robots extends Phalcon\Mvc\Model
{

public function initialize()
{

$this->hasMany('id', 'Store\Models\Parts', 'robots_id', array(
'alias' => 'parts'

));
}

}

In PHQL you must write the statements including namespaces:

<?php

$phql = 'SELECT r.* FROM Store\Models\Robots r JOIN Store\Models\Parts p';

2.24 Events Manager

The purpose of this component is to intercept the execution of most of the components of the framework by creating
“hooks point”. These hook points allow the developer to obtain status information, manipulate data or change the flow
of execution during the process of a component.

2.24.1 Usage Example

In the following example, we use the EventsManager to listen for events produced in a MySQL connection managed
by Phalcon\Db. First, we need a listener object to do this. We created a class whose methods are the events we want
to listen:

<?php

class MyDbListener
{

public function afterConnect()
{

}

public function beforeQuery()
{

}

public function afterQuery()
{

}

}

2.24. Events Manager 299



Phalcon PHP Framework Documentation, Release 1.3.0

This new class can be as verbose as we need it to. The EventsManager will interface between the component and our
listener class, offering hook points based on the methods we defined in our listener class:

<?php

use Phalcon\Events\Manager as EventsManager,
Phalcon\Db\Adapter\Pdo\Mysql as DbAdapter;

$eventsManager = new EventsManager();

//Create a database listener
$dbListener = new MyDbListener();

//Listen all the database events
$eventsManager->attach('db', $dbListener);

$connection = new DbAdapter(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));

//Assign the eventsManager to the db adapter instance
$connection->setEventsManager($eventsManager);

//Send a SQL command to the database server
$connection->query("SELECT * FROM products p WHERE p.status = 1");

In order to log all the SQL statements executed by our application, we need to use the event “afterQuery”. The first
parameter passed to the event listener contains contextual information about the event that is running, the second is
the connection itself.

<?php

use Phalcon\Logger\Adapter\File as Logger;

class MyDbListener
{

protected $_logger;

public function __construct()
{

$this->_logger = new Logger("../apps/logs/db.log");
}

public function afterQuery($event, $connection)
{

$this->_logger->log($connection->getSQLStatement(), \Phalcon\Logger::INFO);
}

}

As part of this example, we will also implement the Phalcon\Db\Profiler to detect the SQL statements that are taking
longer to execute than expected:

<?php

300 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

use Phalcon\Db\Profiler,
Phalcon\Logger,
Phalcon\Logger\Adapter\File;

class MyDbListener
{

protected $_profiler;

protected $_logger;

/**
* Creates the profiler and starts the logging

*/
public function __construct()
{

$this->_profiler = new Profiler();
$this->_logger = new Logger("../apps/logs/db.log");

}

/**
* This is executed if the event triggered is 'beforeQuery'

*/
public function beforeQuery($event, $connection)
{

$this->_profiler->startProfile($connection->getSQLStatement());
}

/**
* This is executed if the event triggered is 'afterQuery'

*/
public function afterQuery($event, $connection)
{

$this->_logger->log($connection->getSQLStatement(), Logger::INFO);
$this->_profiler->stopProfile();

}

public function getProfiler()
{

return $this->_profiler;
}

}

The resulting profile data can be obtained from the listener:

<?php

//Send a SQL command to the database server
$connection->execute("SELECT * FROM products p WHERE p.status = 1");

foreach ($dbListener->getProfiler()->getProfiles() as $profile) {
echo "SQL Statement: ", $profile->getSQLStatement(), "\n";
echo "Start Time: ", $profile->getInitialTime(), "\n";
echo "Final Time: ", $profile->getFinalTime(), "\n";
echo "Total Elapsed Time: ", $profile->getTotalElapsedSeconds(), "\n";

}

In a similar manner we can register an lambda function to perform the task instead of a separate listener class (as seen

2.24. Events Manager 301



Phalcon PHP Framework Documentation, Release 1.3.0

above):

<?php

//Listen all the database events
$eventManager->attach('db', function($event, $connection) {

if ($event->getType() == 'afterQuery') {
echo $connection->getSQLStatement();

}
});

2.24.2 Creating components that trigger Events

You can create components in your application that trigger events to an EventsManager. As a consequence, there may
exist listeners that react to these events when generated. In the following example we’re creating a component called
“MyComponent”. This component is EventsManager aware; when its method “someTask” is executed it triggers two
events to any listener in the EventsManager:

<?php

use Phalcon\Events\EventsAwareInterface;

class MyComponent implements EventsAwareInterface
{

protected $_eventsManager;

public function setEventsManager($eventsManager)
{

$this->_eventsManager = $eventsManager;
}

public function getEventsManager()
{

return $this->_eventsManager;
}

public function someTask()
{

$this->_eventsManager->fire("my-component:beforeSomeTask", $this);

// do some task

$this->_eventsManager->fire("my-component:afterSomeTask", $this);
}

}

Note that events produced by this component are prefixed with “my-component”. This is a unique word that helps us
identify events that are generated from certain component. You can even generate events outside the component with
the same name. Now let’s create a listener to this component:

<?php

class SomeListener
{

302 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public function beforeSomeTask($event, $myComponent)
{

echo "Here, beforeSomeTask\n";
}

public function afterSomeTask($event, $myComponent)
{

echo "Here, afterSomeTask\n";
}

}

A listener is simply a class that implements any of all the events triggered by the component. Now let’s make every-
thing work together:

<?php

//Create an Events Manager
$eventsManager = new Phalcon\Events\Manager();

//Create the MyComponent instance
$myComponent = new MyComponent();

//Bind the eventsManager to the instance
$myComponent->setEventsManager($eventsManager);

//Attach the listener to the EventsManager
$eventsManager->attach('my-component', new SomeListener());

//Execute methods in the component
$myComponent->someTask();

As “someTask” is executed, the two methods in the listener will be executed, producing the following output:

Here, beforeSomeTask
Here, afterSomeTask

Additional data may also passed when triggering an event using the third parameter of “fire”:

<?php

$eventsManager->fire("my-component:afterSomeTask", $this, $extraData);

In a listener the third parameter also receives this data:

<?php

//Receiving the data in the third parameter
$eventManager->attach('my-component', function($event, $component, $data) {

print_r($data);
});

//Receiving the data from the event context
$eventManager->attach('my-component', function($event, $component) {

print_r($event->getData());
});

If a listener it is only interested in listening a specific type of event you can attach a listener directly:

2.24. Events Manager 303



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//The handler will only be executed if the event triggered is "beforeSomeTask"
$eventManager->attach('my-component:beforeSomeTask', function($event, $component) {

//...
});

2.24.3 Event Propagation/Cancelation

Many listeners may be added to the same event manager, this means that for the same type of event many listeners
can be notified. The listeners are notified in the order they were registered in the EventsManager. Some events are
cancelable, indicating that these may be stopped preventing other listeners are notified about the event:

<?php

$eventsManager->attach('db', function($event, $connection){

//We stop the event if it is cancelable
if ($event->isCancelable()) {

//Stop the event, so other listeners will not be notified about this
$event->stop();

}

//...

});

By default events are cancelable, even most of events produced by the framework are cancelables. You can fire a
not-cancelable event by passing “false” in the fourth parameter of fire:

<?php

$eventsManager->fire("my-component:afterSomeTask", $this, $extraData, false);

2.24.4 Listener Priorities

When attaching listeners you can set a specific priority. With this feature you can attach listeners indicating the order
in which they must be called:

<?php

$evManager->enablePriorities(true);

$evManager->attach('db', new DbListener(), 150); //More priority
$evManager->attach('db', new DbListener(), 100); //Normal priority
$evManager->attach('db', new DbListener(), 50); //Less priority

2.24.5 Collecting Responses

The events manager can collect every response returned by every notified listener, this example explains how it works:

<?php

use Phalcon\Events\Manager as EventsManager;

304 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$evManager = new EventsManager();

//Set up the events manager to collect responses
$evManager->collectResponses(true);

//Attach a listener
$evManager->attach('custom:custom', function() {

return 'first response';
});

//Attach a listener
$evManager->attach('custom:custom', function() {

return 'second response';
});

//Fire the event
$evManager->fire('custom:custom', null);

//Get all the collected responses
print_r($evManager->getResponses());

The above example produces:

Array ( [0] => first response [1] => second response )

2.24.6 Implementing your own EventsManager

The Phalcon\Events\ManagerInterface interface must be implemented to create your own EventsManager replacing
the one provided by Phalcon.

2.25 Request Environment

Every HTTP request (usually originated by a browser) contains additional information regarding the request such as
header data, files, variables, etc. A web based application needs to parse that information so as to provide the correct
response back to the requester. Phalcon\Http\Request encapsulates the information of the request, allowing you to
access it in an object-oriented way.

<?php

// Getting a request instance
$request = new \Phalcon\Http\Request();

// Check whether the request was made with method POST
if ($request->isPost() == true) {

// Check whether the request was made with Ajax
if ($request->isAjax() == true) {

echo "Request was made using POST and AJAX";
}

}

2.25. Request Environment 305



Phalcon PHP Framework Documentation, Release 1.3.0

2.25.1 Getting Values

PHP automatically fills the superglobal arrays $_GET and $_POST depending on the type of the request. These arrays
contain the values present in forms submitted or the parameters sent via the URL. The variables in the arrays are never
sanitized and can contain illegal characters or even malicious code, which can lead to SQL injection or Cross Site
Scripting (XSS) attacks.

Phalcon\Http\Request allows you to access the values stored in the $_REQUEST, $_GET and $_POST arrays and
sanitize or filter them with the ‘filter’ service, (by default Phalcon\Filter). The following examples offer the same
behavior:

<?php

// Manually applying the filter
$filter = new Phalcon\Filter();

$email = $filter->sanitize($_POST["user_email"], "email");

// Manually applying the filter to the value
$filter = new Phalcon\Filter();
$email = $filter->sanitize($request->getPost("user_email"), "email");

// Automatically applying the filter
$email = $request->getPost("user_email", "email");

// Setting a default value if the param is null
$email = $request->getPost("user_email", "email", "some@example.com");

// Setting a default value if the param is null without filtering
$email = $request->getPost("user_email", null, "some@example.com");

2.25.2 Accessing the Request from Controllers

The most common place to access the request environment is in an action of a controller. To access the Phal-
con\Http\Request object from a controller you will need to use the $this->request public property of the controller:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{

public function indexAction()
{

}

public function saveAction()
{

// Check if request has made with POST
if ($this->request->isPost() == true) {

// Access POST data
$customerName = $this->request->getPost("name");
$customerBorn = $this->request->getPost("born");

306 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting


Phalcon PHP Framework Documentation, Release 1.3.0

}

}

}

2.25.3 Uploading Files

Another common task is file uploading. Phalcon\Http\Request offers an object-oriented way to achieve this task:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{

public function uploadAction()
{

// Check if the user has uploaded files
if ($this->request->hasFiles() == true) {

// Print the real file names and sizes
foreach ($this->request->getUploadedFiles() as $file) {

//Print file details
echo $file->getName(), " ", $file->getSize(), "\n";

//Move the file into the application
$file->moveTo('files/' . $file->getName());

}
}

}

}

Each object returned by Phalcon\Http\Request::getUploadedFiles() is an instance of the Phalcon\Http\Request\File
class. Using the $_FILES superglobal array offers the same behavior. Phalcon\Http\Request\File encapsulates only
the information related to each file uploaded with the request.

2.25.4 Working with Headers

As mentioned above, request headers contain useful information that allow us to send the proper response back to the
user. The following examples show usages of that information:

<?php

// get the Http-X-Requested-With header
$requestedWith = $response->getHeader("X_REQUESTED_WITH");
if ($requestedWith == "XMLHttpRequest") {

echo "The request was made with Ajax";
}

// Same as above
if ($request->isAjax()) {

2.25. Request Environment 307



Phalcon PHP Framework Documentation, Release 1.3.0

echo "The request was made with Ajax";
}

// Check the request layer
if ($request->isSecureRequest() == true) {

echo "The request was made using a secure layer";
}

// Get the servers's ip address. ie. 192.168.0.100
$ipAddress = $request->getServerAddress();

// Get the client's ip address ie. 201.245.53.51
$ipAddress = $request->getClientAddress();

// Get the User Agent (HTTP_USER_AGENT)
$userAgent = $request->getUserAgent();

// Get the best acceptable content by the browser. ie text/xml
$contentType = $request->getAcceptableContent();

// Get the best charset accepted by the browser. ie. utf-8
$charset = $request->getBestCharset();

// Get the best language accepted configured in the browser. ie. en-us
$language = $request->getBestLanguage();

2.26 Returning Responses

Part of the HTTP cycle is returning responses to clients. Phalcon\Http\Response is the Phalcon component designed
to achieve this task. HTTP responses are usually composed by headers and body. The following is an example of basic
usage:

<?php

//Getting a response instance
$response = new \Phalcon\Http\Response();

//Set status code
$response->setStatusCode(404, "Not Found");

//Set the content of the response
$response->setContent("Sorry, the page doesn't exist");

//Send response to the client
$response->send();

If you are using the full MVC stack there is no need to create responses manually. However, if you need to return a
response directly from a controller’s action follow this example:

<?php

class FeedController extends Phalcon\Mvc\Controller
{

public function getAction()
{

308 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

// Getting a response instance
$response = new \Phalcon\Http\Response();

$feed = //.. load here the feed

//Set the content of the response
$response->setContent($feed->asString());

//Return the response
return $response;

}

}

2.26.1 Working with Headers

Headers are an important part of the HTTP response. It contains useful information about the response state like the
HTTP status, type of response and much more.

You can set headers in the following way:

<?php

//Setting a header by it's name
$response->setHeader("Content-Type", "application/pdf");
$response->setHeader("Content-Disposition", 'attachment; filename="downloaded.pdf"');

//Setting a raw header
$response->setRawHeader("HTTP/1.1 200 OK");

A Phalcon\Http\Response\Headers bag internally manages headers. This class retrieves the headers before sending it
to client:

<?php

//Get the headers bag
$headers = $response->getHeaders();

//Get a header by its name
$contentType = $response->getHeaders()->get("Content-Type");

2.26.2 Making Redirections

With Phalcon\Http\Response you can also execute HTTP redirections:

<?php

//Redirect to the default URI
$response->redirect();

//Redirect to the local base URI
$response->redirect("posts/index");

//Redirect to an external URL
$response->redirect("http://en.wikipedia.org", true);

2.26. Returning Responses 309



Phalcon PHP Framework Documentation, Release 1.3.0

//Redirect specifyng the HTTP status code
$response->redirect("http://www.example.com/new-location", true, 301);

All internal URIs are generated using the ‘url’ service (by default Phalcon\Mvc\Url). This example demonstrates how
you can redirect using a route you have defined in your application:

<?php

//Redirect based on a named route
return $response->redirect(array(

"for" => "index-lang",
"lang" => "jp",
"controller" => "index"

));

Note that a redirection doesn’t disable the view component, so if there is a view asociated with the current action it
will be executed anyway. You can disable the view from a controller by executing $this->view->disable();

2.26.3 HTTP Cache

One of the easiest ways to improve the performance in your applications and reduce the server traffic is using HTTP
Cache. Most modern browsers support HTTP caching. HTTP Cache is one of the reasons many websites are currently
fast.

HTTP Cache can be altered in the following header values sent by the application when serving a page for the first
time:

• Expires: With this header the application can set a date in the future or the past telling the browser when the
page must expire.

• Cache-Control: This header allows to specify how much time a page should be considered fresh in the browser.

• Last-Modified: This header tells the browser which was the last time the site was updated avoiding page re-loads

• ETag: An etag is a unique identifier that must be created including the modification timestamp of the current
page

Setting an Expiration Time

The expiration date is one of the easiest and most effective ways to cache a page in the client (browser). Starting from
the current date we add the amount of time the page will be stored in the browser cache. Until this date expires no new
content will be requested from the server:

<?php

$expireDate = new DateTime();
$expireDate->modify('+2 months');

$response->setExpires($expireDate);

The Response component automatically shows the date in GMT timezone as expected in an Expires header.

If we set this value to a date in the past the browser will always refresh the requested page:

<?php

$expireDate = new DateTime();
$expireDate->modify('-10 minutes');

310 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$response->setExpires($expireDate);

Browsers rely on the client’s clock to assess if this date has passed or not. The client clock can be modified to make
pages expire and this may represent a limitation for this cache mechanism.

Cache-Control

This header provides a safer way to cache the pages served. We simply must specify a time in seconds telling the
browser how long it must keep the page in its cache:

<?php

//Starting from now, cache the page for one day
$response->setHeader('Cache-Control', 'max-age=86400');

The opposite effect (avoid page caching) is achieved in this way:

<?php

//Never cache the served page
$response->setHeader('Cache-Control', 'private, max-age=0, must-revalidate');

E-Tag

An “entity-tag” or “E-tag” is a unique identifier that helps the browser realize if the page has changed or not between
two requests. The identifier must be calculated taking into account that this must change if the previously served
content has changed:

<?php

//Calculate the E-Tag based on the modification time of the latest news
$recentDate = News::maximum(array('column' => 'created_at'));
$eTag = md5($recentDate);

//Send an E-Tag header
$response->setHeader('E-Tag', $eTag);

2.27 Cookies Management

Cookies are very useful way to store small pieces of data in the client that can be retrieved even if the user closes
his/her browser. Phalcon\Http\Response\Cookies acts as a global bag for cookies. Cookies are stored in this bag
during the request execution and are sent automatically at the end of the request.

2.27.1 Basic Usage

You can set/get cookies by just accessing the ‘cookies’ service in any part of the application where services can be
accessed:

<?php

class SessionController extends Phalcon\Mvc\Controller
{

2.27. Cookies Management 311

http://en.wikipedia.org/wiki/HTTP_cookie


Phalcon PHP Framework Documentation, Release 1.3.0

public function loginAction()
{

//Check if the cookie has previously set
if ($this->cookies->has('remember-me')) {

//Get the cookie
$rememberMe = $this->cookies->get('remember-me');

//Get the cookie's value
$value = $rememberMe->getValue();

}
}

public function startAction()
{

$this->cookies->set('remember-me', 'some value', time() + 15 * 86400);
}

}

2.27.2 Encryption/Decryption of Cookies

By default, cookies are automatically encrypted before be sent to the client and decrypted when retrieved. This
protection allow unauthorized users to see the cookies’ contents in the client (browser). Although this protection,
sensitive data should not be stored on cookies.

You can disable encryption in the following way:

<?php

$di->set('cookies', function() {
$cookies = new Phalcon\Http\Response\Cookies();
$cookies->useEncryption(false);
return $cookies;

});

In case of using encryption a global key must be set in the ‘crypt’ service:

<?php

$di->set('crypt', function() {
$crypt = new Phalcon\Crypt();
$crypt->setKey('#1dj8$=dp?.ak//j1V$'); //Use your own key!
return $crypt;

});

Send cookies data without encryption to clients including complex objects structures, resultsets, service
information, etc. could expose internal application details that could be used by an attacker to attack the
application. If you do not want to use encryption, we highly recommend you only send very basic cookie
data like numbers or small string literals.

2.28 Generating URLs and Paths

Phalcon\Mvc\Url is the component responsible of generate urls in a Phalcon application. It’s capable of produce
independent urls based on routes.

312 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.28.1 Setting a base URI

Dependending of which directory of your document root your application is installed, it may have a base uri or not.

For example, if your document root is /var/www/htdocs and your application is installed in /var/www/htdocs/invo then
your baseUri will be /invo/. If you are using a VirtualHost or your application is installed on the document root, then
your baseUri is /. Execute the following code to know the base uri detected by Phalcon:

<?php

$url = new Phalcon\Mvc\Url();
echo $url->getBaseUri();

By default, Phalcon automatically may detect your baseUri, but if you want to increase the performance of your
application is recommended setting up it manually:

<?php

$url = new Phalcon\Mvc\Url();

//Setting a relative base URI
$url->setBaseUri('/invo/');

//Setting a full domain as base URI
$url->setBaseUri('//my.domain.com/');

//Setting a full domain as base URI
$url->setBaseUri('http://my.domain.com/my-app/');

Usually, this component must be registered in the Dependency Injector container, so you can set up it there:

<?php

$di->set('url', function(){
$url = new Phalcon\Mvc\Url();
$url->setBaseUri('/invo/');
return $url;

});

2.28.2 Generating URIs

If you are using the Router with its default behavior. Your application is able to match routes based on the following
pattern: /:controller/:action/:params. Accordingly it is easy to create routes that satisfy that pattern (or any other
pattern defined in the router) passing a string to the method “get”:

<?php echo $url->get("products/save") ?>

Note that isn’t necessary to prepend the base uri. If you have named routes you can easily change it creating it
dynamically. For Example if you have the following route:

<?php

$route->add('/blog/{$year}/{month}/{title}', array(
'controller' => 'posts',
'action' => 'show'

))->setName('show-post');

A URL can be generated in the following way:

2.28. Generating URLs and Paths 313



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//This produces: /blog/2012/01/some-blog-post
$url->get(array(

'for' => 'show-post',
'year' => 2012,
'month' => '01',
'title' => 'some-blog-post'

));

2.28.3 Producing URLs without Mod-Rewrite

You can use this component also to create urls without mod-rewrite:

<?php

$url = new Phalcon\Mvc\Url();

//Pass the URI in $_GET["_url"]
$url->setBaseUri('/invo/index.php?_url=/');

//This produce: /invo/index.php?_url=/products/save
echo $url->get("products/save");

You can also use $_SERVER[”REQUEST_URI”]:

<?php

$url = new Phalcon\Mvc\Url();

//Pass the URI in $_GET["_url"]
$url->setBaseUri('/invo/index.php?_url=/');

//Pass the URI using $_SERVER["REQUEST_URI"]
$url->setBaseUri('/invo/index.php/');

In this case, it’s necessary to manually handle the required URI in the Router:

<?php

$router = new Phalcon\Mvc\Router();

// ... define routes

$uri = str_replace($_SERVER["SCRIPT_NAME"], '', $_SERVER["REQUEST_URI"]);
$router->handle($uri);

The produced routes would look like:

<?php

//This produce: /invo/index.php/products/save
echo $url->get("products/save");

2.28.4 Producing URLs from Volt

The function “url” is available in volt to generate URLs using this component:

314 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<a href="{{ url("posts/edit/1002") }}">Edit</a>

Generate static routes:

<link rel="stylesheet" href="{{ static_url("css/style.css") }}" type="text/css" />

2.28.5 Static vs. Dynamic Uris

This component allow you to set up a different base uri for static resources in the application:

<?php

$url = new Phalcon\Mvc\Url();

//Dynamic URIs are
$url->setBaseUri('/');

//Static resources go through a CDN
$url->setStaticBaseUri('http://static.mywebsite.com/');

Phalcon\Tag will request both dynamical and static URIs using this component.

2.28.6 Implementing your own Url Generator

The Phalcon\Mvc\UrlInterface interface must be implemented to create your own URL generator replacing the one
provided by Phalcon.

2.29 Flashing Messages

Flash messages are used to notify the user about the state of actions he/she made or simply show information to the
users. These kind of messages can be generated using this component.

2.29.1 Adapters

This component makes use of adapters to define the behavior of the messages after being passed to the Flasher:

Adapter Description API
Direct Directly outputs the messages passed to the flasher Phal-

con\Flash\Direct
Session Temporarily stores the messages in session, then messages can be printed in the

next request
Phal-
con\Flash\Session

2.29.2 Usage

Usually the Flash Messaging service is requested from the services container, if you’re using Phal-
con\DI\FactoryDefault then Phalcon\Flash\Direct is automatically registered as “flash” service:

<?php

//Set up the flash service
$di->set('flash', function() {

2.29. Flashing Messages 315



Phalcon PHP Framework Documentation, Release 1.3.0

return new \Phalcon\Flash\Direct();
});

This way, you can use it in controllers or views by injecting the service in the required scope:

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function saveAction()
{

$this->flash->success("The post was correctly saved!");
}

}

There are four built-in message types supported:

<?php

$this->flash->error("too bad! the form had errors");
$this->flash->success("yes!, everything went very smoothly");
$this->flash->notice("this a very important information");
$this->flash->warning("best check yo self, you're not looking too good.");

You can add messages with your own types:

<?php

$this->flash->message("debug", "this is debug message, you don't say");

2.29.3 Printing Messages

Messages sent to the flasher are automatically formatted with html:

<div class="errorMessage">too bad! the form had errors</div>
<div class="successMessage">yes!, everything went very smoothly</div>
<div class="noticeMessage">this a very important information</div>
<div class="warningMessage">best check yo self, you're not looking too good.</div>

As can be seen, also some CSS classes are added automatically to the DIVs. These classes allow you to define the
graphical presentation of the messages in the browser. The CSS classes can be overridden, for example, if you’re using
Twitter bootstrap, classes can be configured as:

<?php

//Register the flash service with custom CSS classes
$di->set('flash', function(){

$flash = new \Phalcon\Flash\Direct(array(
'error' => 'alert alert-error',
'success' => 'alert alert-success',
'notice' => 'alert alert-info',

316 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

));
return $flash;

});

Then the messages would be printed as follows:

<div class="alert alert-error">too bad! the form had errors</div>
<div class="alert alert-success">yes!, everything went very smoothly</div>
<div class="alert alert-info">this a very important information</div>

2.29.4 Implicit Flush vs. Session

Depending on the adapter used to send the messages, it could be producing output directly, or be temporarily storing
the messages in session to be shown later. When should you use each? That usually depends on the type of redirection
you do after sending the messages. For example, if you make a “forward” is not necessary to store the messages in
session, but if you do a HTTP redirect then, they need to be stored in session:

<?php

class ContactController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function saveAction()
{

//store the post

//Using direct flash
$this->flash->success("Your information were stored correctly!");

//Forward to the index action
return $this->dispatcher->forward(array("action" => "index"));

}

}

Or using a HTTP redirection:

<?php

class ContactController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function saveAction()
{

//store the post

2.29. Flashing Messages 317



Phalcon PHP Framework Documentation, Release 1.3.0

//Using session flash
$this->flashSession->success("Your information were stored correctly!");

//Make a full HTTP redirection
return $this->response->redirect("contact/index");

}

}

In this case you need to print manually the messages in the corresponding view:

<!-- app/views/contact/index.phtml -->

<p><?php $this->flashSession->output() ?></p>

The attribute ‘flashSession’ is how the flash was previously set into the dependency injection container. You need to
start the session first to successfully use the flashSession messenger.

2.30 Storing data in Session

The Phalcon\Session provides object-oriented wrappers to access session data.

Reasons to use this component instead of raw-sessions:

• You can easily isolate session data across applications on the same domain

• Intercept where session data is set/get in your application

• Change the session adapter according to the application needs

2.30.1 Starting the Session

Some applications are session-intensive, almost any action that performs requires access to session data. There are
others who access session data casually. Thanks to the service container, we can ensure that the session is accessed
only when it’s clearly needed:

<?php

//Start the session the first time when some component request the session service
$di->setShared('session', function() {

$session = new Phalcon\Session\Adapter\Files();
$session->start();
return $session;

});

2.30.2 Storing/Retrieving data in Session

From a controller, a view or any other component that extends Phalcon\DI\Injectable you can access the session service
and store items and retrieve them in the following way:

<?php

class UserController extends Phalcon\Mvc\Controller
{

318 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public function indexAction()
{

//Set a session variable
$this->session->set("user-name", "Michael");

}

public function welcomeAction()
{

//Check if the variable is defined
if ($this->session->has("user-name")) {

//Retrieve its value
$name = $this->session->get("user-name");

}
}

}

2.30.3 Removing/Destroying Sessions

It’s also possible remove specific variables or destroy the whole session:

<?php

class UserController extends Phalcon\Mvc\Controller
{

public function removeAction()
{

//Remove a session variable
$this->session->remove("user-name");

}

public function logoutAction()
{

//Destroy the whole session
$this->session->destroy();

}

}

2.30.4 Isolating Session Data between Applications

Sometimes a user can use the same application twice, on the same server, in the same session. Surely, if we use
variables in session, we want that every application have separate session data (even though the same code and same
variable names). To solve this, you can add a prefix for every session variable created in a certain application:

<?php

//Isolating the session data
$di->set('session', function(){

//All variables created will prefixed with "my-app-1"
$session = new Phalcon\Session\Adapter\Files(

2.30. Storing data in Session 319



Phalcon PHP Framework Documentation, Release 1.3.0

array(
'uniqueId' => 'my-app-1'

)
);

$session->start();

return $session;
});

2.30.5 Session Bags

Phalcon\Session\Bag is a component helps that helps separing session data into “namespaces”. Working by this way
you can easily create groups of session variables into the application. By only setting the variables in the “bag”, it’s
automatically stored in session:

<?php

$user = new Phalcon\Session\Bag('user');
$user->setDI($di);
$user->name = "Kimbra Johnson";
$user->age = 22;

2.30.6 Persistent Data in Components

Controller, components and classes thats extends Phalcon\DI\Injectable may inject a Phalcon\Session\Bag. This class
isolates variables for every class. Thanks to this you can persist data between requests in every class in an independent
way.

<?php

class UserController extends Phalcon\Mvc\Controller
{

public function indexAction()
{

// Create a persistent variable "name"
$this->persistent->name = "Laura";

}

public function welcomeAction()
{

if (isset($this->persistent->name))
{

echo "Welcome, ", $this->persistent->name;
}

}

}

In a component:

<?php

class Security extends Phalcon\Mvc\User\Component

320 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{

public function auth()
{

// Create a persistent variable "name"
$this->persistent->name = "Laura";

}

public function getAuthName()
{

return $this->persistent->name;
}

}

The data added to the session ($this->session) are available throughout the application, while persistent ($this-
>persistent) can only be accessed in the scope of the current class.

2.30.7 Implementing your own adapters

The Phalcon\Session\AdapterInterface interface must be implemented in order to create your own session adapters or
extend the existing ones.

There are more adapters available for this components in the Phalcon Incubator

2.31 Filtering and Sanitizing

Sanitizing user input is a critical part of software development. Trusting or neglecting to sanitize user input could
lead to unauthorized access to the content of your application, mainly user data, or even the server your application is
hosted on.

Full image (from xkcd)

The Phalcon\Filter component provides a set of commonly used filters and data sanitizing helpers. It provides object-
oriented wrappers around the PHP filter extension.

2.31. Filtering and Sanitizing 321

https://github.com/phalcon/incubator/tree/master/Library/Phalcon/Session/Adapter
http://xkcd.com/327/


Phalcon PHP Framework Documentation, Release 1.3.0

2.31.1 Sanitizing data

Sanitizing is the process which removes specific characters from a value, that are not required or desired by the user
or application. By sanitizing input we ensure that application integrity will be intact.

<?php

$filter = new \Phalcon\Filter();

// returns "someone@example.com"
$filter->sanitize("some(one)@exa\mple.com", "email");

// returns "hello"
$filter->sanitize("hello<<", "string");

// returns "100019"
$filter->sanitize("!100a019", "int");

// returns "100019.01"
$filter->sanitize("!100a019.01a", "float");

2.31.2 Sanitizing from Controllers

You can access a Phalcon\Filter object from your controllers when accessing GET or POST input data (through the
request object). The first parameter is the name of the variable to be obtained; the second is the filter to be applied on
it.

<?php

class ProductsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function saveAction()
{

// Sanitizing price from input
$price = $this->request->getPost("price", "double");

// Sanitizing email from input
$email = $this->request->getPost("customerEmail", "email");

}

}

2.31.3 Filtering Action Parameters

The next example shows you how to sanitize the action parameters within a controller action:

322 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

class ProductsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function showAction($productId)
{

$productId = $this->filter->sanitize($productId, "int");
}

}

2.31.4 Filtering data

In addition to sanitizing, Phalcon\Filter also provides filtering by removing or modifying input data to the format we
expect.

<?php

$filter = new \Phalcon\Filter();

// returns "Hello"
$filter->sanitize("<h1>Hello</h1>", "striptags");

// returns "Hello"
$filter->sanitize(" Hello ", "trim");

2.31.5 Types of Built-in Filters

The following are the built-in filters provided by this component:

Name Description
string Strip tags
email Remove all characters except letters, digits and !#$%&*+-/=?^_‘{|}~@.[].
int Remove all characters except digits, plus and minus sign.
float Remove all characters except digits, dot, plus and minus sign.
alphanum Remove all characters except [a-zA-Z0-9]
striptags Applies the strip_tags function
trim Applies the trim function
lower Applies the strtolower function
upper Applies the strtoupper function

2.31.6 Creating your own Filters

You can add your own filters to Phalcon\Filter. The filter function could be an anonomyous function:

<?php

2.31. Filtering and Sanitizing 323

http://www.php.net/manual/en/function.strip-tags.php
http://www.php.net/manual/en/function.trim.php
http://www.php.net/manual/en/function.strtolower.php
http://www.php.net/manual/en/function.strtoupper.php


Phalcon PHP Framework Documentation, Release 1.3.0

$filter = new \Phalcon\Filter();

//Using an anonymous function
$filter->add('md5', function($value) {

return preg_replace('/[^0-9a-f]/', '', $value);
});

//Sanitize with the "md5" filter
$filtered = $filter->sanitize($possibleMd5, "md5");

Or, if you prefer, you can implement the filter in a class:

<?php

class IPv4Filter
{

public function filter($value)
{

return filter_var($value, FILTER_VALIDATE_IP, FILTER_FLAG_IPV4);
}

}

$filter = new \Phalcon\Filter();

//Using an object
$filter->add('ipv4', new IPv4Filter());

//Sanitize with the "ipv4" filter
$filteredIp = $filter->sanitize("127.0.0.1", "ipv4");

2.31.7 Complex Sanitizing and Filtering

PHP itself provides an excellent filter extension you can use. Check out its documentation: Data Filtering at PHP
Documentation

2.31.8 Implementing your own Filter

The Phalcon\FilterInterface interface must be implemented to create your own filtering service replacing the one
provided by Phalcon.

2.32 Contextual Escaping

Websites and Web applications are vulnerable to XSS attacks, despite PHP provides escaping functionality, in some
contexts those are not sufficient/appropriate. Phalcon\Escaper provides contextual escaping, this component is written
in C providing the minimal overhead when escaping different kinds of texts.

We designed this component based on the XSS (Cross Site Scripting) Prevention Cheat Sheet created by the OWASP

Additionally, this component relies on mbstring to support almost any charset.

To illustrate how this component works and why it is important, consider the following example:

324 Chapter 2. Table of Contents

http://www.php.net/manual/en/book.filter.php
http://www.php.net/manual/en/book.filter.php
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org
http://php.net/manual/en/book.mbstring.php


Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Document title with malicious extra HTML tags
$maliciousTitle = '</title><script>alert(1)</script>';

//Malicious CSS class name
$className = ';`(';

//Malicious CSS font name
$fontName = 'Verdana"</style>';

//Malicious Javascript text
$javascriptText = "';</script>Hello";

//Create an escaper
$e = new Phalcon\Escaper();

?>

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title><?php echo $e->escapeHtml($maliciousTitle) ?></title>

<style type="text/css">
.<?php echo $e->escapeCss($className) ?> {

font-family : "<?php echo $e->escapeCss($fontName) ?>";
color: red;

}
</style>

</head>

<body>

<div class='<?php echo $e->escapeHtmlAttr($className) ?>'>hello</div>

<script>var some = '<?php echo $e->escapeJs($javascriptText) ?>'</script>

</body>
</html>

Which produces the following:

Every text was escaped according to its context. Use the appropriate context is important to avoid XSS attacks.

2.32.1 Escaping HTML

The most common situation when inserting unsafe data is between HTML tags:

<div class="comments"><!-- Escape unstrusted data here! --></div>

You can escape those data using the escapeHtml method:

<div class="comments"><?php echo $e->escapeHtml('></div><h1>myattack</h1>'); ?></div>

Which produces:

2.32. Contextual Escaping 325



Phalcon PHP Framework Documentation, Release 1.3.0

326 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<div class="comments">&gt;&lt;/div&gt;&lt;h1&gt;myattack&lt;/h1&gt;</div>

2.32.2 Escaping HTML Attributes

Escape HTML attributes is different from escape a full HTML content. The escape works by changing every non-
alphanumeric character to the form. This kind of escaping is intended to most simpler attributes excluding complex
ones like ‘href’ or ‘url’:

<table width="Escape unstrusted data here!"><tr><td>Hello</td></tr></table>

You can escape an HTML attribute by using the escapeHtmlAttr method:

<table width="<?php echo $e->escapeHtmlAttr('"><h1>Hello</table'); ?>"><tr><td>Hello</td></tr></table>

Which produces:

<table width="&#x22;&#x3e;&#x3c;h1&#x3e;Hello&#x3c;&#x2f;table"><tr><td>Hello</td></tr></table>

2.32.3 Escaping URLs

Some HTML attributes like ‘href’ or ‘url’ need to be escaped differently:

<a href="Escape unstrusted data here!">Some link</a>

You can escape an HTML attribute by using the escapeUrl method:

<a href="<?php echo $e->escapeUrl('"><script>alert(1)</script><a href="#'); ?>">Some link</a>

Which produces:

<a href="%22%3E%3Cscript%3Ealert%281%29%3C%2Fscript%3E%3Ca%20href%3D%22%23">Some link</a>

2.32.4 Escaping CSS

CSS identifiers/values can be escaped too:

<a style="color: Escape unstrusted data here">Some link</a>

You can escape an HTML attribute by using the escapeCss method:

<a style="color: <?php echo $e->escapeCss('"><script>alert(1)</script><a href="#'); ?>">Some link</a>

Which produces:

<a style="color: \22 \3e \3c script\3e alert\28 1\29 \3c \2f script\3e \3c a\20 href\3d \22 \23 ">Some link</a>

2.32.5 Escaping Javascript

Strings to be inserted into javascript code also must be properly escaped:

<script>document.title = 'Escape unstrusted data here'</script>

You can escape an HTML attribute by using the escapeJs method:

2.32. Contextual Escaping 327



Phalcon PHP Framework Documentation, Release 1.3.0

<script>document.title = '<?php echo $e->escapejs("'; alert(100); var x='"); ?>'</script>

<script>document.title = '\x27; alert(100); var x\x3d\x27'</script>

2.33 Validation

Phalcon\Validation is an independent validation component that validates an arbitrary set of data. This component can
be used to implement validation rules on data objects that do not belong to a model or collection.

The following example shows its basic usage:

<?php

use Phalcon\Validation\Validator\PresenceOf,
Phalcon\Validation\Validator\Email;

$validation = new Phalcon\Validation();

$validation->add('name', new PresenceOf(array(
'message' => 'The name is required'

)));

$validation->add('email', new PresenceOf(array(
'message' => 'The e-mail is required'

)));

$validation->add('email', new Email(array(
'message' => 'The e-mail is not valid'

)));

$messages = $validation->validate($_POST);
if (count($messages)) {

foreach ($messages as $message) {
echo $message, '<br>';

}
}

The loosely-coupled design of this component allows you to create your own validators along with the ones provided
by the framework.

2.33.1 Initializing Validation

Validation chains can be initialized in a direct manner by just adding validators to the Phalcon\Validation object. You
can put your validations in a seperate file for better re-use code and organization:

<?php

use Phalcon\Validation,
Phalcon\Validation\Validator\PresenceOf,
Phalcon\Validation\Validator\Email;

class MyValidation extends Validation
{

public function initialize()
{

328 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$this->add('name', new PresenceOf(array(
'message' => 'The name is required'

)));

$this->add('email', new PresenceOf(array(
'message' => 'The e-mail is required'

)));

$this->add('email', new Email(array(
'message' => 'The e-mail is not valid'

)));
}

}

<?php

$validation = new MyValidation();

$messages = $validation->validate($_POST);
if (count($messages)) {

foreach ($messages as $message) {
echo $message, '<br>';

}
}

2.33.2 Validators

Phalcon exposes a set of built-in validators for this component:

The following example explains how to create additional validators for this component:

<?php

use Phalcon\Validation\Validator,
Phalcon\Validation\ValidatorInterface,
Phalcon\Validation\Message;

class IpValidator extends Validator implements ValidatorInterface
{

/**
* Executes the validation

*
* @param Phalcon\Validation $validator

* @param string $attribute

* @return boolean

*/
public function validate($validator, $attribute)
{

$value = $validator->getValue($attribute);

if (filter_var($value, FILTER_VALIDATE_IP, FILTER_FLAG_IPV4 | FILTER_FLAG_IPV6)) {

$message = $this->getOption('message');
if (!$message) {

$message = 'The IP is not valid';
}

2.33. Validation 329



Phalcon PHP Framework Documentation, Release 1.3.0

$validator->appendMessage(new Message($message, $attribute, 'Ip'));

return false;
}

return true;
}

}

It is important that validators return a valid boolean value indicating if the validation was successful or not.

2.33.3 Validation Messages

Phalcon\Validation has a messaging subsystem that provides a flexible way to output or store the validation messages
generated during the validation processes.

Each message consists of an instance of the class Phalcon\Validation\Message. The set of messages generated can be
retrieved with the getMessages() method. Each message provides extended information like the attribute that generated
the message or the message type:

<?php

$messages = $validation->validate();
if (count($messages)) {

foreach ($validation->getMessages() as $message) {
echo "Message: ", $message->getMessage(), "\n";
echo "Field: ", $message->getField(), "\n";
echo "Type: ", $message->getType(), "\n";

}
}

The getMessages() method can be overriden in a validation class to replace/translate the default messages generated
by the validators:

<?php

class MyValidation extends Phalcon\Validation
{

public function initialize()
{

// ...
}

public function getMessages()
{

$messages = array();
foreach (parent::getMessages() as $message) {

switch ($message->getType()) {
case 'PresenceOf':

$messages[] = 'The field ' . $message->getField() . ' is mandatory';
break;

}
}
return $messages;

330 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

}
}

Or you can pass a ‘message’ parameter to change the default message in each validator:

<?php

use Phalcon\Validation\Validator\Email;

$validation->add('email', new Email(array(
'message' => 'The e-mail is not valid'

)));

By default, ‘getMessages’ returns all the messages generated during validation. You can filter messages for a specific
field using the ‘filter’ method:

<?php

$messages = $validation->validate();
if (count($messages)) {

//Filter only the messages generated for the field 'name'
foreach ($validation->getMessages()->filter('name') as $message) {

echo $message;
}

}

2.33.4 Filtering of Data

Data can be filtered prior to the validation ensuring that malicious or incorrect data is not validated.

<?php

$validation = new Phalcon\Validation();

$validation
->add('name', new PresenceOf(array(

'message' => 'The name is required'
)))
->add('email', new PresenceOf(array(

'message' => 'The email is required'
)));

//Filter any extra space
$validation->setFilters('name', 'trim');
$validation->setFilters('email', 'trim');

Filtering and sanitizing is performed using the filter: component. You can add more filters to this component or use
the built-in ones.

2.33.5 Validation Events

When validations are organized in classes, you can implement the ‘beforeValidation’ and ‘afterValidation’ methods to
perform additional checks, filters, clean-up, etc. If ‘beforeValidation’ method returns false the validation is automati-
cally cancelled:

2.33. Validation 331



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

use Phalcon\Validation;

class LoginValidation extends Validation
{

public function initialize()
{

// ...
}

/**
* Executed before validation

*
* @param array $data

* @param object $entity

* @param Phalcon\Validation\Message\Group $messages

* @return bool

*/
public function beforeValidation($data, $entity, $messages)
{

if ($this->request->getHttpHost() != 'admin.mydomain.com') {
$messages->appendMessage(new Message('Only users can log on in the administration domain'));
return false;

}
return true;

}

/**
* Executed after validation

*
* @param array $data

* @param object $entity

* @param Phalcon\Validation\Message\Group $messages

*/
public function afterValidation($data, $entity, $messages)
{

//... add additional messages or perform more validations
}

}

2.33.6 Cancelling Validations

By default all validators assigned to a field are tested regardless if one of them have failed or not. You can change this
behavior by telling the validation component which validator may stop the validation:

<?php

use Phalcon\Validation\Validator\PresenceOf,
Phalcon\Validation\Validator\Regex;

$validation = new Phalcon\Validation();

$validation
->add('telephone', new PresenceOf(array(

332 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

'message' => 'The telephone is required',
'cancelOnFail' => true

)))
->add('telephone', new Regex(array(

'message' => 'The telephone is required',
'pattern' => '/\+44 [0-9]+/'

)))
->add('telephone', new StringLength(array(

'minimumMessage' => 'The telephone is too short',
'min' => 2

)));

The first validator has the option ‘cancelOnFail’ with a value of true, therefore if that validator fails the remaining
validators in the chain are not executed.

If you are creating custom validators you can dynamically stop the validation chain by setting the ‘cancelOnFail’
option:

<?php

use Phalcon\Validation\Validator,
Phalcon\Validation\ValidatorInterface,
Phalcon\Validation\Message;

class MyValidator extends Validator implements ValidatorInterface
{

/**
* Executes the validation

*
* @param Phalcon\Validation $validator

* @param string $attribute

* @return boolean

*/
public function validate($validator, $attribute)
{

// If the attribute value is name we must stop the chain
if ($attribute == 'name') {

$validator->setOption('cancelOnFail', true);
}

//...
}

}

2.34 Forms

Phalcon\Forms is a component that aid the developer in the creation and maintenance of forms in web applications.

The following example shows its basic usage:

<?php

use Phalcon\Forms\Form,
Phalcon\Forms\Element\Text,
Phalcon\Forms\Element\Select;

2.34. Forms 333



Phalcon PHP Framework Documentation, Release 1.3.0

$form = new Form();

$form->add(new Text("name"));

$form->add(new Text("telephone"));

$form->add(new Select("telephoneType", array(
'H' => 'Home',
'C' => 'Cell'

)));

Forms can be rendered based on the form definition:

<h1>Contacts</h1>

<form method="post">

<p>
<label>Name</label>
<?php echo $form->render("name") ?>

</p>

<p>
<label>Telephone</label>
<?php echo $form->render("telephone") ?>

</p>

<p>
<label>Type</label>
<?php echo $form->render("telephoneType") ?>

</p>

<p>
<input type="submit" value="Save" />

</p>

</form>

Each element in the form can be rendered as required by the developer. Internally, Phalcon\Tag is used to produce the
right HTML for each element, you can pass additional html attributes as second parameter for render:

<p>
<label>Name</label>
<?php echo $form->render("name", array('maxlength' => 30, 'placeholder' => 'Type your name')) ?>

</p>

HTML Attributes also can be set in the element’s definition:

<?php

$form->add(new Text("name", array(
'maxlength' => 30,
'placeholder' => 'Type your name'

)));

334 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.34.1 Initializing forms

As seen before, forms can be initialized outside the form class by adding elements to it. You can re-use code or
organize your form classes implementing the form in a separated file:

<?php

use Phalcon\Forms\Form,
Phalcon\Forms\Element\Text,
Phalcon\Forms\Element\Select;

class ContactForm extends Form
{

public function initialize()
{

$this->add(new Text("name"));

$this->add(new Text("telephone"));

$this->add(new Select("telephoneType", TelephoneTypes::find(), array(
'using' => array('id', 'name')

)));
}

}

Phalcon\Forms\Form extends Phalcon\DI\Injectable so you have access to the application services if needed:

<?php

use Phalcon\Forms\Form,
Phalcon\Forms\Element\Text,
Phalcon\Forms\Element\Hidden;

class ContactForm extends Form
{

/**
* This method returns the default value for field 'csrf'

*/
public function getCsrf()
{

return $this->security->getToken();
}

public function initialize()
{

//Set the same form as entity
$this->setEntity($this);

//Add a text element to capture the 'email'
$this->add(new Text("email"));

//Add a text element to put a hidden csrf
$this->add(new Hidden("csrf"));

}
}

The associated entity added to the form in the initialization and custom user options are passed to the form constructor:

2.34. Forms 335



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

use Phalcon\Forms\Form,
Phalcon\Forms\Element\Text,
Phalcon\Forms\Element\Hidden;

class UsersForm extends Form
{

/**
* Forms initializer

*
* @param Users $user

* @param array $options

*/
public function initialize($user, $options)
{

if ($options['edit']) {
$this->add(new Hidden('id'));

} else {
$this->add(new Text('id'));

}

$this->add(new Text('name'));
}

}

In the form’s instantiation you must use:

<?php

$form = new UsersForm(new Users(), array('edit' => true));

2.34.2 Validation

Phalcon forms are integrated with the validation component to offer instant validation. Built-in or custom validators
could be set to each element:

<?php

use Phalcon\Forms\Element\Text,
Phalcon\Validation\Validator\PresenceOf,
Phalcon\Validation\Validator\StringLength;

$name = new Text("name");

$name->addValidator(new PresenceOf(array(
'message' => 'The name is required'

)));

$name->addValidator(new StringLength(array(
'min' => 10,
'messageMinimum' => 'The name is too short'

)));

$form->add($name);

336 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Then you can validate the form according to the input entered by the user:

<?php

if (!$form->isValid($_POST)) {
foreach ($form->getMessages() as $message) {

echo $message, '<br>';
}

}

Validators are executed in the same order as they were registered.

By default messages generated by all the elements in the form are joined so they can be traversed using a single
foreach, you can change this behavior to get the messages separated by the field:

<?php

foreach ($form->getMessages(false) as $attribute => $messages) {
echo 'Messages generated by ', $attribute, ':', "\n";
foreach ($messages as $message) {

echo $message, '<br>';
}

}

Or get specific messages for an element:

<?php

foreach ($form->getMessagesFor('name') as $message) {
echo $message, '<br>';

}

2.34.3 Filtering

A form is also able to filter data before be validated, you can set filters in each element:

2.34.4 Setting User Options

2.34.5 Forms + Entities

An entity such as a model/collection/plain instance or just a plain PHP class can be linked to the form in order to set
default values in the form’s elements or assign the values from the form to the entity easily:

<?php

$robot = Robots::findFirst();

$form = new Form($robot);

$form->add(new Text("name"));

$form->add(new Text("year"));

Once the form is rendered if there is no default values assigned to the elements it will use the ones provided by the
entiy:

2.34. Forms 337



Phalcon PHP Framework Documentation, Release 1.3.0

<?php echo $form->render('name') ?>

You can validate the form and assign the values from the user input in the following way:

<?php

$form->bind($_POST, $robot);

//Check if the form is valid
if ($form->isValid()) {

//Save the entity
$robot->save();

}

Setting up a plain class as entity also is possible:

<?php

class Preferences
{

public $timezone = 'Europe/Amsterdam';

public $receiveEmails = 'No';

}

Using this class as entity, allows the form to take the default values from it:

<?php

$form = new Form(new Preferences());

$form->add(new Select("timezone", array(
'America/New_York' => 'New York',
'Europe/Amsterdam' => 'Amsterdam',
'America/Sao_Paulo' => 'Sao Paulo',
'Asia/Tokio' => 'Tokio',

)));

$form->add(new Select("receiveEmails", array(
'Yes' => 'Yes, please!',
'No' => 'No, thanks'

)));

Entities can implement getters, which have more precedence than public propierties, these methods give you more free
to produce values:

<?php

class Preferences
{

public $timezone;

public $receiveEmails;

public function getTimezone()

338 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{
return 'Europe/Amsterdam';

}

public function getTimezone()
{

return 'No';
}

}

2.34.6 Form Elements

Phalcon provides a set of built-in elements to use in your forms, all these elements are located in the Phal-
con\Forms\Element namespace:

Name Description Example
Text Generate INPUT[type=text] elements Example
Password Generate INPUT[type=password] elements Example
Select Generate SELECT tag (combo lists) elements based on choices Example
Check Generate INPUT[type=check] elements Example
Textarea Generate TEXTAREA elements Example
Hidden Generate INPUT[type=hidden] elements Example
File Generate INPUT[type=file] elements Example
Date Generate INPUT[type=date] elements Example
Numeric Generate INPUT[type=number] elements Example
Submit Generate INPUT[type=submit] elements Example

2.34.7 Event Callbacks

Whenever forms are implemented as classes, the callbacks: beforeValidation and afterValidation can be implemented
in the form’s class to perform pre-validations and post-validations:

<?php

class ContactForm extends Phalcon\Mvc\Form
{

public function beforeValidation()
{

}
}

2.34.8 Rendering Forms

You can render the form with total flexibility, the following example shows how to render each element using an
standard procedure:

<?php

<form method="post">
<?php

//Traverse the form

2.34. Forms 339



Phalcon PHP Framework Documentation, Release 1.3.0

foreach ($form as $element) {

//Get any generated messages for the current element
$messages = $form->getMessagesFor($element->getName());

if (count($messages)) {
//Print each element
echo '<div class="messages">';
foreach ($messages as $message) {

echo $message;
}
echo '</div>';

}

echo '<p>';
echo '<label for="', $element->getName(), '">', $element->getLabel(), '</label>';
echo $element;
echo '</p>';

}
?>
<input type="submit" value="Send"/>

</form>

Or reuse the logic in your form class:

<?php

class ContactForm extends Phalcon\Forms\Form
{

public function initialize()
{

//...
}

public function renderDecorated($name)
{

$element = $this->get($name);

//Get any generated messages for the current element
$messages = $this->getMessagesFor($element->getName());

if (count($messages)) {
//Print each element
echo '<div class="messages">';
foreach ($messages as $message) {

echo $this->flash->error($message);
}
echo '</div>';

}

echo '<p>';
echo '<label for="', $element->getName(), '">', $element->getLabel(), '</label>';
echo $element;
echo '</p>';

}

}

340 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

In the view:

<?php

echo $element->renderDecorated('name');

echo $element->renderDecorated('telephone');

2.34.9 Creating Form Elements

In addition to the form elements provided by Phalcon you can create your own custom elements:

<?php

use Phalcon\Forms\Element;

class MyElement extends Element
{

public function render($attributes=null)
{

$html = //... produce some html
return $html;

}
}

2.34.10 Forms Manager

This component provides a forms manager that can be used by the developer to register forms and access them via the
service locator:

<?php

$di['forms'] = function() {
return new Phalcon\Forms\Manager();

};

Forms are added to the forms manager and referenced by a unique name:

<?php

$this->forms->set('login', new LoginForm());

Using the unique name, forms can be accesed in any part of the application:

<?php

echo $this->forms->get('login')->render();

2.34.11 External Resources

• Vökuró, is a sample application that uses the forms builder to create and manage forms, [Github]

2.34. Forms 341

http://vokuro.phalconphp.com
https://github.com/phalcon/vokuro


Phalcon PHP Framework Documentation, Release 1.3.0

2.35 Reading Configurations

Phalcon\Config is a component used to read configuration files of various formats (using adapters) into PHP objects
for use in an application.

2.35.1 File Adapters

The adapters available are:

File Type Description
Ini Uses INI files to store settings. Internally the adapter uses the PHP function parse_ini_file.
Array Uses PHP multidimensional arrays to store settings. This adapter offers the best performance.

2.35.2 Native Arrays

The next example shows how to convert native arrays into Phalcon\Config objects. This option offers the best perfor-
mance since no files are read during this request.

<?php

$settings = array(
"database" => array(

"adapter" => "Mysql",
"host" => "localhost",
"username" => "scott",
"password" => "cheetah",
"dbname" => "test_db",

),
"app" => array(

"controllersDir" => "../app/controllers/",
"modelsDir" => "../app/models/",
"viewsDir" => "../app/views/",

),
"mysetting" => "the-value"

);

$config = new \Phalcon\Config($settings);

echo $config->app->controllersDir, "\n";
echo $config->database->username, "\n";
echo $config->mysetting, "\n";

If you want to better organize your project you can save the array in another file and then read it.

<?php

require "config/config.php";
$config = new \Phalcon\Config($settings);

2.35.3 Reading INI Files

Ini files are a common way to store settings. Phalcon\Config uses the optimized PHP function parse_ini_file to read
these files. Files sections are parsed into sub-settings for easy access.

342 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

[database]
adapter = Mysql
host = localhost
username = scott
password = cheetah
dbname = test_db

[phalcon]
controllersDir = "../app/controllers/"
modelsDir = "../app/models/"
viewsDir = "../app/views/"

[models]
metadata.adapter = "Memory"

You can read the file as follows:

<?php

$config = new \Phalcon\Config\Adapter\Ini("path/config.ini");

echo $config->phalcon->controllersDir, "\n";
echo $config->database->username, "\n";
echo $config->models->metadata->adapter, "\n";

2.35.4 Merging Configurations

Phalcon\Config allows to merge a configuration object into another one recursively:

<?php

$config = new \Phalcon\Config(array(
'database' => array(

'host' => 'localhost',
'dbname' => 'test_db'

),
'debug' => 1

));

$config2 = new \Phalcon\Config(array(
'database' => array(

'username' => 'scott',
'password' => 'secret',

)
));

$config->merge($config2);

print_r($config);

The above code produces the following:

Phalcon\Config Object
(

[database] => Phalcon\Config Object
(

[host] => localhost

2.35. Reading Configurations 343



Phalcon PHP Framework Documentation, Release 1.3.0

[dbname] => test_db
[username] => scott
[password] => secret

)
[debug] => 1

)

There are more adapters available for this components in the Phalcon Incubator

2.36 Pagination

The process of pagination takes place when we need to present big groups of arbitrary data gradually. Phal-
con\Paginator offers a fast and convenient way to split these sets of data browsable pages.

2.36.1 Data Adapters

This component makes use of adapters to encapsulate different sources of data:

2.36.2 Examples

In the example below, the paginator will use as its source data the result of a query from a model, and limit the
displayed data to 10 records per page:

<?php

// Current page to show
// In a controller this can be:
// $this->request->getQuery('page', 'int'); // GET
// $this->request->getPost('page', 'int'); // POST
$currentPage = (int) $_GET["page"];

// The data set to paginate
$robots = Robots::find();

// Create a Model paginator, show 10 rows by page starting from $currentPage
$paginator = new \Phalcon\Paginator\Adapter\Model(

array(
"data" => $robots,
"limit"=> 10,
"page" => $currentPage

)
);

// Get the paginated results
$page = $paginator->getPaginate();

Variable $currentPage controls the page to be displayed. The $paginator->getPaginate() returns a $page object that
contains the paginated data. It can be used for generating the pagination:

<table>
<tr>

<th>Id</th>
<th>Name</th>
<th>Type</th>

344 Chapter 2. Table of Contents

https://github.com/phalcon/incubator


Phalcon PHP Framework Documentation, Release 1.3.0

</tr>
<?php foreach ($page->items as $item) { ?>
<tr>

<td><?php echo $item->id; ?></td>
<td><?php echo $item->name; ?></td>
<td><?php echo $item->type; ?></td>

</tr>
<?php } ?>

</table>

The $page object also contains navigation data:

<a href="/robots/search">First</a>
<a href="/robots/search?page=<?= $page->before; ?>">Previous</a>
<a href="/robots/search?page=<?= $page->next; ?>">Next</a>
<a href="/robots/search?page=<?= $page->last; ?>">Last</a>

<?php echo "You are in page ", $page->current, " of ", $page->total_pages; ?>

2.36.3 Adapters Usage

An example of the source data that must be used for each adapter:

<?php

//Passing a resultset as data
$paginator = new \Phalcon\Paginator\Adapter\Model(

array(
"data" => Products::find(),
"limit" => 10,
"page" => $currentPage

)
);

//Passing an array as data
$paginator = new \Phalcon\Paginator\Adapter\NativeArray(

array(
"data" => array(

array('id' => 1, 'name' => 'Artichoke'),
array('id' => 2, 'name' => 'Carrots'),
array('id' => 3, 'name' => 'Beet'),
array('id' => 4, 'name' => 'Lettuce'),
array('id' => 5, 'name' => '')

),
"limit" => 2,
"page" => $currentPage

)
);

//Passing a querybuilder as data

$builder = $this->modelsManager->createBuilder()
->columns('id, name')
->from('Robots')
->orderBy('name');

$paginator = new Phalcon\Paginator\Adapter\QueryBuilder(array(

2.36. Pagination 345



Phalcon PHP Framework Documentation, Release 1.3.0

"builder" => $builder,
"limit"=> 20,
"page" => 1

));

2.36.4 Page Attributes

The $page object has the following attributes:

Attribute Description
items The set of records to be displayed at the current page
current The current page
before The previous page to the current one
next The next page to the current one
last The last page in the set of records
total_pages The number of pages
total_items The number of items in the source data

2.36.5 Implementing your own adapters

The Phalcon\Paginator\AdapterInterface interface must be implemented in order to create your own paginator adapters
or extend the existing ones:

<?php

class MyPaginator implements Phalcon\Paginator\AdapterInterface
{

/**
* Adapter constructor

*
* @param array $config

*/
public function __construct($config);

/**
* Set the current page number

*
* @param int $page

*/
public function setCurrentPage($page);

/**
* Returns a slice of the resultset to show in the pagination

*
* @return stdClass

*/
public function getPaginate();

}

346 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.37 Improving Performance with Cache

Phalcon provides the Phalcon\Cache class allowing faster access to frequently used or already processed data. Phal-
con\Cache is written in C, achieving higher performance and reducing the overhead when getting items from the
backends. This class uses an internal structure of frontend and backend components. Front-end components act as
input sources or interfaces, while backend components offer storage options to the class.

2.37.1 When to implement cache?

Although this component is very fast, implementing it in cases that are not needed could lead to a loss of performance
rather than gain. We recommend you check this cases before using a cache:

• You are making complex calculations that every time return the same result (changing infrequently)

• You are using a lot of helpers and the output generated is almost always the same

• You are accessing database data constantly and these data rarely change

NOTE Even after implementing the cache, you should check the hit ratio of your cache over a period of
time. This can easily be done, especially in the case of Memcache or Apc, with the relevant tools that
backends provide.

2.37.2 Caching Behavior

The caching process is divided into 2 parts:

• Frontend: This part is responsible for checking if a key has expired and perform additional transformations to
the data before storing and after retrieving them from the backend-

• Backend: This part is responsible for communicating, writing/reading the data required by the frontend.

2.37.3 Caching Output Fragments

An output fragment is a piece of HTML or text that is cached as is and returned as is. The output is automatically
captured from the ob_* functions or the PHP output so that it can be saved in the cache. The following example
demonstrates such usage. It receives the output generated by PHP and stores it into a file. The contents of the file are
refreshed every 172800 seconds (2 days).

The implementation of this caching mechanism allows us to gain performance by not executing the helper Phal-
con\Tag::linkTo call whenever this piece of code is called.

<?php

//Create an Output frontend. Cache the files for 2 days
$frontCache = new Phalcon\Cache\Frontend\Output(array(

"lifetime" => 172800
));

// Create the component that will cache from the "Output" to a "File" backend
// Set the cache file directory - it's important to keep the "/" at the end of
// the value for the folder
$cache = new Phalcon\Cache\Backend\File($frontCache, array(

"cacheDir" => "../app/cache/"
));

// Get/Set the cache file to ../app/cache/my-cache.html

2.37. Improving Performance with Cache 347



Phalcon PHP Framework Documentation, Release 1.3.0

$content = $cache->start("my-cache.html");

// If $content is null then the content will be generated for the cache
if ($content === null) {

//Print date and time
echo date("r");

//Generate a link to the sign-up action
echo Phalcon\Tag::linkTo(

array(
"user/signup",
"Sign Up",
"class" => "signup-button"

)
);

// Store the output into the cache file
$cache->save();

} else {

// Echo the cached output
echo $content;

}

NOTE In the example above, our code remains the same, echoing output to the user as it has been doing before. Our
cache component transparently captures that output and stores it in the cache file (when the cache is generated) or it
sends it back to the user pre-compiled from a previous call, thus avoiding expensive operations.

2.37.4 Caching Arbitrary Data

Caching just data is equally important for your application. Caching can reduce database load by reusing commonly
used (but not updated) data, thus speeding up your application.

File Backend Example

One of the caching adapters is ‘File’. The only key area for this adapter is the location of where the cache files will be
stored. This is controlled by the cacheDir option which must have a backslash at the end of it.

<?php

// Cache the files for 2 days using a Data frontend
$frontCache = new Phalcon\Cache\Frontend\Data(array(

"lifetime" => 172800
));

// Create the component that will cache "Data" to a "File" backend
// Set the cache file directory - important to keep the "/" at the end of
// of the value for the folder
$cache = new Phalcon\Cache\Backend\File($frontCache, array(

"cacheDir" => "../app/cache/"
));

// Try to get cached records
$cacheKey = 'robots_order_id.cache';

348 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$robots = $cache->get($cacheKey);
if ($robots === null) {

// $robots is null because of cache expiration or data does not exist
// Make the database call and populate the variable
$robots = Robots::find(array("order" => "id"));

// Store it in the cache
$cache->save($cacheKey, $robots);

}

// Use $robots :)
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

Memcached Backend Example

The above example changes slightly (especially in terms of configuration) when we are using a Memcached backend.

<?php

//Cache data for one hour
$frontCache = new Phalcon\Cache\Frontend\Data(array(

"lifetime" => 3600
));

// Create the component that will cache "Data" to a "Memcached" backend
// Memcached connection settings
$cache = new Phalcon\Cache\Backend\Memcache($frontCache, array(

"host" => "localhost",
"port" => "11211"

));

// Try to get cached records
$cacheKey = 'robots_order_id.cache';
$robots = $cache->get($cacheKey);
if ($robots === null) {

// $robots is null because of cache expiration or data does not exist
// Make the database call and populate the variable
$robots = Robots::find(array("order" => "id"));

// Store it in the cache
$cache->save($cacheKey, $robots);

}

// Use $robots :)
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

2.37.5 Querying the cache

The elements added to the cache are uniquely identified by a key. In the case of the File backend, the key is the actual
filename. To retrieve data from the cache, we just have to call it using the unique key. If the key does not exist, the get

2.37. Improving Performance with Cache 349



Phalcon PHP Framework Documentation, Release 1.3.0

method will return null.

<?php

// Retrieve products by key "myProducts"
$products = $cache->get("myProducts");

If you want to know which keys are stored in the cache you could call the queryKeys method:

<?php

// Query all keys used in the cache
$keys = $cache->queryKeys();
foreach ($keys as $key) {

$data = $cache->get($key);
echo "Key=", $key, " Data=", $data;

}

//Query keys in the cache that begins with "my-prefix"
$keys = $cache->queryKeys("my-prefix");

2.37.6 Deleting data from the cache

There are times where you will need to forcibly invalidate a cache entry (due to an update in the cached data). The
only requirement is to know the key that the data have been stored with.

<?php

// Delete an item with a specific key
$cache->delete("someKey");

// Delete all items from the cache
$keys = $cache->queryKeys();
foreach ($keys as $key) {

$cache->delete($key);
}

2.37.7 Checking cache existence

It is possible to check if a cache already exists with a given key:

<?php

if ($cache->exists("someKey")) {
echo $cache->get("someKey");

} else {
echo "Cache does not exists!";

}

2.37.8 Lifetime

A “lifetime” is a time in seconds that a cache could live without expire. By default, all the created caches use the
lifetime set in the frontend creation. You can set a specific lifetime in the creation or retrieving of the data from the
cache:

350 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Setting the lifetime when retrieving:

<?php

$cacheKey = 'my.cache';

//Setting the cache when getting a result
$robots = $cache->get($cacheKey, 3600);
if ($robots === null) {

$robots = "some robots";

// Store it in the cache
$cache->save($cacheKey, $robots);

}

Setting the lifetime when saving:

<?php

$cacheKey = 'my.cache';

$robots = $cache->get($cacheKey);
if ($robots === null) {

$robots = "some robots";

//Setting the cache when saving data
$cache->save($cacheKey, $robots, 3600);

}

2.37.9 Multi-Level Cache

This feature of the cache component, allows the developer to implement a multi-level cache. This new feature is very
useful because you can save the same data in several cache locations with different lifetimes, reading first from the
one with the faster adapter and ending with the slowest one until the data expires:

<?php

use Phalcon\Cache\Frontend\Data as DataFrontend,
Phalcon\Cache\Multiple,
Phalcon\Cache\Backend\Apc as ApcCache,
Phalcon\Cache\Backend\Memcache as MemcacheCache,
Phalcon\Cache\Backend\File as FileCache;

$ultraFastFrontend = new DataFrontend(array(
"lifetime" => 3600

));

$fastFrontend = new DataFrontend(array(
"lifetime" => 86400

));

$slowFrontend = new DataFrontend(array(
"lifetime" => 604800

));

//Backends are registered from the fastest to the slower

2.37. Improving Performance with Cache 351



Phalcon PHP Framework Documentation, Release 1.3.0

$cache = new Multiple(array(
new ApcCache($ultraFastFrontend, array(

"prefix" => 'cache',
)),
new MemcacheCache($fastFrontend, array(

"prefix" => 'cache',
"host" => "localhost",
"port" => "11211"

)),
new FileCache($slowFrontend, array(

"prefix" => 'cache',
"cacheDir" => "../app/cache/"

))
));

//Save, saves in every backend
$cache->save('my-key', $data);

2.37.10 Frontend Adapters

The available frontend adapters that are used as interfaces or input sources to the cache are:

AdapterDescription Example
Out-
put

Read input data from standard PHP output Phal-
con\Cache\Frontend\Output

Data It’s used to cache any kind of PHP data (big arrays, objects, text, etc). Data is
serialized before stored in the backend.

Phal-
con\Cache\Frontend\Data

Base64 It’s used to cache binary data. The data is serialized using base64_encode before be
stored in the backend.

Phal-
con\Cache\Frontend\Base64

Json Data is encoded in JSON before be stored in the backend. Decoded after be
retrieved. This frontend is useful to share data with other languages or frameworks.

Phal-
con\Cache\Frontend\Json

Ig-
Bi-
nary

It’s used to cache any kind of PHP data (big arrays, objects, text, etc). Data is
serialized using IgBinary before be stored in the backend.

Phal-
con\Cache\Frontend\Igbinary

None It’s used to cache any kind of PHP data without serializing them. Phal-
con\Cache\Frontend\None

Implementing your own Frontend adapters

The Phalcon\Cache\FrontendInterface interface must be implemented in order to create your own frontend adapters or
extend the existing ones.

2.37.11 Backend Adapters

The backend adapters available to store cache data are:

352 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Adapter Description Info Required
Extensions

Example

File Stores data to local plain files Phal-
con\Cache\Backend\File

Mem-
cached

Stores data to a memcached server Mem-
cached

memcache Phal-
con\Cache\Backend\Memcache

APC Stores data to the Alternative PHP
Cache (APC)

APC APC extension Phal-
con\Cache\Backend\Apc

Mongo Stores data to Mongo Database Mon-
goDb

Mongo Phal-
con\Cache\Backend\Mongo

XCache Stores data in XCache XCache xcache extension Phal-
con\Cache\Backend\Xcache

Implementing your own Backend adapters

The Phalcon\Cache\BackendInterface interface must be implemented in order to create your own backend adapters or
extend the existing ones.

File Backend Options

This backend will store cached content into files in the local server. The available options for this backend are:

Option Description
prefix A prefix that is automatically prepended to the cache keys
cacheDir A writable directory on which cached files will be placed

Memcached Backend Options

This backend will store cached content on a memcached server. The available options for this backend are:

Option Description
prefix A prefix that is automatically prepended to the cache keys
host memcached host
port memcached port
persistent create a persitent connection to memcached?

APC Backend Options

This backend will store cached content on Alternative PHP Cache (APC). The available options for this backend are:

Option Description
prefix A prefix that is automatically prepended to the cache keys

Mongo Backend Options

This backend will store cached content on a MongoDB server. The available options for this backend are:

Option Description
prefix A prefix that is automatically prepended to the cache keys
server A MongoDB connection string
db Mongo database name
collection Mongo collection in the database

2.37. Improving Performance with Cache 353

http://www.php.net/memcache
http://www.php.net/memcache
http://pecl.php.net/package/memcache
http://php.net/apc
http://pecl.php.net/package/APC
http://mongodb.org/
http://mongodb.org/
http://pecl.php.net/package/mongo
http://xcache.lighttpd.net/
http://pecl.php.net/package/xcache
http://php.net/apc


Phalcon PHP Framework Documentation, Release 1.3.0

XCache Backend Options

This backend will store cached content on XCache (XCache). The available options for this backend are:

Option Description
prefix A prefix that is automatically prepended to the cache keys

There are more adapters available for this components in the Phalcon Incubator

2.38 Security

This component aids the developer in common security tasks such as password hashing and Cross-Site Request Forgery
protection (CSRF).

2.38.1 Password Hashing

Storing passwords in plain text is a bad security practice. Anyone with access to the database will immediately have
access to all user accounts thus being able to engage in unauthorized activities. To combat that, many applications use
the familiar one way hashing methods “md5” and “sha1”. However, hardware evolves each day, and becomes faster,
these algorithms are becoming vulnerable to brute force attacks. These attacks are also known as rainbow tables.

To solve this problem we can use hash algorithms as bcrypt. Why bcrypt? Thanks to its “Eksblowfish” key setup
algorithm we can make the password encryption as “slow” as we want. Slow algorithms make the process to calculate
the real password behind a hash extremely difficult if not impossible. This will protect your for a long time from a
possible attack using rainbow tables.

This component gives you the ability to use this algorithm in a simple way:

<?php

use Phalcon\Mvc\Controller;

class UsersController extends Controller
{

public function registerAction()
{

$user = new Users();

$login = $this->request->getPost('login');
$password = $this->request->getPost('password');

$user->login = $login;

//Store the password hashed
$user->password = $this->security->hash($password);

$user->save();
}

}

We saved the password hashed with a default work factor. A higher work factor will make the password less vulnerable
as its encryption will be slow. We can check if the password is correct as follows:

354 Chapter 2. Table of Contents

http://xcache.lighttpd.net/
https://github.com/phalcon/incubator
http://php.net/manual/en/function.md5.php
http://php.net/manual/en/function.sha1.php
http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Bcrypt#Algorithm


Phalcon PHP Framework Documentation, Release 1.3.0

<?php

use Phalcon\Mvc\Controller;

class SessionController extends Controller
{

public function loginAction()
{

$login = $this->request->getPost('login');
$password = $this->request->getPost('password');

$user = Users::findFirstByLogin($login);
if ($user) {

if ($this->security->checkHash($password, $user->password)) {
//The password is valid

}
}

//The validation has failed
}

}

The salt is generated using pseudo-random bytes with the PHP’s function openssl_random_pseudo_bytes so is required
to have the openssl extension loaded.

2.38.2 Cross-Site Request Forgery (CSRF) protection

This is another common attack against web sites and applications. Forms designed to perform tasks such as user
registration or adding comments are vulnerable to this attack.

The idea is to prevent the form values from being sent outside our application. To fix this, we generate a random nonce
(token) in each form, add the token in the session and then validate the token once the form posts data back to our
application by comparing the stored token in the session to the one submitted by the form:

<?php echo Tag::form('session/login') ?>

<!-- login and password inputs ... -->

<input type="hidden" name="<?php echo $this->security->getTokenKey() ?>"
value="<?php echo $this->security->getToken() ?>"/>

</form>

Then in the controller’s action you can check if the CSRF token is valid:

<?php

use Phalcon\Mvc\Controller;

class SessionController extends Controller
{

public function loginAction()
{

if ($this->request->isPost()) {

2.38. Security 355

http://php.net/manual/en/function.openssl-random-pseudo-bytes.php
http://php.net/manual/en/book.openssl.php
http://en.wikipedia.org/wiki/Cryptographic_nonce


Phalcon PHP Framework Documentation, Release 1.3.0

if ($this->security->checkToken()) {
//The token is ok

}
}

}

}

Adding a captcha to the form is also recommended to completely avoid the risks of this attack.

2.38.3 Setting up the component

This component is automatically registered in the services container as ‘security’, you can re-register it to setup it’s
options:

<?php

$di->set('security', function(){

$security = new Phalcon\Security();

//Set the password hashing factor to 12 rounds
$security->setWorkFactor(12);

return $security;
}, true);

2.38.4 External Resources

• Vökuró, is a sample application that uses the Security component for avoid CSRF and password hashing,
[Github]

2.39 Encryption/Decryption

Phalcon provides encryption facilities via the Phalcon\Crypt component. This class offers simple object-oriented
wrappers to the mcrypt php’s encryption library.

By default, this component provides secure encryption using AES-256 (rijndael-256-cbc).

2.39.1 Basic Usage

This component is designed to provide a very simple usage:

<?php

//Create an instance
$crypt = new Phalcon\Crypt();

$key = 'le password';
$text = 'This is a secret text';

$encrypted = $crypt->encrypt($text, $key);

356 Chapter 2. Table of Contents

http://www.google.com/recaptcha
http://vokuro.phalconphp.com
https://github.com/phalcon/vokuro
http://www.php.net/manual/en/book.mcrypt.php


Phalcon PHP Framework Documentation, Release 1.3.0

echo $crypt->decrypt($encrypted, $key);

You can use the same instance to encrypt/decrypt several times:

<?php

//Create an instance
$crypt = new Phalcon\Crypt();

$texts = array(
'my-key' => 'This is a secret text',
'other-key' => 'This is a very secret'

);

foreach ($texts as $key => $text) {

//Perform the encryption
$encrypted = $crypt->encrypt($text, $key);

//Now decrypt
echo $crypt->decrypt($encrypted, $key);

}

2.39.2 Encryption Options

The following options are available to change the encryption behavior:

Name Description
Cipher The cipher is one of the encryption algorithms supported by libmcrypt. You can see a list here
Mode One of the encryption modes supported by libmcrypt (ecb, cbc, cfb, ofb)

Example:

<?php

//Create an instance
$crypt = new Phalcon\Crypt();

//Use blowfish
$crypt->setCipher('blowfish');

$key = 'le password';
$text = 'This is a secret text';

echo $crypt->encrypt($text, $key);

2.39.3 Base64 Support

In order that encryption is properly transmited (emails) or displayed (browsers) base64 encoding is usually applied to
encrypted texts:

<?php

//Create an instance
$crypt = new Phalcon\Crypt();

2.39. Encryption/Decryption 357

http://www.php.net/manual/en/mcrypt.ciphers.php
http://www.php.net/manual/en/function.base64-encode.php


Phalcon PHP Framework Documentation, Release 1.3.0

$key = 'le password';
$text = 'This is a secret text';

$encrypt = $crypt->encryptBase64($text, $key);

echo $crypt->decryptBase64($text, $key);

2.39.4 Setting up an Encryption service

You can set up the encryption component in the services container in order to use it from any part of the application:

<?php

$di->set('crypt', function() {

$crypt = new Phalcon\Crypt();

//Set a global encryption key
$crypt->setKey('%31.1e$i86e$f!8jz');

return $crypt;
}, true);

Then, for example, in a controller you can use it as follows:

<?php

use Phalcon\Mvc\Controller;

class SecretsController extends Controller
{

public function saveAction()
{

$secret = new Secrets();

$text = $this->request->getPost('text');

$secret->content = $this->crypt->encrypt($text);

if ($secret->save()) {
$this->flash->success('Secret was successfully created!');

}

}

}

2.40 Access Control Lists ACL

Phalcon\Acl provides an easy and lightweight management of ACLs as well as the permissions attached to them.
Access Control Lists (ACL) allow an application to control access to its areas and the underlying objects from requests.
You are encouraged to read more about the ACL methodology so as to be familiar with its concepts.

358 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Access_control_list


Phalcon PHP Framework Documentation, Release 1.3.0

In summary, ACLs have roles and resources. Resources are objects which abide by the permissions defined to them
by the ACLs. Roles are objects that request access to resources and can be allowed or denied access by the ACL
mechanism.

2.40.1 Creating an ACL

This component is designed to initially work in memory. This provides ease of use and speed in accessing every aspect
of the list. The Phalcon\Acl constructor takes as its first parameter an adapter used to retriever the information related
to the control list. An example using the memory adapter is below:

<?php $acl = new \Phalcon\Acl\Adapter\Memory();

By default Phalcon\Acl allows access to action on resources that have not been yet defined. To increase the security
level of the access list we can define a “deny” level as a default access level.

<?php

// Default action is deny access
$acl->setDefaultAction(Phalcon\Acl::DENY);

2.40.2 Adding Roles to the ACL

A role is an object that can or cannot access certain resources in the access list. As an example, we will define roles as
groups of people in an organization. The Phalcon\Acl\Role class is available to create roles in a more structured way.
Let’s add some roles to our recently created list:

<?php

// Create some roles
$roleAdmins = new \Phalcon\Acl\Role("Administrators", "Super-User role");
$roleGuests = new \Phalcon\Acl\Role("Guests");

// Add "Guests" role to acl
$acl->addRole($roleGuests);

// Add "Designers" role to acl without a Phalcon\Acl\Role
$acl->addRole("Designers");

As you can see, roles are defined directly without using an instance.

2.40.3 Adding Resources

Resources are objects where access is controlled. Normally in MVC applications resources refer to controllers. Al-
though this is not mandatory, the Phalcon\Acl\Resource class can be used in defining resources. It’s important to add
related actions or operations to a resource so that the ACL can understand what it should to control.

<?php

// Define the "Customers" resource
$customersResource = new \Phalcon\Acl\Resource("Customers");

// Add "customers" resource with a couple of operations
$acl->addResource($customersResource, "search");
$acl->addResource($customersResource, array("create", "update"));

2.40. Access Control Lists ACL 359



Phalcon PHP Framework Documentation, Release 1.3.0

2.40.4 Defining Access Controls

Now we’ve roles and resources. It’s time to define the ACL i.e. which roles can access which resources. This part is
very important especially taking in consideration your default access level “allow” or “deny”.

<?php

// Set access level for roles into resources
$acl->allow("Guests", "Customers", "search");
$acl->allow("Guests", "Customers", "create");
$acl->deny("Guests", "Customers", "update");

The allow method designates that a particular role has granted access to access a particular resource. The deny method
does the opposite.

2.40.5 Querying an ACL

Once the list has been completely defined. We can query it to check if a role has a given permission or not.

<?php

// Check whether role has access to the operations
$acl->isAllowed("Guests", "Customers", "edit"); //Returns 0
$acl->isAllowed("Guests", "Customers", "search"); //Returns 1
$acl->isAllowed("Guests", "Customers", "create"); //Returns 1

2.40.6 Roles Inheritance

You can build complex role structures using the inheritance that Phalcon\Acl\Role provides. Roles can inherit from
other roles, thus allowing access to supersets or subsets of resources. To use role inheritance, you need to pass the
inherited role as the second parameter of the function call, when adding that role in the list.

<?php

// Create some roles
$roleAdmins = new \Phalcon\Acl\Role("Administrators", "Super-User role");
$roleGuests = new \Phalcon\Acl\Role("Guests");

// Add "Guests" role to acl
$acl->addRole($roleGuests);

// Add "Administrators" role inheriting from "Guests" its accesses
$acl->addRole($roleAdmins, $roleGuests);

2.40.7 Serializing ACL lists

To improve performance Phalcon\Acl instances can be serialized and stored in APC, session, text files or a database
table so that they can be loaded at will without having to redefine the whole list. You can do that as follows:

<?php

//Check whether acl data already exist
if (!file_exists("app/security/acl.data")) {

360 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$acl = new \Phalcon\Acl\Adapter\Memory();

//... Define roles, resources, access, etc

// Store serialized list into plain file
file_put_contents("app/security/acl.data", serialize($acl));

} else {

//Restore acl object from serialized file
$acl = unserialize(file_get_contents("app/security/acl.data"));

}

// Use acl list as needed
if ($acl->isAllowed("Guests", "Customers", "edit")) {

echo "Access granted!";
} else {

echo "Access denied :(";
}

2.40.8 Acl Events

Phalcon\Acl is able to send events to a EventsManager if it’s present. Events are triggered using the type “acl”. Some
events when returning boolean false could stop the active operation. The following events are supported:

Event Name Triggered Can stop operation?
beforeCheckAccess Triggered before checking if a role/resource has access Yes
afterCheckAccess Triggered after checking if a role/resource has access No

The following example demonstrates how to attach listeners to this component:

<?php

//Create an event manager
$eventsManager = new Phalcon\Events\Manager();

//Attach a listener for type "acl"
$eventsManager->attach("acl", function($event, $acl) {

if ($event->getType() == 'beforeCheckAccess') {
echo $acl->getActiveRole(),

$acl->getActiveResource(),
$acl->getActiveAccess();

}
});

$acl = new \Phalcon\Acl\Adapter\Memory();

//Setup the $acl
//...

//Bind the eventsManager to the acl component
$acl->setEventsManager($eventManagers);

2.40. Access Control Lists ACL 361



Phalcon PHP Framework Documentation, Release 1.3.0

2.40.9 Implementing your own adapters

The Phalcon\Acl\AdapterInterface interface must be implemented in order to create your own ACL adapters or extend
the existing ones.

2.41 Multi-lingual Support

The component Phalcon\Translate aids in creating multilingual applications. Applications using this compo-
nent, display content in different languages, based on the user’s chosen language supported by the application.

2.41.1 Adapters

This component makes use of adapters to read translation messages from different sources in a unified way.

Adapter Description
NativeArray Uses PHP arrays to store the messages. This is the best option in terms of performance.

2.41.2 Component Usage

Translation strings are stored in files. The structure of these files could vary depending of the adapter used. Phalcon
gives you the freedom to organize your translation strings. A simple structure could be:

app/messages/en.php
app/messages/es.php
app/messages/fr.php
app/messages/zh.php

Each file contains an array of the translations in a key/value manner. For each translation file, keys are unique. The
same array is used in different files, where keys remain the same and values contain the translated strings depending
on each language.

<?php

//app/messages/es.php
$messages = array(

"hi" => "Hello",
"bye" => "Good Bye",
"hi-name" => "Hello %name%",
"song" => "This song is %song%"

);

<?php

//app/messages/fr.php
$messages = array(

"hi" => "Bonjour",
"bye" => "Au revoir",
"hi-name" => "Bonjour %name%",
"song" => "La chanson est %song%"

);

Implementing the translation mechanism in your application is trivial but depends on how you wish to implement it.
You can use an automatic detection of the language from the user’s browser or you can provide a settings page where
the user can select their language.

362 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

A simple way of detecting the user’s language is to parse the $_SERVER[’HTTP_ACCEPT_LANGUAGE’] contents,
or if you wish, access it directly by calling $this->request->getBestLanguage() from an action/controller:

<?php

class UserController extends \Phalcon\Mvc\Controller
{

protected function _getTranslation()
{

//Ask browser what is the best language
$language = $this->request->getBestLanguage();

//Check if we have a translation file for that lang
if (file_exists("app/messages/".$language.".php")) {

require "app/messages/".$language.".php";
} else {

// fallback to some default
require "app/messages/en.php";

}

//Return a translation object
return new \Phalcon\Translate\Adapter\NativeArray(array(

"content" => $messages
));

}

public function indexAction()
{
$this->view->setVar("name", "Mike");
$this->view->setVar("t", $this->_getTranslation());

}

}

The _getTranslation method is available for all actions that require translations. The $t variable is passed to the views,
and with it, we can translate strings in that layer:

<!-- welcome -->
<!-- String: hi => 'Hello' -->
<p><?php echo $t->_("hi"), " ", $name; ?></p>

The “_” function is returning the translated string based on the index passed. Some strings need to incorporate place-
holders for calculated data i.e. Hello %name%. These placeholders can be replaced with passed parameters in the “_
function. The passed parameters are in the form of a key/value array, where the key matches the placeholder name and
the value is the actual data to be replaced:

<!-- welcome -->
<!-- String: hi-user => 'Hello %name%' -->
<p><?php echo $t->_("hi-user", array("name" => $name)); ?></p>

Some applications implement multilingual on the URL such as http://www.mozilla.org/es-ES/firefox/. Phalcon can
implement this by using a Router.

2.41. Multi-lingual Support 363

http://www.mozilla.org/


Phalcon PHP Framework Documentation, Release 1.3.0

2.41.3 Implementing your own adapters

The Phalcon\Translate\AdapterInterface interface must be implemented in order to create your own translate adapters
or extend the existing ones:

<?php

class MyTranslateAdapter implements Phalcon\Translate\AdapterInterface
{

/**
* Adapter constructor

*
* @param array $data

*/
public function __construct($options);

/**
* Returns the translation string of the given key

*
* @param string $translateKey

* @param array $placeholders

* @return string

*/
public function _($translateKey, $placeholders=null);

/**
* Returns the translation related to the given key

*
* @param string $index

* @param array $placeholders

* @return string

*/
public function query($index, $placeholders=null);

/**
* Check whether is defined a translation key in the internal array

*
* @param string $index

* @return bool

*/
public function exists($index);

}

There are more adapters available for this components in the Phalcon Incubator

2.42 Universal Class Loader

Phalcon\Loader is a component that allows you to load project classes automatically, based on some predefined rules.
Since this component is written in C, it provides the lowest overhead in reading and interpreting external PHP files.

The behavior of this component is based on the PHP’s capability of autoloading classes. If a class that does not exist
is used in any part of the code, a special handler will try to load it. Phalcon\Loader serves as the special handler for
this operation. By loading classes on a need to load basis, the overall performance is increased since the only file reads
that occur are for the files needed. This technique is called lazy initialization.

364 Chapter 2. Table of Contents

https://github.com/phalcon/incubator/tree/master/Library/Phalcon/Translate/Adapter
http://www.php.net/manual/en/language.oop5.autoload.php
http://en.wikipedia.org/wiki/Lazy_initialization


Phalcon PHP Framework Documentation, Release 1.3.0

With this component you can load files from other projects or vendors, this autoloader is PSR-0 compliant.

Phalcon\Loader offers four options to autoload classes. You can use them one at a time or combine them.

2.42.1 Registering Namespaces

If you’re organizing your code using namespaces, or external libraries do so, the registerNamespaces() provides the
autoloading mechanism. It takes an associative array, which keys are namespace prefixes and their values are direc-
tories where the classes are located in. The namespace separator will be replaced by the directory separator when the
loader try to find the classes. Remember always to add a trailing slash at the end of the paths.

<?php

// Creates the autoloader
$loader = new \Phalcon\Loader();

//Register some namespaces
$loader->registerNamespaces(

array(
"Example\Base" => "vendor/example/base/",
"Example\Adapter" => "vendor/example/adapter/",
"Example" => "vendor/example/",

)
);

// register autoloader
$loader->register();

// The required class will automatically include the
// file vendor/example/adapter/Some.php
$some = new Example\Adapter\Some();

2.42.2 Registering Prefixes

This strategy is similar to the namespaces strategy. It takes an associative array, which keys are prefixes and their
values are directories where the classes are located in. The namespace separator and the “_” underscore character will
be replaced by the directory separator when the loader try to find the classes. Remember always to add a trailing slash
at the end of the paths.

<?php

// Creates the autoloader
$loader = new \Phalcon\Loader();

//Register some prefixes
$loader->registerPrefixes(

array(
"Example_Base" => "vendor/example/base/",
"Example_Adapter" => "vendor/example/adapter/",
"Example_" => "vendor/example/",

)
);

// register autoloader
$loader->register();

2.42. Universal Class Loader 365

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md


Phalcon PHP Framework Documentation, Release 1.3.0

// The required class will automatically include the
// file vendor/example/adapter/Some.php
$some = new Example_Adapter_Some();

2.42.3 Registering Directories

The third option is to register directories, in which classes could be found. This option is not recommended in terms
of performance, since Phalcon will need to perform a significant number of file stats on each folder, looking for the
file with the same name as the class. It’s important to register the directories in relevance order. Remember always
add a trailing slash at the end of the paths.

<?php

// Creates the autoloader
$loader = new \Phalcon\Loader();

// Register some directories
$loader->registerDirs(

array(
"library/MyComponent/",
"library/OtherComponent/Other/",
"vendor/example/adapters/",
"vendor/example/"

)
);

// register autoloader
$loader->register();

// The required class will automatically include the file from
// the first directory where it has been located
// i.e. library/OtherComponent/Other/Some.php
$some = new Some();

2.42.4 Registering Classes

The last option is to register the class name and its path. This autoloader can be very useful when the folder convention
of the project does not allow for easy retrieval of the file using the path and the class name. This is the fastest method
of autoloading. However the more your application grows, the more classes/files need to be added to this autoloader,
which will effectively make maintenance of the class list very cumbersome and it is not recommended.

<?php

// Creates the autoloader
$loader = new \Phalcon\Loader();

// Register some classes
$loader->registerClasses(

array(
"Some" => "library/OtherComponent/Other/Some.php",
"Example\Base" => "vendor/example/adapters/Example/BaseClass.php",

)
);

// register autoloader

366 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$loader->register();

// Requiring a class will automatically include the file it references
// in the associative array
// i.e. library/OtherComponent/Other/Some.php
$some = new Some();

2.42.5 Additional file extensions

Some autoloading strategies such as “prefixes”, “namespaces” or “directories” automatically append the “php” exten-
sion at the end of the checked file. If you are using additional extensions you could set it with the method “setExten-
sions”. Files are checked in the order as it were defined:

<?php

// Creates the autoloader
$loader = new \Phalcon\Loader();

//Set file extensions to check
$loader->setExtensions(array("php", "inc", "phb"));

2.42.6 Modifying current strategies

Additional auto-loading data can be added to existing values in the following way:

<?php

// Adding more directories
$loader->registerDirs(

array(
"../app/library/",
"../app/plugins/"

),
true

);

Passing “true” as second parameter will merge the current values with new ones in any strategy.

2.42.7 Security Layer

Phalcon\Loader offers a security layer sanitizing by default class names avoiding possible inclusion of unauthorized
files. Consider the following example:

<?php

//Basic autoloader
spl_autoload_register(function($className) {

if (file_exists($className . '.php')) {
require $className . '.php';

}
});

The above auto-loader lacks of any security check, if by mistake in a function that launch the auto-loader, a malicious
prepared string is used as parameter this would allow to execute any file accessible by the application:

2.42. Universal Class Loader 367



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//This variable is not filtered and comes from an insecure source
$className = '../processes/important-process';

//Check if the class exists triggering the auto-loader
if (class_exists($className)) {

//...
}

If ‘../processes/important-process.php’ is a valid file, an external user could execute the file without authorization.

To avoid these or most sophisticated attacks, Phalcon\Loader removes any invalid character from the class name
reducing the possibility of being attacked.

2.42.8 Autoloading Events

In the following example, the EventsManager is working with the class loader, allowing us to obtain debugging
information regarding the flow of operation:

<?php

$eventsManager = new \Phalcon\Events\Manager();

$loader = new \Phalcon\Loader();

$loader->registerNamespaces(array(
'Example\\Base' => 'vendor/example/base/',
'Example\\Adapter' => 'vendor/example/adapter/',
'Example' => 'vendor/example/'

));

//Listen all the loader events
$eventsManager->attach('loader', function($event, $loader) {

if ($event->getType() == 'beforeCheckPath') {
echo $loader->getCheckedPath();

}
});

$loader->setEventsManager($eventsManager);

$loader->register();

Some events when returning boolean false could stop the active operation. The following events are supported:

Event Name Triggered Can stop operation?
beforeCheckClass Triggered before starting the autoloading process Yes
pathFound Triggered when the loader locate a class No
afterCheckClass Triggered after finish the autoloading process. If this event is launched the autoloader didn’t find the class file No

2.42.9 Troubleshooting

Some things to keep in mind when using the universal autoloader:

• Auto-loading process is case-sensitive, the class will be loaded as it is written in the code

• Strategies based on namespaces/prefixes are faster than the directories strategy

368 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

• If a cache bytecode like APC is installed this will used to retrieve the requested file (an implicit caching of the
file is performed)

2.43 Logging

Phalcon\Logger is a component whose purpose is to provide logging services for applications. It offers logging to
different backends using different adapters. It also offers transaction logging, configuration options, different formats
and filters. You can use the Phalcon\Logger for every logging need your application has, from debugging processes to
tracing application flow.

2.43.1 Adapters

This component makes use of adapters to store the logged messages. The use of adapters allows for a common
interface for logging while switching backends if necessary. The adapters supported are:

Adapter Description API
File Logs to a plain text file Phalcon\Logger\Adapter\File
Stream Logs to a PHP Streams Phalcon\Logger\Adapter\Stream
Syslog Logs to the system logger Phalcon\Logger\Adapter\Syslog
Firephp Logs to the FirePHP Phalcon\Logger\Adapter\FirePHP

2.43.2 Creating a Log

The example below shows how to create a log and add messages to it:

<?php

use Phalcon\Logger\Adapter\File as FileAdapter;

$logger = new FileAdapter("app/logs/test.log");
$logger->log("This is a message");
$logger->log("This is an error", \Phalcon\Logger::ERROR);
$logger->error("This is another error");

The log generated is below:

[Tue, 17 Apr 12 22:09:02 -0500][DEBUG] This is a message
[Tue, 17 Apr 12 22:09:02 -0500][ERROR] This is an error
[Tue, 17 Apr 12 22:09:02 -0500][ERROR] This is another error

2.43.3 Transactions

Logging data to an adapter i.e. File (file system) is always an expensive operation in terms of performance. To combat
that, you can take advantage of logging transactions. Transactions store log data temporarily in memory and later on
write the data to the relevant adapter (File in this case) in a single atomic operation.

<?php

use Phalcon\Logger\Adapter\File as FileAdapter;

// Create the logger
$logger = new FileAdapter("app/logs/test.log");

2.43. Logging 369

http://php.net/manual/en/book.apc.php


Phalcon PHP Framework Documentation, Release 1.3.0

// Start a transaction
$logger->begin();

// Add messages
$logger->alert("This is an alert");
$logger->error("This is another error");

// Commit messages to file
$logger->commit();

2.43.4 Logging to Multiple Handlers

Phalcon\Logger allows to send messages to multiple handlers with a just single call:

<?php

use Phalcon\Logger,
Phalcon\Logger\Multiple as MultipleStream,
Phalcon\Logger\Adapter\File as FileAdapter,
Phalcon\Logger\Adapter\Stream as StreamAdapter;

$logger = new MultipleStream();

$logger->push(new FileAdapter('test.log'));
$logger->push(new StreamAdapter('php://stdout'));

$logger->log("This is a message");
$logger->log("This is an error", Logger::ERROR);
$logger->error("This is another error");

The messages are sent to the handlers in the order they where registered.

2.43.5 Message Formatting

This component makes use of ‘formatters’ to format messages before sent them to the backend. The formatters
available are:

Adapter Description API
Line Formats the messages using an one-line string Phalcon\Logger\Formatter\Line
Json Prepares a message to be encoded with JSON Phalcon\Logger\Formatter\Json
Syslog Prepares a message to be sent to syslog Phalcon\Logger\Formatter\Syslog

Line Formatter

Formats the messages using a one-line string. The default logging format is:

[%date%][%type%] %message%

You can change the default format using setFormat(), this allows you to change the format of the logged messages by
defining your own. The log format variables allowed are:

Variable Description
%message% The message itself expected to be logged
%date% Date the message was added
%type% Uppercase string with message type

370 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

The example below shows how to change the log format:

<?php

use Phalcon\Logger\Formatter\Line as LineFormatter;

//Changing the logger format
$formatter = new LineFormatter("%date% - %message%");
$logger->setFormatter($formatter);

Implementing your own formatters

The Phalcon\Logger\FormatterInterface interface must be implemented in order to create your own logger formatter
or extend the existing ones.

2.43.6 Adapters

The following examples show the basic use of each adapter:

Stream Logger

The stream logger writes messages to a valid registered stream in PHP. A list of streams is available here:

<?php

use Phalcon\Logger\Adapter\Stream as StreamAdapter;

// Opens a stream using zlib compression
$logger = new StreamAdapter("compress.zlib://week.log.gz");

// Writes the logs to stderr
$logger = new StreamAdapter("php://stderr");

File Logger

This logger uses plain files to log any kind of data. By default all logger files are open using append mode which open
the files for writing only; placing the file pointer at the end of the file. If the file does not exist, attempt to create it.
You can change this mode passing additional options to the constructor:

<?php

use Phalcon\Logger\Adapter\File as FileAdapter;

// Create the file logger in 'w' mode
$logger = new FileAdapter("app/logs/test.log", array(

'mode' => 'w'
));

Syslog Logger

This logger sends messages to the system logger. The syslog behavior may vary from one operating system to another.

2.43. Logging 371

http://php.net/manual/en/wrappers.php


Phalcon PHP Framework Documentation, Release 1.3.0

<?php
use Phalcon\Logger\Adapter\Syslog as SyslogAdapter;

// Basic Usage
$logger = new SyslogAdapter(null);

// Setting ident/mode/facility
$logger = new SyslogAdapter("ident-name", array(

'option' => LOG_NDELAY,
'facility' => LOG_MAIL

));

FirePHP Logger

This logger sends messages to the FirePHP.

<?php

use Phalcon\Logger\Adapter\Firephp as Firephp;

$logger = new Firephp("");
$logger->log("This is a message");
$logger->log("This is an error", \Phalcon\Logger::ERROR);
$logger->error("This is another error");

Implementing your own adapters

The Phalcon\Logger\AdapterInterface interface must be implemented in order to create your own logger adapters or
extend the existing ones.

2.44 Annotations Parser

It is the first time that an annotations parser component is written in C for the PHP world. Phalcon\Annotations is
a general purpose component that provides ease of parsing and caching annotations in PHP classes to be used in
applications.

Annotations are read from docblocks in classes, methods and properties. An annotation can be placed at any position
in the docblock:

<?php

/**
* This is the class description

*
* @AmazingClass(true)

*/
class Example
{

/**
* This a property with a special feature

*
* @SpecialFeature

*/

372 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

protected $someProperty;

/**
* This is a method

*
* @SpecialFeature

*/
public function someMethod()
{

// ...
}

}

In the above example we find some annotations in the comments, an annotation has the following syntax:

@Annotation-Name[(param1, param2, ...)]

Also, an annotation could be placed at any part of a docblock:

<?php

/**
* This a property with a special feature

*
* @SpecialFeature

*
* More comments

*
* @AnotherSpecialFeature(true)

*/

The parser is highly flexible, the following docblock is valid:

<?php

/**
* This a property with a special feature @SpecialFeature({

someParameter="the value", false

}) More comments @AnotherSpecialFeature(true) @MoreAnnotations

**/

However, to make the code more maintainable and understandable it is recommended to place annotations at the end
of the docblock:

<?php

/**
* This a property with a special feature

* More comments

*
* @SpecialFeature({someParameter="the value", false})

* @AnotherSpecialFeature(true)

*/

2.44.1 Reading Annotations

A reflector is implemented to easily get the annotations defined on a class using an object-oriented interface:

2.44. Annotations Parser 373



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$reader = new \Phalcon\Annotations\Adapter\Memory();

//Reflect the annotations in the class Example
$reflector = $reader->get('Example');

//Read the annotations in the class' docblock
$annotations = $reflector->getClassAnnotations();

//Traverse the annotations
foreach ($annotations as $annotation) {

//Print the annotation name
echo $annotation->getName(), PHP_EOL;

//Print the number of arguments
echo $annotation->numberArguments(), PHP_EOL;

//Print the arguments
print_r($annotation->getArguments());

}

The annotation reading process is very fast, however, for performance reasons it is recommended to store the parsed
annotations using an adapter. Adapters cache the processed annotations avoiding the need of parse the annotations
again and again.

Phalcon\Annotations\Adapter\Memory was used in the above example. This adapter only caches the annotations while
the request is running, for this reason th adapter is more suitable for development. There are other adapters to swap
out when the application is in production stage.

2.44.2 Types of Annotations

Annotations may have parameters or not. A parameter could be a simple literal (strings, number, boolean, null), an
array, a hashed list or other annotation:

<?php

/**
* Simple Annotation

*
* @SomeAnnotation

*/

/**
* Annotation with parameters

*
* @SomeAnnotation("hello", "world", 1, 2, 3, false, true)

*/

/**
* Annotation with named parameters

*
* @SomeAnnotation(first="hello", second="world", third=1)

* @SomeAnnotation(first: "hello", second: "world", third: 1)

*/

374 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

/**
* Passing an array

*
* @SomeAnnotation([1, 2, 3, 4])

* @SomeAnnotation({1, 2, 3, 4})

*/

/**
* Passing a hash as parameter

*
* @SomeAnnotation({first=1, second=2, third=3})

* @SomeAnnotation({'first'=1, 'second'=2, 'third'=3})

* @SomeAnnotation({'first': 1, 'second': 2, 'third': 3})

* @SomeAnnotation(['first': 1, 'second': 2, 'third': 3])

*/

/**
* Nested arrays/hashes

*
* @SomeAnnotation({"name"="SomeName", "other"={

* "foo1": "bar1", "foo2": "bar2", {1, 2, 3},

* }})

*/

/**
* Nested Annotations

*
* @SomeAnnotation(first=@AnotherAnnotation(1, 2, 3))

*/

2.44.3 Practical Usage

Next we will explain some practical examples of annotations in PHP applications:

Cache Enabler with Annotations

Let’s pretend we’ve the following controller and the developer wants to create a plugin that automatically start the
cache if the latest action executed is marked as cacheable. First off all we register a plugin in the Dispatcher service to
be notified when a route is executed:

<?php

$di['dispatcher'] = function() {

$eventsManager = new \Phalcon\Events\Manager();

//Attach the plugin to 'dispatch' events
$eventsManager->attach('dispatch', new CacheEnablerPlugin());

$dispatcher = new \Phalcon\Mvc\Dispatcher();
$dispatcher->setEventsManager($eventsManager);
return $dispatcher;

};

CacheEnablerPlugin is a plugin that intercept every action executed in the dispatcher enabling the cache if needed:

2.44. Annotations Parser 375



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

/**
* Enables the cache for a view if the latest

* executed action has the annotation @Cache

*/
class CacheEnablerPlugin extends \Phalcon\Mvc\User\Plugin
{

/**
* This event is executed before every route is executed in the dispatcher

*
*/

public function beforeExecuteRoute($event, $dispatcher)
{

//Parse the annotations in the method currently executed
$annotations = $this->annotations->getMethod(

$dispatcher->getActiveController(),
$dispatcher->getActiveMethod()

);

//Check if the method has an annotation 'Cache'
if ($annotations->has('Cache')) {

//The method has the annotation 'Cache'
$annotation = $annotations->get('Cache');

//Get the lifetime
$lifetime = $annotation->getNamedParameter('lifetime');

$options = array('lifetime' => $lifetime);

//Check if there is an user defined cache key
if ($annotation->hasNamedParameter('key')) {

$options['key'] = $annotation->getNamedParameter('key');
}

//Enable the cache for the current method
$this->view->cache($options);

}

}

}

Now, we can use the annotation in a controller:

<?php

class NewsController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

/**

376 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

* This is a comment

*
* @Cache(lifetime=86400)

*/
public function showAllAction()
{

$this->view->article = Articles::find();
}

/**
* This is a comment

*
* @Cache(key="my-key", lifetime=86400)

*/
public function showAction($slug)
{

$this->view->article = Articles::findFirstByTitle($slug);
}

}

Choose template to render

In this example we’re going to use annotations to tell Phalcon\Mvc\View\Simple what template must me rendered
once the action has been executed:

2.44.4 Annotations Adapters

This component makes use of adapters to cache or no cache the parsed and processed annotations thus improving the
performance or prodiving facilities to development/testing:

Name Description API
Mem-
ory

The annotations are cached only in memory. When the request ends the cache is
cleaned reloading the annotations in each request. This adapter is suitable for a
development stage

Phal-
con\Annotations\Adapter\Memory

Files Parsed and processed annotations are stored permanently in PHP files improving
performance. This adapter must be used together with a bytecode cache.

Phal-
con\Annotations\Adapter\Files

APC Parsed and processed annotations are stored permanently in the APC cache
improving performance. This is the faster adapter

Phal-
con\Annotations\Adapter\Apc

XCacheParsed and processed annotations are stored permanently in the XCache cache
improving performance. This is a fast adapter too

Phal-
con\Annotations\Adapter\Xcache

Implementing your own adapters

The Phalcon\Annotations\AdapterInterface interface must be implemented in order to create your own annotations
adapters or extend the existing ones.

2.44.5 External Resources

• Tutorial: Creating a custom model’s initializer with Annotations

2.44. Annotations Parser 377

http://blog.phalconphp.com/post/47471246411/tutorial-creating-a-custom-models-initializer-with


Phalcon PHP Framework Documentation, Release 1.3.0

2.45 Command Line Applications

CLI applications are executed from the command line. They are useful to create cron jobs, scripts, command utilities
and more.

2.45.1 Structure

A minimal structure of a CLI application will look like this:

• app/config/config.php

• app/tasks/MainTask.php

• app/cli.php <– main bootstrap file

2.45.2 Creating a Bootstrap

As in regular MVC applications, a bootstrap file is used to bootstrap the application. Instead of the index.php boot-
strapper in web applications, we use a cli.php file for bootstrapping the application.

Below is a sample boostrap that is being used for this example.

<?php

use Phalcon\DI\FactoryDefault\CLI as CliDI,
Phalcon\CLI\Console as ConsoleApp;

define('VERSION', '1.0.0');

//Using the CLI factory default services container
$di = new CliDI();

// Define path to application directory
defined('APPLICATION_PATH')
|| define('APPLICATION_PATH', realpath(dirname(__FILE__)));

/**
* Register the autoloader and tell it to register the tasks directory

*/
$loader = new \Phalcon\Loader();
$loader->registerDirs(

array(
APPLICATION_PATH . '/tasks'

)
);
$loader->register();

// Load the configuration file (if any)
if(is_readable(APPLICATION_PATH . '/config/config.php')) {

$config = include APPLICATION_PATH . '/config/config.php';
$di->set('config', $config);

}

//Create a console application
$console = new ConsoleApp();
$console->setDI($di);

378 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

/**
* Process the console arguments

*/
$arguments = array();
$params = array();

foreach($argv as $k => $arg) {
if($k == 1) {

$arguments['task'] = $arg;
} elseif($k == 2) {

$arguments['action'] = $arg;
} elseif($k >= 3) {

$params[] = $arg;
}

}
if(count($params) > 0) {

$arguments['params'] = $params;
}

// define global constants for the current task and action
define('CURRENT_TASK', (isset($argv[1]) ? $argv[1] : null));
define('CURRENT_ACTION', (isset($argv[2]) ? $argv[2] : null));

try {
// handle incoming arguments
$console->handle($arguments);

}
catch (\Phalcon\Exception $e) {

echo $e->getMessage();
exit(255);

}

This piece of code can be run using:

$ php app/cli.php

This is the default task and the default action

2.45.3 Tasks

Tasks work similar to controllers. Any CLI application needs at least a mainTask and a mainAction and every task
needs to have a mainAction which will run if no action is given explicitly.

Below is an example of the app/tasks/MainTask.php file

<?php

class mainTask extends \Phalcon\CLI\Task
{

public function mainAction() {
echo "\nThis is the default task and the default action \n";

}

}

2.45. Command Line Applications 379



Phalcon PHP Framework Documentation, Release 1.3.0

2.45.4 Processing action parameters

It’s possible to pass parameters to actions, the code for this is already present in the sample bootstrap.

If you run the the application with the following parameters and action:

<?php

class mainTask extends \Phalcon\CLI\Task
{

public function mainAction() {
echo "\nThis is the default task and the default action \n";

}

/**
* @param array $params

*/
public function testAction(array $params) {

echo sprintf('hello %s', $params[0]) . PHP_EOL;
echo sprintf('best regards, %s', $params[1]) . PHP_EOL;

}
}

$ php app/cli.php main test world universe

hello world
best regards, universe

2.45.5 Running tasks in a chain

It’s also possible to run tasks in a chain if it’s required. To accomplish this you must add the console itself to the DI:

$di->setShared('console', $console);

try {
// handle incoming arguments
$console->handle($arguments);

}

Then you can use the console inside of any task. Below is an example of a modified MainTask.php:

class MainTask extends \Phalcon\CLI\Task {

public function mainAction() {
echo "\nThis is the default task and the default action \n";

$this->console->handle(array(
'task' => 'main',
'action' => 'test'

));
}

public function testAction() {
echo '\nI will get printed too!\n';

}

}

380 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

However, it’s a better idea to extend \Phalcon\CLI\Task and implement this kind of logic there.

2.46 Queueing

Perform activities like process a video, resize images or send emails aren’t suitables to be executed online or in real
time because it may slow the loading time of pages, impacting the user experience.

The best solution here is implementing background jobs. A web application must put the job into a queue and wait
that it will be processed.

While you can find more sophisticated PHP extensions to address queueing in your applications like RabbitMQ;
Phalcon provides a client for Beanstalk, a job queueing backend inspired by Memcache. It’s simple, lightweight, and
completely specialized on job queueing.

2.46.1 Putting Jobs into the Queue

After connecting to Bens can insert as many jobs as required. The developer can define the message structure according
to the needs of the application:

<?php

//Connect to the queue
$queue = new Phalcon\Queue\Beanstalk(array(

'host' => '192.168.0.21'
));

//Insert the job in the queue
$queue->put(array('processVideo' => 4871));

Available connection options are:

Option Description Default
host IP where the beanstalk server is located 127.0.0.1
port Connection port 11300

In the above example we stored a message which will allow a background job to process a video. The message is
stored in the queue immediately and does not have a certain time to life.

Additional options as time to run, priority and delay could be passed as second parameter:

<?php

//Insert the job in the queue with options
$queue->put(

array('processVideo' => 4871),
array('priority' => 250, 'delay' => 10, 'ttr' => 3600)

);

The following options are available:

2.46. Queueing 381

http://pecl.php.net/package/amqp
http://www.igvita.com/2010/05/20/scalable-work-queues-with-beanstalk/
http://memcached.org/


Phalcon PHP Framework Documentation, Release 1.3.0

Op-
tion

Description

pri-
ority

It’s an integer < 2**32. Jobs with smaller priority values will be scheduled before jobs with larger
priorities. The most urgent priority is 0; the least urgent priority is 4,294,967,295.

de-
lay

It’s an integer number of seconds to wait before putting the job in the ready queue. The job will be in the
“delayed” state during this time.

ttr Time to run – is an integer number of seconds to allow a worker to run this job. This time is counted from
the moment a worker reserves this job.

Every job put into the queue returns a “job id” the developer can use to track the status of the job:

<?php

$jobId = $queue->put(array('processVideo' => 4871));

2.46.2 Retrieving Messages

Once a job is placed into the queue, those messages can be consumed by a background job which have enough time
to complete the task:

<?php

while (($job = $queue->peekReady()) !== false) {

$message = $job->getBody();

var_dump($message);

$job->delete();
}

Jobs must be removed from the queue to avoid double processing. If multiple background jobs workers are imple-
mented, jobs must be “reserved” so other workers don’t re-process them while other workers have them reserved:

<?php

while ($queue->peekReady() !== false) {

$job = $queue->reserve();

$message = $job->getBody();

var_dump($message);

$job->delete();
}

Our client implement a basic set of the features provided by Beanstalkd but enough to allow you to build applications
implementing queues.

2.47 Database Abstraction Layer

Phalcon\Db is the component behind Phalcon\Mvc\Model that powers the model layer in the framework. It consists
of an independent high-level abstraction layer for database systems completely written in C.

This component allows for a lower level database manipulation than using traditional models.

382 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

This guide is not intended to be a complete documentation of available methods and their arguments.
Please visit the API for a complete reference.

2.47.1 Database Adapters

This component makes use of adapters to encapsulate specific database system details. Phalcon uses PDO to connect
to databases. The following database engines are supported:

Name Description API
MySQL Is the world’s most used relational database management system (RDBMS) that

runs as a server providing multi-user access to a number of databases
Phal-
con\Db\Adapter\Pdo\Mysql

Post-
greSQL

PostgreSQL is a powerful, open source relational database system. It has more than
15 years of active development and a proven architecture that has earned it a strong
reputation for reliability, data integrity, and correctness.

Phal-
con\Db\Adapter\Pdo\Postgresql

SQLite SQLite is a software library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine

Phal-
con\Db\Adapter\Pdo\Sqlite

Ora-
cle

Oracle is an object-relational database management system produced and marketed
by Oracle Corporation.

Phal-
con\Db\Adapter\Pdo\Oracle

Implementing your own adapters

The Phalcon\Db\AdapterInterface interface must be implemented in order to create your own database adapters or
extend the existing ones.

2.47.2 Database Dialects

Phalcon encapsulates the specific details of each database engine in dialects. Those provide common functions and
SQL generator to the adapters.

Name Description API
MySQL SQL specific dialect for MySQL database system Phalcon\Db\Dialect\Mysql
PostgreSQL SQL specific dialect for PostgreSQL database system Phalcon\Db\Dialect\Postgresql
SQLite SQL specific dialect for SQLite database system Phalcon\Db\Dialect\Sqlite
Oracle SQL specific dialect for Oracle database system Phalcon\Db\Dialect\Oracle

Implementing your own dialects

The Phalcon\Db\DialectInterface interface must be implemented in order to create your own database dialects or
extend the existing ones.

2.47.3 Connecting to Databases

To create a connection it’s neccesary instantiate the adapter class. It only requires an array with the connection
parameters. The example below shows how to create a connection passing both required and optional parameters:

<?php

// Required
$config = array(

"host" => "127.0.0.1",
"username" => "mike",

2.47. Database Abstraction Layer 383

http://www.php.net/manual/en/book.pdo.php


Phalcon PHP Framework Documentation, Release 1.3.0

"password" => "sigma",
"dbname" => "test_db"

);

// Optional
$config["persistent"] = false;

// Create a connection
$connection = new \Phalcon\Db\Adapter\Pdo\Mysql($config);

<?php

// Required
$config = array(

"host" => "localhost",
"username" => "postgres",
"password" => "secret1",
"dbname" => "template"

);

// Optional
$config["schema"] = "public";

// Create a connection
$connection = new \Phalcon\Db\Adapter\Pdo\Postgresql($config);

<?php

// Required
$config = array(

"dbname" => "/path/to/database.db"
);

// Create a connection
$connection = new \Phalcon\Db\Adapter\Pdo\Sqlite($config);

<?php

// Basic configuration
$config = array(

'username' => 'scott',
'password' => 'tiger',
'dbname' => '192.168.10.145/orcl',

);

// Advanced configuration
$config = array(

'dbname' => '(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=xe)(FAILOVER_MODE=(TYPE=SELECT)(METHOD=BASIC)(RETRIES=20)(DELAY=5))))',
'username' => 'scott',
'password' => 'tiger',
'charset' => 'AL32UTF8',

);

// Create a connection
$connection = new \Phalcon\Db\Adapter\Pdo\Oracle($config);

384 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.47.4 Setting up additional PDO options

You can set PDO options at connection time by passing the parameters ‘options’:

<?php

// Create a connection with PDO options
$connection = new \Phalcon\Db\Adapter\Pdo\Mysql(array(

"host" => "localhost",
"username" => "root",
"password" => "sigma",
"dbname" => "test_db",
"options" => array(

PDO::MYSQL_ATTR_INIT_COMMAND => "SET NAMES \'UTF8\'",
PDO::ATTR_CASE => PDO::CASE_LOWER

)
));

2.47.5 Finding Rows

Phalcon\Db provides several methods to query rows from tables. The specific SQL syntax of the target database engine
is required in this case:

<?php

$sql = "SELECT id, name FROM robots ORDER BY name";

// Send a SQL statement to the database system
$result = $connection->query($sql);

// Print each robot name
while ($robot = $result->fetch()) {

echo $robot["name"];
}

// Get all rows in an array
$robots = $connection->fetchAll($sql);
foreach ($robots as $robot) {

echo $robot["name"];
}

// Get only the first row
$robot = $connection->fetchOne($sql);

By default these calls create arrays with both associative and numeric indexes. You can change this behavior by using
Phalcon\Db\Result::setFetchMode(). This method receives a constant, defining which kind of index is required.

Constant Description
Phalcon\Db::FETCH_NUM Return an array with numeric indexes
Phalcon\Db::FETCH_ASSOC Return an array with associative indexes
Phalcon\Db::FETCH_BOTH Return an array with both associative and numeric indexes
Phalcon\Db::FETCH_OBJ Return an object instead of an array

<?php

$sql = "SELECT id, name FROM robots ORDER BY name";
$result = $connection->query($sql);

2.47. Database Abstraction Layer 385



Phalcon PHP Framework Documentation, Release 1.3.0

$result->setFetchMode(Phalcon\Db::FETCH_NUM);
while ($robot = $result->fetch()) {

echo $robot[0];
}

The Phalcon\Db::query() returns an instance of Phalcon\Db\Result\Pdo. These objects encapsulate all the functionality
related to the returned resultset i.e. traversing, seeking specific records, count etc.

<?php

$sql = "SELECT id, name FROM robots";
$result = $connection->query($sql);

// Traverse the resultset
while ($robot = $result->fetch()) {

echo $robot["name"];
}

// Seek to the third row
$result->seek(2);
$robot = $result->fetch();

// Count the resultset
echo $result->numRows();

2.47.6 Binding Parameters

Bound parameters is also supported in Phalcon\Db. Although there is a minimal performance impact by using bound
parameters, you are encouraged to use this methodology so as to eliminate the possibility of your code being subject
to SQL injection attacks. Both string and positional placeholders are supported. Binding parameters can simply be
achieved as follows:

<?php

// Binding with numeric placeholders
$sql = "SELECT * FROM robots WHERE name = ? ORDER BY name";
$result = $connection->query($sql, array("Wall-E"));

// Binding with named placeholders
$sql = "INSERT INTO `robots`(name`, year) VALUES (:name, :year)";
$success = $connection->query($sql, array("name" => "Astro Boy", "year" => 1952));

2.47.7 Inserting/Updating/Deleting Rows

To insert, update or delete rows, you can use raw SQL or use the preset functions provided by the class:

<?php

// Inserting data with a raw SQL statement
$sql = "INSERT INTO `robots`(`name`, `year`) VALUES ('Astro Boy', 1952)";
$success = $connection->execute($sql);

//With placeholders
$sql = "INSERT INTO `robots`(`name`, `year`) VALUES (?, ?)";
$success = $connection->execute($sql, array('Astroy Boy', 1952));

386 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

// Generating dynamically the necessary SQL
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

// Updating data with a raw SQL statement
$sql = "UPDATE `robots` SET `name` = 'Astro boy' WHERE `id` = 101";
$success = $connection->execute($sql);

//With placeholders
$sql = "UPDATE `robots` SET `name` = ? WHERE `id` = ?";
$success = $connection->execute($sql, array('Astroy Boy', 101));

// Generating dynamically the necessary SQL
$success = $connection->update(

"robots",
array("name"),
array("New Astro Boy"),
"id = 101"

);

// Deleting data with a raw SQL statement
$sql = "DELETE `robots` WHERE `id` = 101";
$success = $connection->execute($sql);

//With placeholders
$sql = "DELETE `robots` WHERE `id` = ?";
$success = $connection->execute($sql, array(101));

// Generating dynamically the necessary SQL
$success = $connection->delete("robots", "id = 101");

2.47.8 Transactions and Nested Transactions

Working with transactions is supported as it is with PDO. Perform data manipulation inside transactions often increase
the performance on most database systems:

<?php

try {

//Start a transaction
$connection->begin();

//Execute some SQL statements
$connection->execute("DELETE `robots` WHERE `id` = 101");
$connection->execute("DELETE `robots` WHERE `id` = 102");
$connection->execute("DELETE `robots` WHERE `id` = 103");

//Commit if everything goes well
$connection->commit();

} catch(Exception $e) {
//An exception has ocurred rollback the transaction

2.47. Database Abstraction Layer 387



Phalcon PHP Framework Documentation, Release 1.3.0

$connection->rollback();
}

In addition to standard transactions, Phalcon\Db provides built-in support for nested transactions (if the database
system used supports them). When you call begin() for a second time a nested transaction is created:

<?php

try {

//Start a transaction
$connection->begin();

//Execute some SQL statements
$connection->execute("DELETE `robots` WHERE `id` = 101");

try {

//Start a nested transaction
$connection->begin();

//Execute these SQL statements into the nested transaction
$connection->execute("DELETE `robots` WHERE `id` = 102");
$connection->execute("DELETE `robots` WHERE `id` = 103");

//Create a save point
$connection->commit();

} catch(Exception $e) {
//An error has ocurred, release the nested transaction
$connection->rollback();

}

//Continue, executing more SQL statements
$connection->execute("DELETE `robots` WHERE `id` = 104");

//Commit if everything goes well
$connection->commit();

} catch(Exception $e) {
//An exception has ocurred rollback the transaction
$connection->rollback();

}

2.47.9 Database Events

Phalcon\Db is able to send events to a EventsManager if it’s present. Some events when returning boolean false could
stop the active operation. The following events are supported:

Event Name Triggered Can stop operation?
afterConnect After a successfully connection to a database system No
beforeQuery Before send a SQL statement to the database system Yes
afterQuery After send a SQL statement to database system No
beforeDisconnect Before close a temporal database connection No
beginTransaction Before a transaction is going to be started No
rollbackTransaction Before a transaction is rollbacked No
commitTransaction Before a transaction is commited | No

388 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Nested_transaction


Phalcon PHP Framework Documentation, Release 1.3.0

Bind an EventsManager to a connection is simple, Phalcon\Db will trigger the events with the type “db”:

<?php

use Phalcon\Events\Manager as EventsManager,
\Phalcon\Db\Adapter\Pdo\Mysql as Connection;

$eventsManager = new EventsManager();

//Listen all the database events
$eventsManager->attach('db', $dbListener);

$connection = new Connection(array(
"host" => "localhost",
"username" => "root",
"password" => "secret",
"dbname" => "invo"

));

//Assign the eventsManager to the db adapter instance
$connection->setEventsManager($eventsManager);

Stop SQL operations are very useful if for example you want to implement some last-resource SQL injector checker:

<?php

$eventsManager->attach('db:beforeQuery', function($event, $connection) {

//Check for malicious words in SQL statements
if (preg_match('/DROP|ALTER/i', $connection->getSQLStatement())) {

// DROP/ALTER operations aren't allowed in the application,
// this must be a SQL injection!
return false;

}

//It's ok
return true;

});

2.47.10 Profiling SQL Statements

Phalcon\Db includes a profiling component called Phalcon\Db\Profiler, that is used to analyze the performance of
database operations so as to diagnose performance problems and discover bottlenecks.

Database profiling is really easy With Phalcon\Db\Profiler:

<?php

use Phalcon\Events\Manager as EventsManager,
Phalcon\Db\Profiler as DbProfiler;

$eventsManager = new EventsManager();

$profiler = new DbProfiler();

//Listen all the database events
$eventsManager->attach('db', function($event, $connection) use ($profiler) {

if ($event->getType() == 'beforeQuery') {

2.47. Database Abstraction Layer 389



Phalcon PHP Framework Documentation, Release 1.3.0

//Start a profile with the active connection
$profiler->startProfile($connection->getSQLStatement());

}
if ($event->getType() == 'afterQuery') {

//Stop the active profile
$profiler->stopProfile();

}
});

//Assign the events manager to the connection
$connection->setEventsManager($eventsManager);

$sql = "SELECT buyer_name, quantity, product_name "
. "FROM buyers "
. "LEFT JOIN products ON buyers.pid = products.id";

// Execute a SQL statement
$connection->query($sql);

// Get the last profile in the profiler
$profile = $profiler->getLastProfile();

echo "SQL Statement: ", $profile->getSQLStatement(), "\n";
echo "Start Time: ", $profile->getInitialTime(), "\n";
echo "Final Time: ", $profile->getFinalTime(), "\n";
echo "Total Elapsed Time: ", $profile->getTotalElapsedSeconds(), "\n";

You can also create your own profile class based on Phalcon\Db\Profiler to record real time statistics of the statements
sent to the database system:

<?php

use Phalcon\Events\Manager as EventsManager,
Phalcon\Db\Profiler as Profiler,
Phalcon\Db\Profiler\Item as Item;

class DbProfiler extends Profiler
{

/**
* Executed before the SQL statement will sent to the db server

*/
public function beforeStartProfile(Item $profile)
{

echo $profile->getSQLStatement();
}

/**
* Executed after the SQL statement was sent to the db server

*/
public function afterEndProfile(Item $profile)
{

echo $profile->getTotalElapsedSeconds();
}

}

//Create an EventsManager

390 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$eventsManager = new EventsManager();

//Create a listener
$dbProfiler = new DbProfiler();

//Attach the listener listening for all database events
$eventsManager->attach('db', $dbProfiler);

2.47.11 Logging SQL Statements

Using high-level abstraction components such as Phalcon\Db to access a database, it is difficult to understand which
statements are sent to the database system. Phalcon\Logger interacts with Phalcon\Db, providing logging capabilities
on the database abstraction layer.

<?php

use Phalcon\Logger,
Phalcon\Events\Manager as EventsManager,
Phalcon\Logger\Adapter\File as FileLogger;

$eventsManager = new EventsManager();

$logger = new FileLogger("app/logs/db.log");

//Listen all the database events
$eventsManager->attach('db', function($event, $connection) use ($logger) {

if ($event->getType() == 'beforeQuery') {
$logger->log($connection->getSQLStatement(), Logger::INFO);

}
});

//Assign the eventsManager to the db adapter instance
$connection->setEventsManager($eventsManager);

//Execute some SQL statement
$connection->insert(

"products",
array("Hot pepper", 3.50),
array("name", "price")

);

As above, the file app/logs/db.log will contain something like this:

[Sun, 29 Apr 12 22:35:26 -0500][DEBUG][Resource Id #77] INSERT INTO products
(name, price) VALUES ('Hot pepper', 3.50)

Implementing your own Logger

You can implement your own logger class for database queries, by creating a class that implements a single method
called “log”. The method needs to accept a string as the first argument. You can then pass your logging object to
Phalcon\Db::setLogger(), and from then on any SQL statement executed will call that method to log the results.

2.47. Database Abstraction Layer 391



Phalcon PHP Framework Documentation, Release 1.3.0

2.47.12 Describing Tables/Views

Phalcon\Db also provides methods to retrieve detailed information about tables and views:

<?php

// Get tables on the test_db database
$tables = $connection->listTables("test_db");

// Is there a table 'robots' in the database?
$exists = $connection->tableExists("robots");

// Get name, data types and special features of 'robots' fields
$fields = $connection->describeColumns("robots");
foreach ($fields as $field) {

echo "Column Type: ", $field["Type"];
}

// Get indexes on the 'robots' table
$indexes = $connection->describeIndexes("robots");
foreach ($indexes as $index) {

print_r($index->getColumns());
}

// Get foreign keys on the 'robots' table
$references = $connection->describeReferences("robots");
foreach ($references as $reference) {

// Print referenced columns
print_r($reference->getReferencedColumns());

}

A table description is very similar to the MySQL describe command, it contains the following information:

Index Description
Field Field’s name
Type Column Type
Key Is the column part of the primary key or an index?
Null Does the column allow null values?

Methods to get information about views are also implemented for every supported database system:

<?php

// Get views on the test_db database
$tables = $connection->listViews("test_db");

// Is there a view 'robots' in the database?
$exists = $connection->viewExists("robots");

2.47.13 Creating/Altering/Dropping Tables

Different database systems (MySQL, Postgresql etc.) offer the ability to create, alter or drop tables with the use of
commands such as CREATE, ALTER or DROP. The SQL syntax differs based on which database system is used.
Phalcon\Db offers a unified interface to alter tables, without the need to differentiate the SQL syntax based on the
target storage system.

392 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Creating Tables

The following example shows how to create a table:

<?php

use \Phalcon\Db\Column as Column;

$connection->createTable(
"robots",
null,
array(

"columns" => array(
new Column("id",

array(
"type" => Column::TYPE_INTEGER,
"size" => 10,
"notNull" => true,
"autoIncrement" => true,

)
),
new Column("name",

array(
"type" => Column::TYPE_VARCHAR,
"size" => 70,
"notNull" => true,

)
),
new Column("year",

array(
"type" => Column::TYPE_INTEGER,
"size" => 11,
"notNull" => true,

)
)

)
)

);

Phalcon\Db::createTable() accepts an associative array describing the table. Columns are defined with the class Phal-
con\Db\Column. The table below shows the options available to define a column:

Phalcon\Db supports the following database column types:

• Phalcon\Db\Column::TYPE_INTEGER

• Phalcon\Db\Column::TYPE_DATE

• Phalcon\Db\Column::TYPE_VARCHAR

• Phalcon\Db\Column::TYPE_DECIMAL

• Phalcon\Db\Column::TYPE_DATETIME

• Phalcon\Db\Column::TYPE_CHAR

• Phalcon\Db\Column::TYPE_TEXT

The associative array passed in Phalcon\Db::createTable() can have the possible keys:

2.47. Database Abstraction Layer 393



Phalcon PHP Framework Documentation, Release 1.3.0

Index Description Op-
tional

“columns” An array with a set of table columns defined with Phalcon\Db\Column No
“in-
dexes”

An array with a set of table indexes defined with Phalcon\Db\Index Yes

“refer-
ences”

An array with a set of table references (foreign keys) defined with Phalcon\Db\Reference Yes

“op-
tions”

An array with a set of table creation options. These options often relate to the database
system in which the migration was generated.

Yes

Altering Tables

As your application grows, you might need to alter your database, as part of a refactoring or adding new features.
Not all database systems allow to modify existing columns or add columns between two existing ones. Phalcon\Db is
limited by these constraints.

<?php

use Phalcon\Db\Column as Column;

// Adding a new column
$connection->addColumn("robots", null,

new Column("robot_type", array(
"type" => Column::TYPE_VARCHAR,
"size" => 32,
"notNull" => true,
"after" => "name"

))
);

// Modifying an existing column
$connection->modifyColumn("robots", null, new Column("name", array(

"type" => Column::TYPE_VARCHAR,
"size" => 40,
"notNull" => true,

)));

// Deleting the column "name"
$connection->deleteColumn("robots", null, "name");

Dropping Tables

Examples on dropping tables:

<?php

// Drop table robot from active database
$connection->dropTable("robots");

//Drop table robot from database "machines"
$connection->dropTable("robots", "machines");

394 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.48 Internationalization

Phalcon is written in C as an extension for PHP. There is a PECL extension that offers internationalization functions
to PHP applications called intl. Starting from PHP 5.4/5.5 this extension is bundled with PHP. Its documentation can
be found in the pages of the official PHP manual.

Phalcon does not offer this functionality, since creating such a component would be replicating existing code.

In the examples below, we will show you how to implement the intl extension’s functionality into Phalcon powered
applications.

This guide is not intended to be a complete documentation of the intl extension. Please visit its the
documentation of the extension for a reference.

2.48.1 Find out best available Locale

There are several ways to find out the best available locale using intl. One of them is to check the HTTP “Accept-
Language” header:

<?php

$locale = Locale::acceptFromHttp($_SERVER["HTTP_ACCEPT_LANGUAGE"]);

// Locale could be something like "en_GB" or "en"
echo $locale;

Below method returns a locale identified. It is used to get language, culture, or regionally-specific behavior from the
Locale API. Examples of identifiers include:

• en-US (English, United States)

• zh-Hant-TW (Chinese, Traditional Script, Taiwan)

• fr-CA, fr-FR (French for Canada and France respectively)

2.48.2 Formatting messages based on Locale

Part of creating a localized application is to produce concatenated, language-neutral messages. The MessageFormatter
allows for the production of those messages.

Printing numbers formatted based on some locale:

<?php

// Prints C 4 560
$formatter = new MessageFormatter("fr_FR", "C {0, number, integer}");
echo $formatter->format(array(4560));

// Prints USD$ 4,560.5
$formatter = new MessageFormatter("en_US", "USD$ {0, number}");
echo $formatter->format(array(4560.50));

// Prints ARS$ 1.250,25
$formatter = new MessageFormatter("es_AR", "ARS$ {0, number}");
echo $formatter->format(array(1250.25));

Message formatting using time and date patterns:

2.48. Internationalization 395

http://pecl.php.net/package/intl
http://pecl.php.net/package/intl
http://www.php.net/manual/en/intro.intl.php
http://pecl.php.net/package/intl
http://pecl.php.net/package/intl
http://www.php.net/manual/en/book.intl.php
http://pecl.php.net/package/intl
http://www.php.net/manual/en/class.messageformatter.php


Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Setting parameters
$time = time();
$values = array(7, $time, $time);

// Prints "At 3:50:31 PM on Apr 19, 2012, there was a disturbance on planet 7."
$pattern = "At {1, time} on {1, date}, there was a disturbance on planet {0, number}.";
$formatter = new MessageFormatter("en_US", $pattern);
echo $formatter->format($values);

// Prints "À 15:53:01 le 19 avr. 2012, il y avait une perturbation sur la planète 7."
$pattern = "À {1, time} le {1, date}, il y avait une perturbation sur la planète {0, number}.";
$formatter = new MessageFormatter("fr_FR", $pattern);
echo $formatter->format($values);

2.48.3 Locale-Sensitive comparison

The Collator class provides string comparison capability with support for appropriate locale-sensitive sort orderings.
Check the examples below on the usage of this class:

<?php

// Create a collator using Spanish locale
$collator = new Collator("es");

// Returns that the strings are equal, in spite of the emphasis on the "o"
$collator->setStrength(Collator::PRIMARY);
var_dump($collator->compare("una canción", "una cancion"));

// Returns that the strings are not equal
$collator->setStrength(Collator::DEFAULT_VALUE);
var_dump($collator->compare("una canción", "una cancion"));

2.48.4 Transliteration

Transliterator provides transliteration of strings:

<?php

$id = "Any-Latin; NFD; [:Nonspacing Mark:] Remove; NFC; [:Punctuation:] Remove; Lower();";
$transliterator = Transliterator::create($id);

$string = "garçon-étudiant-où-L'école";
echo $transliterator->transliterate($string); // garconetudiantoulecole

2.49 Database Migrations

Migrations are a convenient way for you to alter your database in a structured and organized manner.

Important: Migrations are available on Phalcon Developer Tools You need at least Phalcon Framework
version 0.5.0 to use developer tools. Also is recommended to have PHP 5.3.11 or greater installed.

396 Chapter 2. Table of Contents

http://www.php.net/manual/en/class.collator.php
http://www.php.net/manual/en/class.transliterator.php


Phalcon PHP Framework Documentation, Release 1.3.0

Often in development we need to update changes in production environments. Some of these changes could be
database modifications like new fields, new tables, removing indexes, etc.

When a migration is generated a set of classes are created to describe how your database is structured at that moment.
These classes can be used to synchronize the schema structure on remote databases setting your database ready to
work with the new changes that your application implements. Migrations describe these transformations using plain
PHP.

2.49.1 Schema Dumping

The Phalcon Developer Tools provides scripts to manage migrations (generation, running and rollback).

The available options for generating migrations are:

Running this script without any parameters will simply dump every object (tables and views) from your database in
migration classes.

Each migration has a version identifier associated to it. The version number allows us to identify if the migration is
newer or older than the current ‘version’ of our database. Versions also inform Phalcon of the running order when
executing a migration.

When a migration is generated, instructions are displayed on the console to describe the different steps of the migration
and the execution time of those statements. At the end, a migration version is generated.

By default Phalcon Developer Tools use the app/migrations directory to dump the migration files. You can change the
location by setting one of the parameters on the generation script. Each table in the database has its respective class
generated in a separated file under a directory referring its version:

2.49. Database Migrations 397



Phalcon PHP Framework Documentation, Release 1.3.0

398 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.49.2 Migration Class Anatomy

Each file contains a unique class that extends the Phalcon\Mvc\Model\Migration These classes normally have two
methods: up() and down(). Up() performs the migration, while down() rolls it back.

Up() also contains the magic method morphTable(). The magic comes when it recognizes the changes needed to
synchronize the actual table in the database to the description given.

<?php

use Phalcon\Db\Column as Column;
use Phalcon\Db\Index as Index;
use Phalcon\Db\Reference as Reference;

class ProductsMigration_100 extends \Phalcon\Mvc\Model\Migration
{

public function up()
{

$this->morphTable(
"products",
array(

"columns" => array(
new Column(

"id",
array(

"type" => Column::TYPE_INTEGER,
"size" => 10,
"unsigned" => true,
"notNull" => true,
"autoIncrement" => true,
"first" => true,

)
),
new Column(

"product_types_id",
array(

"type" => Column::TYPE_INTEGER,
"size" => 10,
"unsigned" => true,
"notNull" => true,
"after" => "id",

)
),
new Column(

"name",
array(

"type" => Column::TYPE_VARCHAR,
"size" => 70,
"notNull" => true,
"after" => "product_types_id",

)
),
new Column(

"price",
array(

"type" => Column::TYPE_DECIMAL,
"size" => 16,
"scale" => 2,

2.49. Database Migrations 399



Phalcon PHP Framework Documentation, Release 1.3.0

"notNull" => true,
"after" => "name",

)
),

),
"indexes" => array(

new Index(
"PRIMARY",
array("id")

),
new Index(

"product_types_id",
array("product_types_id")

)
),
"references" => array(

new Reference(
"products_ibfk_1",
array(

"referencedSchema" => "invo",
"referencedTable" => "product_types",
"columns" => array("product_types_id"),
"referencedColumns" => array("id"),

)
)

),
"options" => array(

"TABLE_TYPE" => "BASE TABLE",
"ENGINE" => "InnoDB",
"TABLE_COLLATION" => "utf8_general_ci",

)
)

);
}

}

The class is called “ProductsMigration_100”. Suffix 100 refers to the version 1.0.0. morphTable() receives an asso-
ciative array with 4 possible sections:

Index Description Op-
tional

“columns” An array with a set of table columns No
“in-
dexes”

An array with a set of table indexes. Yes

“refer-
ences”

An array with a set of table references (foreign keys). Yes

“op-
tions”

An array with a set of table creation options. These options are often related to the database
system in which the migration was generated.

Yes

Defining Columns

Phalcon\Db\Column is used to define table columns. It encapsulates a wide variety of column related features. Its
constructor receives as first parameter the column name and an array describing the column. The following options
are available when describing columns:

400 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Option Description Op-
tional

“type” Column type. Must be a Phalcon_Db_Column constant (see below) No
“size” Some type of columns like VARCHAR or INTEGER may have a specific size Yes
“scale” DECIMAL or NUMBER columns may be have a scale to specify how much decimals it

must store
Yes

“un-
signed”

INTEGER columns may be signed or unsigned. This option does not apply to other types
of columns

Yes

“notNull” Column can store null values? Yes
“autoIn-
crement”

With this attribute column will filled automatically with an auto-increment integer. Only
one column in the table can have this attribute.

Yes

“first” Column must be placed at first position in the column order Yes
“after” Column must be placed after indicated column Yes

Database migrations support the following database column types:

• Phalcon\Db\Column::TYPE_INTEGER

• Phalcon\Db\Column::TYPE_DATE

• Phalcon\Db\Column::TYPE_VARCHAR

• Phalcon\Db\Column::TYPE_DECIMAL

• Phalcon\Db\Column::TYPE_DATETIME

• Phalcon\Db\Column::TYPE_CHAR

• Phalcon\Db\Column::TYPE_TEXT

Defining Indexes

Phalcon\Db\Index defines table indexes. An index only requires that you define a name for it and a list of its columns.
Note that if any index has the name PRIMARY, Phalcon will create a primary key index in that table.

Defining References

Phalcon\Db\Reference defines table references (also called foreign keys). The following options can be used to define
a reference:

Index Description Op-
tional

“refer-
encedTable”

It’s auto-descriptive. It refers to the name of the referenced table. No

“columns” An array with the name of the columns at the table that have the reference No
“referenced-
Columns”

An array with the name of the columns at the referenced table No

“refer-
encedTable”

The referenced table maybe is on another schema or database. This option allows
you to define that.

Yes

2.49.3 Writing Migrations

Migrations aren’t only designed to “morph” table. A migration is just a regular PHP class so you’re not limited to
these functions. For example after adding a column you could write code to set the value of that column for existing
records. For more details and examples of individual methods, check the database component.

2.49. Database Migrations 401



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

class ProductsMigration_100 extends \Phalcon\Mvc\Model\Migration
{

public function up()
{

//...
self::$_connection->insert(

"products",
array("Malabar spinach", 14.50),
array("name", "price")

);
}

}

2.49.4 Running Migrations

Once the generated migrations are uploaded on the target server, you can easily run them as shown in the following
example:

Depending on how outdated is the database with respect to migrations, Phalcon may run multiple migration versions
in the same migration process. If you specify a target version, Phalcon will run the required migrations until it reaches
the specified version.

402 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.50 Debugging Applications

PHP offers tools to debug applications with notices, warnings, errors and exceptions. The Exception class offers
information such as the file, line, message, numeric code, backtrace etc. on where an error occurred. OOP frameworks
like Phalcon mainly use this class to encapsulate this functionality and provide information back to the developer or
user.

Despite being written in C, Phalcon executes methods in the PHP userland, providing the debug capability that any
other application or framework written in PHP has.

2.50.1 Catching Exceptions

Throughout the tutorials and examples of the Phalcon documentation, there is a common element that is catching
exceptions. This is a try/catch block:

<?php

try {

//... some phalcon/php code

} catch(\Exception $e) {

}

Any exception thrown within the block is captured in the variable $e. A Phalcon\Exception extends the PHP Exception
class and is used to understand whether the exception came from Phalcon or PHP itself.

2.50. Debugging Applications 403

http://www.php.net/manual/en/language.exceptions.php
http://www.php.net/manual/en/language.exceptions.php
http://www.php.net/manual/en/language.exceptions.php


Phalcon PHP Framework Documentation, Release 1.3.0

All exceptions generated by PHP are based on the Exception class, and have at least the following elements:

<?php

class Exception
{

/* Properties */
protected string $message;
protected int $code;
protected string $file;
protected int $line;

/* Methods */
public __construct ([ string $message = "" [, int $code = 0 [, Exception $previous = NULL ]]])
final public string getMessage ( void )
final public Exception getPrevious ( void )
final public mixed getCode ( void )
final public string getFile ( void )
final public int getLine ( void )
final public array getTrace ( void )
final public string getTraceAsString ( void )
public string __toString ( void )
final private void __clone ( void )

}

Retrieving information from Phalcon\Exception is the same as PHP’s Exception class:

404 Chapter 2. Table of Contents

http://www.php.net/manual/en/language.exceptions.php
http://www.php.net/manual/en/language.exceptions.php


Phalcon PHP Framework Documentation, Release 1.3.0

<?php

try {

//... app code ...

} catch(\Exception $e) {
echo get_class($e), ": ", $e->getMessage(), "\n";
echo " File=", $e->getFile(), "\n";
echo " Line=", $e->getLine(), "\n";
echo $e->getTraceAsString();

}

It’s therefore easy to find which file and line of the application’s code generated the exception, as well as the compo-
nents involved in generating the exception:

PDOException: SQLSTATE[28000] [1045] Access denied for user 'root'@'localhost'
(using password: NO)

File=/Applications/MAMP/htdocs/invo/public/index.php
Line=74

#0 [internal function]: PDO->__construct('mysql:host=loca...', 'root', '', Array)
#1 [internal function]: Phalcon\Db\Adapter\Pdo->connect(Array)
#2 /Applications/MAMP/htdocs/invo/public/index.php(74):

Phalcon\Db\Adapter\Pdo->__construct(Array)
#3 [internal function]: {closure}()
#4 [internal function]: call_user_func_array(Object(Closure), Array)
#5 [internal function]: Phalcon\DI->_factory(Object(Closure), Array)
#6 [internal function]: Phalcon\DI->get('db', Array)
#7 [internal function]: Phalcon\DI->getShared('db')
#8 [internal function]: Phalcon\Mvc\Model->getConnection()
#9 [internal function]: Phalcon\Mvc\Model::_getOrCreateResultset('Users', Array, true)
#10 /Applications/MAMP/htdocs/invo/app/controllers/SessionController.php(83):

Phalcon\Mvc\Model::findFirst('email='demo@pha...')
#11 [internal function]: SessionController->startAction()
#12 [internal function]: call_user_func_array(Array, Array)
#13 [internal function]: Phalcon\Mvc\Dispatcher->dispatch()
#14 /Applications/MAMP/htdocs/invo/public/index.php(114): Phalcon\Mvc\Application->handle()
#15 {main}

As you can see from the above output the Phalcon’s classes and methods are displayed just like any other component,
and even showing the parameters that were invoked in every call. The method Exception::getTrace provides additional
information if needed.

2.50.2 Debug component

Phalcon provides a debug component that allows the developer to easily find errors produced in an application created
with the framework.

The following screencast explains how it works:

To enable it, add the following to your bootstrap:

<?php

$debug = new \Phalcon\Debug();
$debug->listen();

Any Try/Catch blocks must be removed or disabled to make this component work properly.

2.50. Debugging Applications 405

http://www.php.net/manual/en/exception.gettrace.php


Phalcon PHP Framework Documentation, Release 1.3.0

2.50.3 Reflection and Instrospection

Any instance of a Phalcon class offers exactly the same behavior than a PHP normal one. It’s possible to use the
Reflection API or simply print any object to show how is its internal state:

<?php

$router = new Phalcon\Mvc\Router();
print_r($router);

It’s easy to know the internal state of any object. The above example prints the following:

Phalcon\Mvc\Router Object
(

[_dependencyInjector:protected] =>
[_module:protected] =>
[_controller:protected] =>
[_action:protected] =>
[_params:protected] => Array

(
)

[_routes:protected] => Array
(

[0] => Phalcon\Mvc\Router\Route Object
(

[_pattern:protected] => #^/([a-zA-Z0-9\_]+)[/]{0,1}$#
[_compiledPattern:protected] => #^/([a-zA-Z0-9\_]+)[/]{0,1}$#
[_paths:protected] => Array

(
[controller] => 1

)

[_methods:protected] =>
[_id:protected] => 0
[_name:protected] =>

)

[1] => Phalcon\Mvc\Router\Route Object
(

[_pattern:protected] => #^/([a-zA-Z0-9\_]+)/([a-zA-Z0-9\_]+)(/.*)*$#
[_compiledPattern:protected] => #^/([a-zA-Z0-9\_]+)/([a-zA-Z0-9\_]+)(/.*)*$#
[_paths:protected] => Array

(
[controller] => 1
[action] => 2
[params] => 3

)
[_methods:protected] =>
[_id:protected] => 1
[_name:protected] =>

)
)

[_matchedRoute:protected] =>
[_matches:protected] =>
[_wasMatched:protected] =>
[_defaultModule:protected] =>
[_defaultController:protected] =>
[_defaultAction:protected] =>
[_defaultParams:protected] => Array

406 Chapter 2. Table of Contents

http://php.net/manual/en/book.reflection.php


Phalcon PHP Framework Documentation, Release 1.3.0

(
)

)

2.50.4 Using XDebug

XDebug is an amazing tool that complements the debugging of PHP applications. It is also a C extension for PHP, and
you can use it together with Phalcon without additional configuration or side effects.

The following screencast shows a Xdebug session with Phalcon:

Once you have xdebug installed, you can use its API to get a more detailed information about exceptions and messages.

We highly recommend use at least XDebug 2.2.3 for a better compatibility with Phalcon

The following example implements xdebug_print_function_stack to stop the execution and generate a backtrace

<?php

class SignupController extends \Phalcon\Mvc\Controller
{

public function indexAction()
{

}

public function registerAction()
{

// Request variables from html form
$name = $this->request->getPost("name", "string");
$email = $this->request->getPost("email", "email");

// Stop execution and show a backtrace
return xdebug_print_function_stack("stop here!");

$user = new Users();
$user->name = $name;
$user->email = $email;

// Store and check for errors
$user->save();

}

}

In this instance, Xdebug will also show us the variables in the local scope, and a backtrace as well:

Xdebug: stop here! in /Applications/MAMP/htdocs/tutorial/app/controllers/SignupController.php
on line 19

Call Stack:
0.0383 654600 1. {main}() /Applications/MAMP/htdocs/tutorial/public/index.php:0
0.0392 663864 2. Phalcon\Mvc\Application->handle()

/Applications/MAMP/htdocs/tutorial/public/index.php:37
0.0418 738848 3. SignupController->registerAction()

/Applications/MAMP/htdocs/tutorial/public/index.php:0

2.50. Debugging Applications 407

http://xdebug.org
http://xdebug.org/docs/stack_trace


Phalcon PHP Framework Documentation, Release 1.3.0

0.0419 740144 4. xdebug_print_function_stack()
/Applications/MAMP/htdocs/tutorial/app/controllers/SignupController.php:19

Xdebug provides several ways to get debug and trace information regarding the execution of your application using
Phalcon. You can check the XDebug documentation for more information.

2.51 Phalcon Developer Tools

These tools are a collection of useful scripts to generate skeleton code. Core components of your application can be
generated with a simple command, allowing you to easily develop applications using Phalcon.

Important: Phalcon Framework version 0.5.0 or greater is needed to use developer tools. It is highly
recommended to use PHP 5.3.6 or greater. If you prefer to use the web version instead of the console, this
blog post offers more information.

2.51.1 Download

You can download or clone a cross platform package containing the developer tools from Github.

Installation

These are detailed instructions on how to install the developer tools on different platforms:

Phalcon Developer Tools on Windows

These steps will guide you through the process of installing Phalcon Developer Tools for Windows.

Prerequisites The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please
see the Installation section for instructions.

Download You can download a cross platform package containing the developer tools from the Download section.
Also you can clone it from Github.

On the Windows platform, you need to configure the system PATH to include Phalcon tools as well as the PHP
executable. If you download the Phalcon tools as a zip archive, extract it on any path of your local drive i.e. c:\phalcon-
tools. You will need this path in the steps below. Edit the file “phalcon.bat” by right clicking on the file and selecting
“Edit”:

Change the path to the one you installed the Phalcon tools:

Save the changes.

Adding PHP and Tools to your system PATH Because the scripts are written in PHP, you need to install it on
your machine. Depending on your PHP installation, the executable can be located in various places. Search for
the file php.exe and copy the path it is located in. For instance, if using the latest WAMP stack, PHP is located in:
C:\wampbin\php\php5.3.10\php.exe.

From the Windows start menu, right mouse click on the “My Computer” icon and select “Properties”:

Click the “Advanced” tab and then the button “Environment Variables”:

408 Chapter 2. Table of Contents

http://xdebug.org/docs
http://blog.phalconphp.com/post/23251010409/dont-like-command-line-and-consoles-no-problem
https://github.com/phalcon/phalcon-devtools
http://phalconphp.com/download
https://github.com/phalcon/phalcon-devtools


Phalcon PHP Framework Documentation, Release 1.3.0

2.51. Phalcon Developer Tools 409



Phalcon PHP Framework Documentation, Release 1.3.0

410 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.51. Phalcon Developer Tools 411



Phalcon PHP Framework Documentation, Release 1.3.0

412 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

At the bottom, look for the section “System variables” and edit the variable “Path”:

Be very careful on this step! You need to append at the end of the long string the path where your php.exe was located
and the path where Phalcon tools are installed. Use the ”;” character to separate the differents paths in the variable:

Accept the changes made by clicking “OK” and close the dialogs opened. From the start menu click on the option
“Run”. If you can’t find this option, press “Windows Key” + “R”.

Type “cmd” and press enter to open the windows command line utility:

Type the commands “php -v” and “phalcon” and you will see something like this:

Congratulations you now have Phalcon tools installed!

Related Guides

• Using Developer Tools

• Installation on OS X

• Installation on Linux

Phalcon Developer Tools on Mac OS X

These steps will guide you through the process of installing Phalcon Developer Tools for OS/X.

Prerequisites The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please
see the Installation section for instructions.

2.51. Phalcon Developer Tools 413



Phalcon PHP Framework Documentation, Release 1.3.0

414 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Download You can download a cross platform package containing the developer tools from the Download section.
You can also clone it from Github.

Open the terminal application:

Copy & Paste the commands below in your terminal:

wget -q --no-check-certificate -O phalcon-tools.zip http://github.com/phalcon/phalcon-devtools/zipball/master
unzip -q phalcon-tools.zip
mv phalcon-phalcon-devtools-* phalcon-tools

Check where the phalcon-tools directory was installed using a pwd command in your terminal:

On the Mac platform, you need to configure your user PATH to include Phalcon tools. Edit your .profile and append
the Phalcon tools path to the environment variable PATH:

Insert these two lines at the end of the file:

export PATH=$PATH:/Users/scott/phalcon-tools
export PTOOLSPATH=/Users/scott/phalcon-tools

The .profile should look like this:

Save your changes and close the editor. In the terminal window, type the following commands to create a symbolic
link to the phalcon.sh script:

ln -s ~/phalcon-tools/phalcon.sh ~/phalcon-tools/phalcon
chmod +x ~/phalcon-tools/phalcon

Type the command “phalcon” and you will see something like this:

Congratulations you now have Phalcon tools installed!

Related Guides

• Using Developer Tools

2.51. Phalcon Developer Tools 415

http://phalconphp.com/download\T1\textgreater {}
https://github.com/phalcon/phalcon-devtools


Phalcon PHP Framework Documentation, Release 1.3.0

416 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.51. Phalcon Developer Tools 417



Phalcon PHP Framework Documentation, Release 1.3.0

• Installation on Windows

• Installation on Linux

Phalcon Developer Tools on Linux

These steps will guide you through the process of installing Phalcon Developer Tools for Linux.

Prerequisites The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please
see the Installation section for instructions.

Download You can download a cross platform package containing the developer tools from the Download section.
Also you can clone it from Github.

Open a terminal and type the commands below:

Then enter the folder where the tools were cloned and execute ”. ./phalcon.sh”, (don’t forget the dot at beginning of
the command):

Congratulations you now have Phalcon tools installed!

Related Guides

• Using Developer Tools

• Installation on Windows

• Installation on Mac

418 Chapter 2. Table of Contents

http://phalconphp.com/download
https://github.com/phalcon/phalcon-devtools


Phalcon PHP Framework Documentation, Release 1.3.0

2.51.2 Getting Available Commands

You can get a list of available commands in Phalcon tools by typing: phalcon commands

2.51.3 Generating a Project Skeleton

You can use Phalcon tools to generate pre-defined project skeletons for your applications with Phalcon framework.
By default the project skeleton generator will use mod_rewrite for Apache. Type the following command on your web
server document root:

The above recommended project structure was generated:

You could add the parameter –help to get help on the usage of a certain script:

Accessing the project from the web server will show you:

2.51.4 Generating Controllers

The command “create-controller” generates controller skeleton structures. It’s important to invoke this command
inside a directory that already has a Phalcon project.

The following code is generated by the script:

<?php

class TestController extends Phalcon\Mvc\Controller
{

public function indexAction()
{

2.51. Phalcon Developer Tools 419



Phalcon PHP Framework Documentation, Release 1.3.0

420 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.51. Phalcon Developer Tools 421



Phalcon PHP Framework Documentation, Release 1.3.0

422 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

}

}

2.51.5 Preparing Database Settings

When a project is generated using developer tools. A configuration file can be found in app/config/config.ini To
generate models or scaffold, you will need to change the settings used to connect to your database.

Change the database section in your config.ini file:

[database]
adapter = Mysql
host = "127.0.0.1"
username = "root"
password = "secret"
name = "store_db"

[phalcon]
controllersDir = "../app/controllers/"
modelsDir = "../app/models/"
viewsDir = "../app/views/"
baseUri = "/store/"

2.51.6 Generating Models

There are several ways to create models. You can create all models from the default database connection or some
selectively. Models can have public attributes for the field representations or setters/getters can be used. The simplest
way to generate a model is:

2.51. Phalcon Developer Tools 423



Phalcon PHP Framework Documentation, Release 1.3.0

All table fields are declared public for direct access.

<?php

class Products extends \Phalcon\Mvc\Model
{

/**
* @var integer

*/
public $id;

/**
* @var integer

*/
public $types_id;

/**
* @var string

*/
public $name;

/**
* @var string

*/
public $price;

/**
* @var integer

424 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

*/
public $quantity;

/**
* @var string

*/
public $status;

}

By adding the –get-set you can generate the fields with protected variables and public setter/getter methods. Those
methods can help in business logic implementation within the setter/getter methods.

<?php

class Products extends \Phalcon\Mvc\Model
{

/**
* @var integer

*/
protected $id;

/**
* @var integer

*/
protected $types_id;

/**
* @var string

*/
protected $name;

/**
* @var string

*/
protected $price;

/**
* @var integer

*/
protected $quantity;

/**
* @var string

*/
protected $status;

/**
* Method to set the value of field id

* @param integer $id

*/
public function setId($id)
{

$this->id = $id;
}

2.51. Phalcon Developer Tools 425



Phalcon PHP Framework Documentation, Release 1.3.0

/**
* Method to set the value of field types_id

* @param integer $types_id

*/
public function setTypesId($types_id)
{

$this->types_id = $types_id;
}

...

/**
* Returns the value of field status

* @return string

*/
public function getStatus()
{

return $this->status;
}

}

A nice feature of the model generator is that it keeps changes made by the developer between code generations. This
allows the addition or removal of fields and properties, without worrying about losing changes made to the model
itself. The following screencast shows you how it works:

2.51.7 Scaffold a CRUD

Scaffolding is a quick way to generate some of the major pieces of an application. If you want to create the models,
views, and controllers for a new resource in a single operation, scaffolding is the tool for the job.

Once the code is generated, it will have to be customized to meet your needs. Many developers avoid scaffolding
entirely, opting to write all or most of their source code from scratch. The generated code can serve as a guide to better
understand of how the framework works or develop prototypes. The screenshot below shows a scaffold based on the
table “products”:

The scaffold generator will build several files in your application, along with some folders. Here’s a quick overview
of what will be generated:

File Purpose
app/controllers/ProductsController.php The Products controller
app/models/Products.php The Products model
app/views/layout/products.phtml Controller layout for Products
app/views/products/new.phtml View for the action “new”
app/views/products/edit.phtml View for the action “edit”
app/views/products/search.phtml View for the action “search”
app/views/products/edit.phtml View for the action “edit”

When browsing the recently generated controller, you will see a search form and a link to create a new Product:

The “create page” allows you to create products applying validations on the Products model. Phalcon will automati-
cally validate not null fields producing warnings if any of them is required.

After performing a search, a pager component is available to show paged results. Use the “Edit” or “Delete” links in
front of each result to perform such actions.

426 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.51. Phalcon Developer Tools 427



Phalcon PHP Framework Documentation, Release 1.3.0

428 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.51. Phalcon Developer Tools 429



Phalcon PHP Framework Documentation, Release 1.3.0

2.51.8 Web Interface to Tools

Also, if you prefer, it’s possible to use Phalcon Developer Tools from a web interface. Check out the following
screencast to figure out how it works:

2.51.9 Integrating Tools with PhpStorm IDE

The screencast below shows how to integrate developer tools with the PhpStorm IDE. The configuration steps could
be easily adapted to other IDEs for PHP.

2.51.10 Conclusion

Phalcon Developer Tools provides an easy way to generate code for your application, reducing development time and
potential coding errors.

2.52 Increasing Performance: What’s next?

Get faster applications requires refine many aspects: server, client, network, database, web server, static sources, etc.
In this chapter we highlight scenarios where you can improve performance and how detect what is really slow in your
application.

2.52.1 Profile on the Server

Each application is different, the permanent profiling is important to understand where performance can be increased.
Profiling gives us a real picture on what is really slow and what does not. Profiles can vary between a request and
another, so it is important to make enough measurements to make conclusions.

Profiling with XDebug

Xdebug provides an easier way to profile PHP applications, just install the extension and enable profiling in the php.ini:

xdebug.profiler_enable = On

Using a tool like Webgrind you can see which functions/methods are slower than others:

Profiling with Xhprof

Xhprof is another interesting extension to profile PHP applications. Add the following line to the start of the bootstrap
file:

<?php

xhprof_enable(XHPROF_FLAGS_CPU + XHPROF_FLAGS_MEMORY);

Then at the end of the file save the profiled data:

<?php

$xhprof_data = xhprof_disable('/tmp');

430 Chapter 2. Table of Contents

http://www.jetbrains.com/phpstorm/
http://xdebug.org/docs
http://github.com/jokkedk/webgrind/
https://github.com/facebook/xhprof


Phalcon PHP Framework Documentation, Release 1.3.0

$XHPROF_ROOT = "/var/www/xhprof/";
include_once $XHPROF_ROOT . "/xhprof_lib/utils/xhprof_lib.php";
include_once $XHPROF_ROOT . "/xhprof_lib/utils/xhprof_runs.php";

$xhprof_runs = new XHProfRuns_Default();
$run_id = $xhprof_runs->save_run($xhprof_data, "xhprof_testing");

echo "http://localhost/xhprof/xhprof_html/index.php?run={$run_id}&source=xhprof_testing\n";

Xhprof provides a built-in html viewer to analize the profiled data:

Profiling SQL Statements

Most database systems provide tools to identify slow SQL statements. Detecting and fixing slow queries is very
important in order to increase performance in the server side. In the Mysql case, you can use the slow query log to
know what SQL queries are taking more time than expected:

log-slow-queries = /var/log/slow-queries.log
long_query_time = 1.5

2.52.2 Profile on the Client

Sometimes we may need to improve the loading of static elements such as images, javascript and css to improve
performance. The following tools are useful to detect common bottlenecks in the client side:

2.52. Increasing Performance: What’s next? 431



Phalcon PHP Framework Documentation, Release 1.3.0

432 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Profile with Chrome/Firefox

Most modern browsers have tools to profile the page loading time. In Chrome you can use the web inspector to know
how much time is taking the loading of the different resources required by a single page:

Firebug provides a similar functionality:

2.52.3 Yahoo! YSlow

YSlow analyzes web pages and suggests ways to improve their performance based on a set of rules for high perfor-
mance web pages

Profile with Speed Tracer

Speed Tracer is a tool to help you identify and fix performance problems in your web applications. It visualizes metrics
that are taken from low level instrumentation points inside of the browser and analyzes them as your application runs.
Speed Tracer is available as a Chrome extension and works on all platforms where extensions are currently supported
(Windows and Linux).

This tool is very useful because it help you to get the real time used to render the whole page including HTML parsing,
Javascript evaluation and CSS styling.

2.52.4 Use a recent PHP version

PHP is faster every day, using the latest version improves the performance of your applications and also of Phalcon.

2.52.5 Use a PHP Bytecode Cache

APC as many other bytecode caches help an application to reduce the overhead of read, tokenize and parse PHP files
in each request. Once the extension is installed use the following setting to enable APC:

apc.enabled = On

PHP 5.5 includes a built-in bytecode cache called ZendOptimizer+, this extension is also available for 5.3 and 5.4.

2.52.6 Do blocking work in the background

Process a video, send e-mails, compress a file or an image, etc., are slow tasks that must be processed in background
jobs. There are a variety of tools that provide queuing or messaging systems that work well with PHP:

• Beanstalkd

• Redis

• RabbitMQ

• Resque

• Gearman

• ZeroMQ

2.52. Increasing Performance: What’s next? 433

http://getfirebug.com/
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
https://developers.google.com/web-toolkit/speedtracer/
http://php.net/manual/en/book.apc.php
http://kr.github.io/beanstalkd/
http://redis.io/
http://www.rabbitmq.com/
https://github.com/chrisboulton/php-resque
http://gearman.org/
http://www.zeromq.org/


Phalcon PHP Framework Documentation, Release 1.3.0

434 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.52. Increasing Performance: What’s next? 435



Phalcon PHP Framework Documentation, Release 1.3.0

436 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.52. Increasing Performance: What’s next? 437



Phalcon PHP Framework Documentation, Release 1.3.0

2.52.7 Google Page Speed

mod_pagespeed speeds up your site and reduces page load time. This open-source Apache HTTP server module (also
available for nginx as ngx_pagespeed) automatically applies web performance best practices to pages, and associated
assets (CSS, JavaScript, images) without requiring that you modify your existing content or workflow.

2.53 Unit testing

Writing proper tests can assist in writing better software. If you set up proper test cases you can eliminate most
functional bugs and better maintain your software.

2.53.1 Integrating PHPunit with phalcon

If you don’t already have phpunit installed, you can do it by using the following composer command:

composer require phpunit/phpunit

or by manually adding it to composer.json:

{
"require-dev": {

"phpunit/phpunit": "3.7.*"
}

}

Or if you don’t have composer you can install phpunit via pear:

pear config-set auto_discover 1
pear install pear.phpunit.de/PHPUnit

Once phpunit is installed create a directory called ‘tests’ in your root directory:

app/
public/
tests/

Next, we need a ‘helper’ file to bootstrap the application for unit testing.

2.53.2 The PHPunit helper file

A helper file is required to bootstrap the application for running the tests. We have prepared a sample file. Put the file
in your tests/ directory as TestHelper.php.

<?php
use Phalcon\DI,

Phalcon\DI\FactoryDefault;

ini_set('display_errors',1);
error_reporting(E_ALL);

define('ROOT_PATH', __DIR__);
define('PATH_LIBRARY', __DIR__ . '/../app/library/');
define('PATH_SERVICES', __DIR__ . '/../app/services/');
define('PATH_RESOURCES', __DIR__ . '/../app/resources/');

438 Chapter 2. Table of Contents

https://developers.google.com/speed/pagespeed/mod


Phalcon PHP Framework Documentation, Release 1.3.0

set_include_path(
ROOT_PATH . PATH_SEPARATOR . get_include_path()

);

// required for phalcon/incubator
include __DIR__ . "/../vendor/autoload.php";

// use the application autoloader to autoload the classes
// autoload the dependencies found in composer
$loader = new \Phalcon\Loader();

$loader->registerDirs(array(
ROOT_PATH

));

$loader->register();

$di = new FactoryDefault();
DI::reset();

// add any needed services to the DI here

DI::setDefault($di);

Should you need to test any components from your own library, add them to the autoloader or use the autoloader from
your main application.

To help you build the unit tests, we made a few abstract classes you can use to bootstrap the unit tests themselves.
These files exist in the Phalcon incubator @ https://github.com/phalcon/incubator.

You can use the incubator library by adding it as a dependency:

composer require phalcon/incubator

or by manually adding it to composer.json:

{
"require": {

"phalcon/incubator": "dev-master"
}

}

You can also clone the repository using the repo link above.

2.53.3 PHPunit.xml file

Now, create a phpunit file:

<?xml version="1.0" encoding="UTF-8"?>
<phpunit bootstrap="./TestHelper.php"

backupGlobals="false"
backupStaticAttributes="false"
verbose="true"
colors="false"
convertErrorsToExceptions="true"
convertNoticesToExceptions="true"
convertWarningsToExceptions="true"
processIsolation="false"

2.53. Unit testing 439

https://github.com/phalcon/incubator


Phalcon PHP Framework Documentation, Release 1.3.0

stopOnFailure="false"
syntaxCheck="true">

<testsuite name="Phalcon - Testsuite">
<directory>./</directory>

</testsuite>
</phpunit>

Modify the phpunit.xml to fit your needs and save it in tests/.

This will run any tests under the tests/ directory.

2.53.4 Sample unit test

To run any unit tests you need to define them. The autoloader will make sure the proper files are loaded so all you
need to do is create the files and phpunit will run the tests for you.

This example does not contain a config file, most test cases however, do need one. You can add it to the DI to get the
UnitTestCase file.

First create a base unit test called UnitTestCase.php in your /tests directory:

<?php
use Phalcon\DI,

\Phalcon\Test\UnitTestCase as PhalconTestCase;

abstract class UnitTestCase extends PhalconTestCase {

/**
* @var \Voice\Cache

*/
protected $_cache;

/**
* @var \Phalcon\Config

*/
protected $_config;

/**
* @var bool

*/
private $_loaded = false;

public function setUp() {

// Load any additional services that might be required during testing
$di = DI::getDefault();

// get any DI components here. If you have a config, be sure to pass it to the parent

parent::setUp($di);

$this->_loaded = true;
}

/**
* Check if the test case is setup properly

* @throws \PHPUnit_Framework_IncompleteTestError;

*/

440 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public function __destruct() {
if(!$this->_loaded) {

throw new \PHPUnit_Framework_IncompleteTestError('Please run parent::setUp().');
}

}
}

It’s always a good idea to seperate your Unit tests in namespaces. For this test we will create the namespace ‘Test’. So
create a file called testsTestUnitTest.php:

<?php
namespace Test;
/**
* Class UnitTest

*/
class UnitTest extends \UnitTestCase {

public function testTestCase() {

$this->assertEquals('works',
'works',
'This is OK'

);

$this->assertEquals('works',
'works1',
'This wil fail'

);

}
}

Now when you execute ‘phpunit’ in your command-line from the tests directory you will get the following output:

$ phpunit
PHPUnit 3.7.23 by Sebastian Bergmann.

Configuration read from /private/var/www/tests/phpunit.xml

Time: 3 ms, Memory: 3.25Mb

There was 1 failure:

1) Test\UnitTest::testTestCase
This wil fail
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'works'
+'works1'

/private/var/www/tests/Test/UnitTest.php:25

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

2.53. Unit testing 441



Phalcon PHP Framework Documentation, Release 1.3.0

Now you can start building your unit tests. You can view a good guide here (we also recommend reading the PHPunit
documentation if you’re not familiar with PHPunit):

http://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises/

2.54 API Indice

2.54.1 Abstract class Phalcon\Acl

This component allows to manage ACL lists. An access control list (ACL) is a list of permissions attached to an
object. An ACL specifies which users or system processes are granted access to objects, as well as what operations
are allowed on given objects.

<?php

$acl = new Phalcon\Acl\Adapter\Memory();

//Default action is deny access
$acl->setDefaultAction(Phalcon\Acl::DENY);

//Create some roles
$roleAdmins = new Phalcon\Acl\Role('Administrators', 'Super-User role');
$roleGuests = new Phalcon\Acl\Role('Guests');

//Add "Guests" role to acl
$acl->addRole($roleGuests);

//Add "Designers" role to acl
$acl->addRole('Designers');

//Define the "Customers" resource
$customersResource = new Phalcon\Acl\Resource('Customers', 'Customers management');

//Add "customers" resource with a couple of operations
$acl->addResource($customersResource, 'search');
$acl->addResource($customersResource, array('create', 'update'));

//Set access level for roles into resources
$acl->allow('Guests', 'Customers', 'search');
$acl->allow('Guests', 'Customers', 'create');
$acl->deny('Guests', 'Customers', 'update');

//Check whether role has access to the operations
$acl->isAllowed('Guests', 'Customers', 'edit'); //Returns 0
$acl->isAllowed('Guests', 'Customers', 'search'); //Returns 1
$acl->isAllowed('Guests', 'Customers', 'create'); //Returns 1

Constants

integer ALLOW

integer DENY

442 Chapter 2. Table of Contents

http://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises/


Phalcon PHP Framework Documentation, Release 1.3.0

2.54.2 Abstract class Phalcon\Acl\Adapter

implements Phalcon\Events\EventsAwareInterface, Phalcon\Acl\AdapterInterface

Phalcon\Acl\Adapter initializer

Methods

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

public setDefaultAction (int $defaultAccess)

Sets the default access level (Phalcon\Acl::ALLOW or Phalcon\Acl::DENY)

public int getDefaultAction ()

Returns the default ACL access level

public string getActiveRole ()

Returns the role which the list is checking if it’s allowed to certain resource/access

public string getActiveResource ()

Returns the resource which the list is checking if some role can access it

public string getActiveAccess ()

Returns the access which the list is checking if some role can access it

abstract public boolean addRole (Phalcon\Acl\RoleInterface $role, [string $accessInherits]) inherited from Phal-
con\Acl\AdapterInterface

Adds a role to the ACL list. Second parameter lets to inherit access data from other existing role

abstract public addInherit (string $roleName, string $roleToInherit) inherited from Phalcon\Acl\AdapterInterface

Do a role inherit from another existing role

abstract public boolean isRole (string $roleName) inherited from Phalcon\Acl\AdapterInterface

Check whether role exist in the roles list

abstract public boolean isResource (string $resourceName) inherited from Phalcon\Acl\AdapterInterface

Check whether resource exist in the resources list

abstract public boolean addResource (Phalcon\Acl\ResourceInterface $resource, [array $accessList]) inherited from
Phalcon\Acl\AdapterInterface

Adds a resource to the ACL list Access names can be a particular action, by example search, update, delete, etc or a
list of them

abstract public addResourceAccess (string $resourceName, mixed $accessList) inherited from Phal-
con\Acl\AdapterInterface

Adds access to resources

abstract public dropResourceAccess (string $resourceName, mixed $accessList) inherited from Phal-
con\Acl\AdapterInterface

2.54. API Indice 443



Phalcon PHP Framework Documentation, Release 1.3.0

Removes an access from a resource

abstract public allow (string $roleName, string $resourceName, mixed $access) inherited from Phal-
con\Acl\AdapterInterface

Allow access to a role on a resource

abstract public boolean deny (string $roleName, string $resourceName, mixed $access) inherited from Phal-
con\Acl\AdapterInterface

Deny access to a role on a resource

abstract public boolean isAllowed (string $role, string $resource, string $access) inherited from Phal-
con\Acl\AdapterInterface

Check whether a role is allowed to access an action from a resource

abstract public Phalcon\Acl\RoleInterface [] getRoles () inherited from Phalcon\Acl\AdapterInterface

Return an array with every role registered in the list

abstract public Phalcon\Acl\ResourceInterface [] getResources () inherited from Phalcon\Acl\AdapterInterface

Return an array with every resource registered in the list

2.54.3 Class Phalcon\Acl\Adapter\Memory

extends abstract class Phalcon\Acl\Adapter

implements Phalcon\Acl\AdapterInterface, Phalcon\Events\EventsAwareInterface

Manages ACL lists in memory

<?php

$acl = new Phalcon\Acl\Adapter\Memory();

$acl->setDefaultAction(Phalcon\Acl::DENY);

//Register roles
$roles = array(

'users' => new Phalcon\Acl\Role('Users'),
'guests' => new Phalcon\Acl\Role('Guests')

);
foreach ($roles as $role) {

$acl->addRole($role);
}

//Private area resources
$privateResources = array(
'companies' => array('index', 'search', 'new', 'edit', 'save', 'create', 'delete'),
'products' => array('index', 'search', 'new', 'edit', 'save', 'create', 'delete'),
'invoices' => array('index', 'profile')

);
foreach ($privateResources as $resource => $actions) {

$acl->addResource(new Phalcon\Acl\Resource($resource), $actions);
}

//Public area resources
$publicResources = array(

'index' => array('index'),
'about' => array('index'),

444 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

'session' => array('index', 'register', 'start', 'end'),
'contact' => array('index', 'send')

);
foreach ($publicResources as $resource => $actions) {
$acl->addResource(new Phalcon\Acl\Resource($resource), $actions);

}

//Grant access to public areas to both users and guests
foreach ($roles as $role){

foreach ($publicResources as $resource => $actions) {
$acl->allow($role->getName(), $resource, '*');

}
}

//Grant access to private area to role Users
foreach ($privateResources as $resource => $actions) {

foreach ($actions as $action) {
$acl->allow('Users', $resource, $action);

}
}

Methods

public __construct ()

Phalcon\Acl\Adapter\Memory constructor

public boolean addRole (Phalcon\Acl\RoleInterface $role, [array|string $accessInherits])

Adds a role to the ACL list. Second parameter allows inheriting access data from other existing role Example:

<?php

$acl->addRole(new Phalcon\Acl\Role('administrator'), 'consultant');
$acl->addRole('administrator', 'consultant');

public addInherit (string $roleName, string $roleToInherit)

Do a role inherit from another existing role

public boolean isRole (string $roleName)

Check whether role exist in the roles list

public boolean isResource (string $resourceName)

Check whether resource exist in the resources list

public boolean addResource (Phalcon\Acl\Resource $resource, [array $accessList])

Adds a resource to the ACL list Access names can be a particular action, by example search, update, delete, etc or a
list of them Example:

<?php

//Add a resource to the the list allowing access to an action
$acl->addResource(new Phalcon\Acl\Resource('customers'), 'search');
$acl->addResource('customers', 'search');

//Add a resource with an access list

2.54. API Indice 445



Phalcon PHP Framework Documentation, Release 1.3.0

$acl->addResource(new Phalcon\Acl\Resource('customers'), array('create', 'search'));
$acl->addResource('customers', array('create', 'search'));

public addResourceAccess (string $resourceName, mixed $accessList)

Adds access to resources

public dropResourceAccess (string $resourceName, mixed $accessList)

Removes an access from a resource

protected _allowOrDeny ()

Checks if a role has access to a resource

public allow (string $roleName, string $resourceName, mixed $access)

Allow access to a role on a resource You can use ‘*’ as wildcard Example:

<?php

//Allow access to guests to search on customers
$acl->allow('guests', 'customers', 'search');

//Allow access to guests to search or create on customers
$acl->allow('guests', 'customers', array('search', 'create'));

//Allow access to any role to browse on products
$acl->allow('*', 'products', 'browse');

//Allow access to any role to browse on any resource
$acl->allow('*', '*', 'browse');

public boolean deny (string $roleName, string $resourceName, mixed $access)

Deny access to a role on a resource You can use ‘*’ as wildcard Example:

<?php

//Deny access to guests to search on customers
$acl->deny('guests', 'customers', 'search');

//Deny access to guests to search or create on customers
$acl->deny('guests', 'customers', array('search', 'create'));

//Deny access to any role to browse on products
$acl->deny('*', 'products', 'browse');

//Deny access to any role to browse on any resource
$acl->deny('*', '*', 'browse');

public boolean isAllowed (string $role, string $resource, string $access)

Check whether a role is allowed to access an action from a resource

<?php

//Does andres have access to the customers resource to create?
$acl->isAllowed('andres', 'Products', 'create');

//Do guests have access to any resource to edit?
$acl->isAllowed('guests', '*', 'edit');

446 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Acl\Role [] getRoles ()

Return an array with every role registered in the list

public Phalcon\Acl\Resource [] getResources ()

Return an array with every resource registered in the list

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Acl\Adapter

Sets the events manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\Acl\Adapter

Returns the internal event manager

public setDefaultAction (int $defaultAccess) inherited from Phalcon\Acl\Adapter

Sets the default access level (Phalcon\Acl::ALLOW or Phalcon\Acl::DENY)

public int getDefaultAction () inherited from Phalcon\Acl\Adapter

Returns the default ACL access level

public string getActiveRole () inherited from Phalcon\Acl\Adapter

Returns the role which the list is checking if it’s allowed to certain resource/access

public string getActiveResource () inherited from Phalcon\Acl\Adapter

Returns the resource which the list is checking if some role can access it

public string getActiveAccess () inherited from Phalcon\Acl\Adapter

Returns the access which the list is checking if some role can access it

2.54.4 Class Phalcon\Acl\Exception

extends class Phalcon\Exception

Class for exceptions thrown by Phalcon\Acl

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

2.54. API Indice 447



Phalcon PHP Framework Documentation, Release 1.3.0

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.5 Class Phalcon\Acl\Resource

implements Phalcon\Acl\ResourceInterface

This class defines resource entity and its description

Methods

public __construct (string $name, [string $description])

Phalcon\Acl\Resource constructor

public string getName ()

Returns the resource name

public string getDescription ()

Returns resource description

public string __toString ()

Magic method __toString

2.54.6 Class Phalcon\Acl\Role

implements Phalcon\Acl\RoleInterface

This class defines role entity and its description

Methods

public __construct (string $name, [string $description])

Phalcon\Acl\Role description

public string getName ()

Returns the role name

public string getDescription ()

Returns role description

public string __toString ()

Magic method __toString

448 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.7 Abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

This is the base class for Phalcon\Annotations adapters

Methods

public setReader (Phalcon\Annotations\ReaderInterface $reader)

Sets the annotations parser

public Phalcon\Annotations\ReaderInterface getReader ()

Returns the annotation reader

public Phalcon\Annotations\Reflection get (string|object $className)

Parses or retrieves all the annotations found in a class

public array getMethods (string $className)

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getMethod (string $className, string $methodName)

Returns the annotations found in a specific method

public array getProperties (string $className)

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getProperty (string $className, string $propertyName)

Returns the annotations found in a specific property

2.54.8 Class Phalcon\Annotations\Adapter\Apc

extends abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Stores the parsed annotations in APC. This adapter is suitable for production

<?php

$annotations = new \Phalcon\Annotations\Adapter\Apc();

Methods

public Phalcon\Annotations\Reflection read (string $key)

Reads parsed annotations from APC

public write (string $key, Phalcon\Annotations\Reflection $data)

Writes parsed annotations to APC

public setReader (Phalcon\Annotations\ReaderInterface $reader) inherited from Phalcon\Annotations\Adapter

Sets the annotations parser

public Phalcon\Annotations\ReaderInterface getReader () inherited from Phalcon\Annotations\Adapter

2.54. API Indice 449



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the annotation reader

public Phalcon\Annotations\Reflection get (string|object $className) inherited from Phalcon\Annotations\Adapter

Parses or retrieves all the annotations found in a class

public array getMethods (string $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getMethod (string $className, string $methodName) inherited from Phal-
con\Annotations\Adapter

Returns the annotations found in a specific method

public array getProperties (string $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getProperty (string $className, string $propertyName) inherited from Phal-
con\Annotations\Adapter

Returns the annotations found in a specific property

2.54.9 Class Phalcon\Annotations\Adapter\Files

extends abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Stores the parsed annotations in files. This adapter is suitable for production

<?php

$annotations = new \Phalcon\Annotations\Adapter\Files(array(
'annotationsDir' => 'app/cache/annotations/'

));

Methods

public __construct ([array $options])

Phalcon\Annotations\Adapter\Files constructor

public Phalcon\Annotations\Reflection read (string $key)

Reads parsed annotations from files

public write (string $key, Phalcon\Annotations\Reflection $data)

Writes parsed annotations to files

public setReader (Phalcon\Annotations\ReaderInterface $reader) inherited from Phalcon\Annotations\Adapter

Sets the annotations parser

public Phalcon\Annotations\ReaderInterface getReader () inherited from Phalcon\Annotations\Adapter

Returns the annotation reader

public Phalcon\Annotations\Reflection get (string|object $className) inherited from Phalcon\Annotations\Adapter

Parses or retrieves all the annotations found in a class

public array getMethods (string $className) inherited from Phalcon\Annotations\Adapter

450 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getMethod (string $className, string $methodName) inherited from Phal-
con\Annotations\Adapter

Returns the annotations found in a specific method

public array getProperties (string $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getProperty (string $className, string $propertyName) inherited from Phal-
con\Annotations\Adapter

Returns the annotations found in a specific property

2.54.10 Class Phalcon\Annotations\Adapter\Memory

extends abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Stores the parsed annotations in memory. This adapter is the suitable development/testing

Methods

public Phalcon\Annotations\Reflection read (string $key)

Reads parsed annotations from memory

public write (string $key, Phalcon\Annotations\Reflection $data)

Writes parsed annotations to memory

public setReader (Phalcon\Annotations\ReaderInterface $reader) inherited from Phalcon\Annotations\Adapter

Sets the annotations parser

public Phalcon\Annotations\ReaderInterface getReader () inherited from Phalcon\Annotations\Adapter

Returns the annotation reader

public Phalcon\Annotations\Reflection get (string|object $className) inherited from Phalcon\Annotations\Adapter

Parses or retrieves all the annotations found in a class

public array getMethods (string $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getMethod (string $className, string $methodName) inherited from Phal-
con\Annotations\Adapter

Returns the annotations found in a specific method

public array getProperties (string $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getProperty (string $className, string $propertyName) inherited from Phal-
con\Annotations\Adapter

Returns the annotations found in a specific property

2.54. API Indice 451



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.11 Class Phalcon\Annotations\Adapter\Xcache

extends abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Stores the parsed annotations to XCache. This adapter is suitable for production

<?php

$annotations = new \Phalcon\Annotations\Adapter\Xcache();

Methods

public Phalcon\Annotations\Reflection read (string $key)

Reads parsed annotations from XCache

public write (string $key, Phalcon\Annotations\Reflection $data)

Writes parsed annotations to XCache

public setReader (Phalcon\Annotations\ReaderInterface $reader) inherited from Phalcon\Annotations\Adapter

Sets the annotations parser

public Phalcon\Annotations\ReaderInterface getReader () inherited from Phalcon\Annotations\Adapter

Returns the annotation reader

public Phalcon\Annotations\Reflection get (string|object $className) inherited from Phalcon\Annotations\Adapter

Parses or retrieves all the annotations found in a class

public array getMethods (string $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getMethod (string $className, string $methodName) inherited from Phal-
con\Annotations\Adapter

Returns the annotations found in a specific method

public array getProperties (string $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public Phalcon\Annotations\Collection getProperty (string $className, string $propertyName) inherited from Phal-
con\Annotations\Adapter

Returns the annotations found in a specific property

2.54.12 Class Phalcon\Annotations\Annotation

Represents a single annotation in an annotations collection

Methods

public __construct (array $reflectionData)

Phalcon\Annotations\Annotation constructor

452 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string getName ()

Returns the annotation’s name

public mixed getExpression (array $expr)

Resolves an annotation expression

public array getExprArguments ()

Returns the expression arguments without resolving

public array getArguments ()

Returns the expression arguments

public int numberArguments ()

Returns the number of arguments that the annotation has

public mixed getArgument (unknown $position)

Returns an argument in a specific position

public bool hasArgument (unknown $position)

Checks if the annotation has a specific argument

public mixed getNamedArgument (unknown $position)

Returns a named argument

public mixed getNamedParameter (unknown $position)

Returns a named argument (deprecated)

public boolean hasNamedArgument (unknown $position)

Checks if the annotation has a specific named argument

2.54.13 Class Phalcon\Annotations\Collection

implements Iterator, Traversable, Countable

Represents a collection of annotations. This class allows to traverse a group of annotations easily

<?php

//Traverse annotations
foreach ($classAnnotations as $annotation) {

echo 'Name=', $annotation->getName(), PHP_EOL;
}

//Check if the annotations has a specific
var_dump($classAnnotations->has('Cacheable'));

//Get an specific annotation in the collection
$annotation = $classAnnotations->get('Cacheable');

Methods

public __construct ([array $reflectionData])

Phalcon\Annotations\Collection constructor

2.54. API Indice 453



Phalcon PHP Framework Documentation, Release 1.3.0

public int count ()

Returns the number of annotations in the collection

public rewind ()

Rewinds the internal iterator

public Phalcon\Annotations\Annotation current ()

Returns the current annotation in the iterator

public int key ()

Returns the current position/key in the iterator

public next ()

Moves the internal iteration pointer to the next position

public boolean valid ()

Check if the current annotation in the iterator is valid

public Phalcon\Annotations\Annotation [] getAnnotations ()

Returns the internal annotations as an array

public Phalcon\Annotations\Annotation get (string $name)

Returns the first annotation that match a name

public Phalcon\Annotations\Annotation [] getAll (string $name)

Returns all the annotations that match a name

public boolean has (string $name)

Check if an annotation exists in a collection

2.54.14 Class Phalcon\Annotations\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Annotations will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

454 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.15 Class Phalcon\Annotations\Reader

implements Phalcon\Annotations\ReaderInterface

Parses docblocks returning an array with the found annotations

Methods

public array parse (string $className)

Reads annotations from the class dockblocks, its methods and/or properties

public static array parseDocBlock (string $docBlock, [string $file], [int $line])

Parses a raw doc block returning the annotations found

2.54.16 Class Phalcon\Annotations\Reflection

Allows to manipulate the annotations reflection in an OO manner

<?php

//Parse the annotations in a class
$reader = new \Phalcon\Annotations\Reader();
$parsing = $reader->parse('MyComponent');

//Create the reflection
$reflection = new \Phalcon\Annotations\Reflection($parsing);

//Get the annotations in the class docblock
$classAnnotations = $reflection->getClassAnnotations();

Methods

public __construct ([array $reflectionData])

Phalcon\Annotations\Reflection constructor

public Phalcon\Annotations\Collection getClassAnnotations ()

2.54. API Indice 455



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the annotations found in the class docblock

public Phalcon\Annotations\Collection [] getMethodsAnnotations ()

Returns the annotations found in the methods’ docblocks

public Phalcon\Annotations\Collection [] getPropertiesAnnotations ()

Returns the annotations found in the properties’ docblocks

public array getReflectionData ()

Returns the raw parsing intermediate definitions used to construct the reflection

public static array $data __set_state (unknown $data)

Restores the state of a Phalcon\Annotations\Reflection variable export

2.54.17 Class Phalcon\Assets\Collection

implements Countable, Iterator, Traversable

Represents a collection of resources

Methods

public Phalcon\Assets\Collection add (Phalcon\Assets\Resource $resource)

Adds a resource to the collection

public Phalcon\Assets\Collection addCss (string $path, [boolean $local], [boolean $filter], [array $attributes])

Adds a CSS resource to the collection

public Phalcon\Assets\Collection addJs (string $path, [boolean $local], [boolean $filter], [array $attributes])

Adds a javascript resource to the collection

public Phalcon\Assets\Resource [] getResources ()

Returns the resources as an array

public int count ()

Returns the number of elements in the form

public rewind ()

Rewinds the internal iterator

public Phalcon\Assets\Resource current ()

Returns the current resource in the iterator

public int key ()

Returns the current position/key in the iterator

public next ()

Moves the internal iteration pointer to the next position

public boolean valid ()

Check if the current element in the iterator is valid

public Phalcon\Assets\Collection setTargetPath (string $targetPath)

456 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the target path of the file for the filtered/join output

public string getTargetPath ()

Returns the target path of the file for the filtered/join output

public Phalcon\Assets\Collection setSourcePath (string $sourcePath)

Sets a base source path for all the resources in this collection

public string getSourcePath ()

Returns the base source path for all the resources in this collection

public Phalcon\Assets\Collection setTargetUri (string $targetUri)

Sets a target uri for the generated HTML

public string getTargetUri ()

Returns the target uri for the generated HTML

public Phalcon\Assets\Collection setPrefix (string $prefix)

Sets a common prefix for all the resources

public string getPrefix ()

Returns the prefix

public Phalcon\Assets\Collection setLocal (boolean $local)

Sets if the collection uses local resources by default

public boolean getLocal ()

Returns if the collection uses local resources by default

public $this setAttributes (array $attributes)

Sets extra HTML attributes

public array getAttributes ()

Returns extra HTML attributes

public Phalcon\Assets\Collection addFilter (Phalcon\Assets\FilterInterface $filter)

Adds a filter to the collection

public Phalcon\Assets\Collection setFilters (array $filters)

Sets an array of filters in the collection

public array getFilters ()

Returns the filters set in the collection

public Phalcon\Assets\Collection join (boolean $join)

Sets if all filtered resources in the collection must be joined in a single result file

public boolean getJoin ()

Returns if all the filtered resources must be joined

public string getRealTargetPath ([string $basePath])

Returns the complete location where the joined/filtered collection must be written

public Phalcon\Assets\Collection setTargetLocal (boolean $targetLocal)

2.54. API Indice 457



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the target local

public boolean getTargetLocal ()

Returns the target local

2.54.18 Class Phalcon\Assets\Exception

extends class Phalcon\Exception

Phalcon\DI\Exception Exceptions thrown in Phalcon\Assets will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.19 Class Phalcon\Assets\Filters\Cssmin

implements Phalcon\Assets\FilterInterface

Minify the css - removes comments removes newlines and line feeds keeping removes last semicolon from last property

458 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public $content filter (string $content)

Filters the content using CSSMIN

2.54.20 Class Phalcon\Assets\Filters\Jsmin

implements Phalcon\Assets\FilterInterface

Deletes the characters which are insignificant to JavaScript. Comments will be removed. Tabs will be replaced with
spaces. Carriage returns will be replaced with linefeeds. Most spaces and linefeeds will be removed.

Methods

public $content filter (string $content)

Filters the content using JSMIN

2.54.21 Class Phalcon\Assets\Filters\None

implements Phalcon\Assets\FilterInterface

Returns the content without make any modification to the original source

Methods

public $content filter (string $content)

Returns the content without touching

2.54.22 Class Phalcon\Assets\Manager

Manages collections of CSS/Javascript assets

Methods

public __construct ([array $options])

Phalcon\Assets\Manager constructor

public Phalcon\Assets\Manager setOptions (array $options)

Sets the manager’s options

public array getOptions ()

Returns the manager’s options

public Phalcon\Assets\Manager useImplicitOutput (boolean $implicitOutput)

Sets if the HTML generated must be directly printed or returned

public Phalcon\Assets\Manager addCss (string $path, [boolean $local], [boolean $filter], [array $attributes])

Adds a Css resource to the ‘css’ collection

2.54. API Indice 459



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$assets->addCss('css/bootstrap.css');
$assets->addCss('http://bootstrap.my-cdn.com/style.css', false);

public Phalcon\Assets\Manager addJs (string $path, [boolean $local], [boolean $filter], [array $attributes])

Adds a javascript resource to the ‘js’ collection

<?php

$assets->addJs('scripts/jquery.js');
$assets->addJs('http://jquery.my-cdn.com/jquery.js', true);

public Phalcon\Assets\Manager addResourceByType (string $type, Phalcon\Assets\Resource $resource)

Adds a resource by its type

<?php

$assets->addResourceByType('css', new Phalcon\Assets\Resource\Css('css/style.css'));

public Phalcon\Assets\Manager addResource (Phalcon\Assets\Resource $resource)

Adds a raw resource to the manager

<?php

$assets->addResource(new Phalcon\Assets\Resource('css', 'css/style.css'));

public Phalcon\Assets\Manager set (string $id, Phalcon\Assets\Collection $collection)

Sets a collection in the Assets Manager

<?php

$assets->get('js', $collection);

public Phalcon\Assets\Collection get (string $id)

Returns a collection by its id

<?php

$scripts = $assets->get('js');

public Phalcon\Assets\Collection getCss ()

Returns the CSS collection of assets

public Phalcon\Assets\Collection getJs ()

Returns the CSS collection of assets

public Phalcon\Assets\Collection collection (string $name)

Creates/Returns a collection of resources

public output (Phalcon\Assets\Collection $collection, callback $callback, [string $type])

Traverses a collection calling the callback to generate its HTML

public outputCss ([string $collectionName])

Prints the HTML for CSS resources

460 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public outputJs ([string $collectionName])

Prints the HTML for JS resources

2.54.23 Class Phalcon\Assets\Resource

Represents an asset resource

<?php

$resource = new Phalcon\Assets\Resource('js', 'javascripts/jquery.js');

Methods

public __construct (string $type, string $path, [boolean $local], [boolean $filter], [array $attributes])

Phalcon\Assets\Resource constructor

public Phalcon\Assets\Resource setType (string $type)

Sets the resource’s type

public string getType ()

Returns the type of resource

public Phalcon\Assets\Resource setPath (string $path)

Sets the resource’s path

public string getPath ()

Returns the URI/URL path to the resource

public Phalcon\Assets\Resource setLocal (boolean $local)

Sets if the resource is local or external

public boolean getLocal ()

Returns whether the resource is local or external

public Phalcon\Assets\Resource setFilter (boolean $filter)

Sets if the resource must be filtered or not

public boolean getFilter ()

Returns whether the resource must be filtered or not

public Phalcon\Assets\Resource setAttributes (array $attributes)

Sets extra HTML attributes

public array getAttributes ()

Returns extra HTML attributes set in the resource

public Phalcon\Assets\Resource setTargetUri (string $targetUri)

Sets a target uri for the generated HTML

public string getTargetUri ()

Returns the target uri for the generated HTML

2.54. API Indice 461



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Assets\Resource setSourcePath (string $sourcePath)

Sets the resource’s source path

public string getSourcePath ()

Returns the resource’s target path

public Phalcon\Assets\Resource setTargetPath (string $targetPath)

Sets the resource’s target path

public string getTargetPath ()

Returns the resource’s target path

public string getContent ([string $basePath])

Returns the content of the resource as an string Optionally a base path where the resource is located can be set

public string getRealTargetUri ()

Returns the real target uri for the generated HTML

public string getRealSourcePath ([string $basePath])

Returns the complete location where the resource is located

public string getRealTargetPath ([string $basePath])

Returns the complete location where the resource must be written

2.54.24 Class Phalcon\Assets\Resource\Css

extends class Phalcon\Assets\Resource

Represents CSS resources

Methods

public __construct (string $path, [boolean $local], [boolean $filter], [array $attributes])

public Phalcon\Assets\Resource setType (string $type) inherited from Phalcon\Assets\Resource

Sets the resource’s type

public string getType () inherited from Phalcon\Assets\Resource

Returns the type of resource

public Phalcon\Assets\Resource setPath (string $path) inherited from Phalcon\Assets\Resource

Sets the resource’s path

public string getPath () inherited from Phalcon\Assets\Resource

Returns the URI/URL path to the resource

public Phalcon\Assets\Resource setLocal (boolean $local) inherited from Phalcon\Assets\Resource

Sets if the resource is local or external

public boolean getLocal () inherited from Phalcon\Assets\Resource

Returns whether the resource is local or external

public Phalcon\Assets\Resource setFilter (boolean $filter) inherited from Phalcon\Assets\Resource

462 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets if the resource must be filtered or not

public boolean getFilter () inherited from Phalcon\Assets\Resource

Returns whether the resource must be filtered or not

public Phalcon\Assets\Resource setAttributes (array $attributes) inherited from Phalcon\Assets\Resource

Sets extra HTML attributes

public array getAttributes () inherited from Phalcon\Assets\Resource

Returns extra HTML attributes set in the resource

public Phalcon\Assets\Resource setTargetUri (string $targetUri) inherited from Phalcon\Assets\Resource

Sets a target uri for the generated HTML

public string getTargetUri () inherited from Phalcon\Assets\Resource

Returns the target uri for the generated HTML

public Phalcon\Assets\Resource setSourcePath (string $sourcePath) inherited from Phalcon\Assets\Resource

Sets the resource’s source path

public string getSourcePath () inherited from Phalcon\Assets\Resource

Returns the resource’s target path

public Phalcon\Assets\Resource setTargetPath (string $targetPath) inherited from Phalcon\Assets\Resource

Sets the resource’s target path

public string getTargetPath () inherited from Phalcon\Assets\Resource

Returns the resource’s target path

public string getContent ([string $basePath]) inherited from Phalcon\Assets\Resource

Returns the content of the resource as an string Optionally a base path where the resource is located can be set

public string getRealTargetUri () inherited from Phalcon\Assets\Resource

Returns the real target uri for the generated HTML

public string getRealSourcePath ([string $basePath]) inherited from Phalcon\Assets\Resource

Returns the complete location where the resource is located

public string getRealTargetPath ([string $basePath]) inherited from Phalcon\Assets\Resource

Returns the complete location where the resource must be written

2.54.25 Class Phalcon\Assets\Resource\Js

extends class Phalcon\Assets\Resource

Represents Javascript resources

Methods

public __construct (string $path, [boolean $local], [boolean $filter], [array $attributes])

public Phalcon\Assets\Resource setType (string $type) inherited from Phalcon\Assets\Resource

Sets the resource’s type

2.54. API Indice 463



Phalcon PHP Framework Documentation, Release 1.3.0

public string getType () inherited from Phalcon\Assets\Resource

Returns the type of resource

public Phalcon\Assets\Resource setPath (string $path) inherited from Phalcon\Assets\Resource

Sets the resource’s path

public string getPath () inherited from Phalcon\Assets\Resource

Returns the URI/URL path to the resource

public Phalcon\Assets\Resource setLocal (boolean $local) inherited from Phalcon\Assets\Resource

Sets if the resource is local or external

public boolean getLocal () inherited from Phalcon\Assets\Resource

Returns whether the resource is local or external

public Phalcon\Assets\Resource setFilter (boolean $filter) inherited from Phalcon\Assets\Resource

Sets if the resource must be filtered or not

public boolean getFilter () inherited from Phalcon\Assets\Resource

Returns whether the resource must be filtered or not

public Phalcon\Assets\Resource setAttributes (array $attributes) inherited from Phalcon\Assets\Resource

Sets extra HTML attributes

public array getAttributes () inherited from Phalcon\Assets\Resource

Returns extra HTML attributes set in the resource

public Phalcon\Assets\Resource setTargetUri (string $targetUri) inherited from Phalcon\Assets\Resource

Sets a target uri for the generated HTML

public string getTargetUri () inherited from Phalcon\Assets\Resource

Returns the target uri for the generated HTML

public Phalcon\Assets\Resource setSourcePath (string $sourcePath) inherited from Phalcon\Assets\Resource

Sets the resource’s source path

public string getSourcePath () inherited from Phalcon\Assets\Resource

Returns the resource’s target path

public Phalcon\Assets\Resource setTargetPath (string $targetPath) inherited from Phalcon\Assets\Resource

Sets the resource’s target path

public string getTargetPath () inherited from Phalcon\Assets\Resource

Returns the resource’s target path

public string getContent ([string $basePath]) inherited from Phalcon\Assets\Resource

Returns the content of the resource as an string Optionally a base path where the resource is located can be set

public string getRealTargetUri () inherited from Phalcon\Assets\Resource

Returns the real target uri for the generated HTML

public string getRealSourcePath ([string $basePath]) inherited from Phalcon\Assets\Resource

Returns the complete location where the resource is located

464 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string getRealTargetPath ([string $basePath]) inherited from Phalcon\Assets\Resource

Returns the complete location where the resource must be written

2.54.26 Class Phalcon\CLI\Console

implements Phalcon\DI\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

This component allows to create CLI applications using Phalcon

Methods

public __construct ([unknown $dependencyInjector])

Phalcon\CLI\Console constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

public registerModules (array $modules)

Register an array of modules present in the console

<?php

$application->registerModules(array(
'frontend' => array(

'className' => 'Multiple\Frontend\Module',
'path' => '../apps/frontend/Module.php'

),
'backend' => array(

'className' => 'Multiple\Backend\Module',
'path' => '../apps/backend/Module.php'

)
));

public addModules (array $modules)

Merge modules with the existing ones

<?php

$application->addModules(array(
'admin' => array(

'className' => 'Multiple\Admin\Module',
'path' => '../apps/admin/Module.php'

)
));

2.54. API Indice 465



Phalcon PHP Framework Documentation, Release 1.3.0

public array getModules ()

Return the modules registered in the console

public mixed handle ([array $arguments])

Handle the command-line arguments.

<?php

$arguments = array(
'task' => 'taskname',
'action' => 'action',
'params' => array('parameter1', 'parameter2')

);
$console->handle($arguments);

2.54.27 Class Phalcon\CLI\Console\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\CLI\Console will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

466 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.28 Class Phalcon\CLI\Dispatcher

extends abstract class Phalcon\Dispatcher

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface, Phalcon\DispatcherInterface

Dispatching is the process of taking the command-line arguments, extracting the module name, task name, action
name, and optional parameters contained in it, and then instantiating a task and calling an action on it.

<?php

$di = new Phalcon\DI();

$dispatcher = new Phalcon\CLI\Dispatcher();

$dispatcher->setDI($di);

$dispatcher->setTaskName('posts');
$dispatcher->setActionName('index');
$dispatcher->setParams(array());

$handle = $dispatcher->dispatch();

Constants

integer EXCEPTION_NO_DI

integer EXCEPTION_CYCLIC_ROUTING

integer EXCEPTION_HANDLER_NOT_FOUND

integer EXCEPTION_INVALID_HANDLER

integer EXCEPTION_INVALID_PARAMS

integer EXCEPTION_ACTION_NOT_FOUND

Methods

public setTaskSuffix (string $taskSuffix)

Sets the default task suffix

public setDefaultTask (string $taskName)

Sets the default task name

public setTaskName (string $taskName)

Sets the task name to be dispatched

public string getTaskName ()

Gets last dispatched task name

protected _throwDispatchException ()

Throws an internal exception

protected _handleException ()

Handles a user exception

2.54. API Indice 467



Phalcon PHP Framework Documentation, Release 1.3.0

public string getTaskClass ()

Possible task class name that will be located to dispatch the request

public Phalcon\CLI\Task getLastTask ()

Returns the lastest dispatched controller

public Phalcon\CLI\Task getActiveTask ()

Returns the active task in the dispatcher

public __construct () inherited from Phalcon\Dispatcher

Phalcon\Dispatcher constructor

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Dispatcher

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\Dispatcher

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Dispatcher

Sets the events manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\Dispatcher

Returns the internal event manager

public setActionSuffix (string $actionSuffix) inherited from Phalcon\Dispatcher

Sets the default action suffix

public setModuleName (string $moduleName) inherited from Phalcon\Dispatcher

Sets the module where the controller is (only informative)

public string getModuleName () inherited from Phalcon\Dispatcher

Gets the module where the controller class is

public setNamespaceName (string $namespaceName) inherited from Phalcon\Dispatcher

Sets the namespace where the controller class is

public string getNamespaceName () inherited from Phalcon\Dispatcher

Gets a namespace to be prepended to the current handler name

public setDefaultNamespace (string $namespace) inherited from Phalcon\Dispatcher

Sets the default namespace

public string getDefaultNamespace () inherited from Phalcon\Dispatcher

Returns the default namespace

public setDefaultAction (string $actionName) inherited from Phalcon\Dispatcher

Sets the default action name

public setActionName (string $actionName) inherited from Phalcon\Dispatcher

Sets the action name to be dispatched

public string getActionName () inherited from Phalcon\Dispatcher

Gets the lastest dispatched action name

468 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public setParams (array $params) inherited from Phalcon\Dispatcher

Sets action params to be dispatched

public array getParams () inherited from Phalcon\Dispatcher

Gets action params

public setParam (mixed $param, mixed $value) inherited from Phalcon\Dispatcher

Set a param by its name or numeric index

public mixed getParam (mixed $param, [string|array $filters]) inherited from Phalcon\Dispatcher

Gets a param by its name or numeric index

public string getActiveMethod () inherited from Phalcon\Dispatcher

Returns the current method to be/executed in the dispatcher

public boolean isFinished () inherited from Phalcon\Dispatcher

Checks if the dispatch loop is finished or has more pendent controllers/tasks to disptach

public setReturnedValue (mixed $value) inherited from Phalcon\Dispatcher

Sets the latest returned value by an action manually

public mixed getReturnedValue () inherited from Phalcon\Dispatcher

Returns value returned by the lastest dispatched action

public object dispatch () inherited from Phalcon\Dispatcher

Dispatches a handle action taking into account the routing parameters

public forward (array $forward) inherited from Phalcon\Dispatcher

Forwards the execution flow to another controller/action Dispatchers are unique per module. Forwarding between
modules is not allowed

<?php

$this->dispatcher->forward(array('controller' => 'posts', 'action' => 'index'));

public boolean wasForwarded () inherited from Phalcon\Dispatcher

Check if the current executed action was forwarded by another one

public string getHandlerClass () inherited from Phalcon\Dispatcher

Possible class name that will be located to dispatch the request

2.54.29 Class Phalcon\CLI\Dispatcher\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\CLI\Dispatcher will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

2.54. API Indice 469



Phalcon PHP Framework Documentation, Release 1.3.0

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.30 Class Phalcon\CLI\Router

implements Phalcon\DI\InjectionAwareInterface

Phalcon\CLI\Router is the standard framework router. Routing is the process of taking a command-line arguments and
decomposing it into parameters to determine which module, task, and action of that task should receive the request

<?php

$router = new Phalcon\CLI\Router();
$router->handle(array(

'module' => 'main',
'task' => 'videos',
'action' => 'process'

));
echo $router->getTaskName();

Methods

public __construct ()

Phalcon\CLI\Router constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

470 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public setDefaultModule (string $moduleName)

Sets the name of the default module

public setDefaultTask (string $taskName)

Sets the default controller name

public setDefaultAction (string $actionName)

Sets the default action name

public handle ([array $arguments])

Handles routing information received from command-line arguments

public string getModuleName ()

Returns proccesed module name

public string getTaskName ()

Returns proccesed task name

public string getActionName ()

Returns proccesed action name

public array getParams ()

Returns proccesed extra params

2.54.31 Class Phalcon\CLI\Router\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\CLI\Router will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

2.54. API Indice 471



Phalcon PHP Framework Documentation, Release 1.3.0

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.32 Class Phalcon\CLI\Task

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface

Every command-line task should extend this class that encapsulates all the task functionality A task can be used to
run “tasks” such as migrations, cronjobs, unit-tests, or anything that you want. The Task class should at least have a
“mainAction” method

<?php

class HelloTask extends \Phalcon\CLI\Task
{

//This action will be executed by default
public function mainAction()
{

}

public function findAction()
{

}

}

Methods

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

472 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.33 Abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

This class implements common functionality for backend adapters. A backend cache adapter may extend this class

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend constructor

public mixed start (int|string $keyName, [long $lifetime])

Starts a cache. The $keyname allows to identify the created fragment

public stop ([boolean $stopBuffer])

Stops the frontend without store any cached content

public mixed getFrontend ()

Returns front-end instance adapter related to the back-end

public array getOptions ()

Returns the backend options

public boolean isFresh ()

Checks whether the last cache is fresh or cached

public boolean isStarted ()

Checks whether the cache has starting buffering or not

public setLastKey (string $lastKey)

Sets the last key used in the cache

public string getLastKey ()

Gets the last key stored by the cache

public int getLifetime ()

Gets the last lifetime set

abstract public mixed get (int|string $keyName, [long $lifetime]) inherited from Phalcon\Cache\BackendInterface

Returns a cached content

abstract public save ([int|string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer]) inherited from
Phalcon\Cache\BackendInterface

Stores cached content into the file backend and stops the frontend

abstract public boolean delete (int|string $keyName) inherited from Phalcon\Cache\BackendInterface

Deletes a value from the cache by its key

abstract public array queryKeys ([string $prefix]) inherited from Phalcon\Cache\BackendInterface

Query the existing cached keys

abstract public boolean exists ([string $keyName], [long $lifetime]) inherited from Phalcon\Cache\BackendInterface

Checks if cache exists and it hasn’t expired

2.54. API Indice 473



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public boolean flush () inherited from Phalcon\Cache\BackendInterface

Immediately invalidates all existing items.

2.54.34 Class Phalcon\Cache\Backend\Apc

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Allows to cache output fragments, PHP data and raw data using an APC backend

<?php

//Cache data for 2 days
$frontCache = new Phalcon\Cache\Frontend\Data(array(

'lifetime' => 172800
));

$cache = new Phalcon\Cache\Backend\Apc($frontCache, array(
'prefix' => 'app-data'

));

//Cache arbitrary data
$cache->save('my-data', array(1, 2, 3, 4, 5));

//Get data
$data = $cache->get('my-data');

Methods

public mixed get (string $keyName, [long $lifetime])

Returns a cached content

public save ([string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the APC backend and stops the frontend

public boolean delete (string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it hasn’t expired

public mixed increment ([unknown $key_name], [long $value])

Increment of a given key, by number $value

public mixed decrement ([unknown $key_name], [long $value])

Decrement of a given key, by number $value

public boolean flush ()

Immediately invalidates all existing items.

474 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options]) inherited from Phal-
con\Cache\Backend

Phalcon\Cache\Backend constructor

public mixed start (int|string $keyName, [long $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The $keyname allows to identify the created fragment

public stop ([boolean $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public mixed getFrontend () inherited from Phalcon\Cache\Backend

Returns front-end instance adapter related to the back-end

public array getOptions () inherited from Phalcon\Cache\Backend

Returns the backend options

public boolean isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public boolean isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public setLastKey (string $lastKey) inherited from Phalcon\Cache\Backend

Sets the last key used in the cache

public string getLastKey () inherited from Phalcon\Cache\Backend

Gets the last key stored by the cache

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

2.54.35 Class Phalcon\Cache\Backend\File

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Allows to cache output fragments using a file backend

<?php

//Cache the file for 2 days
$frontendOptions = array(

'lifetime' => 172800
);

//Create a output cache
$frontCache = \Phalcon\Cache\Frontend\Output($frontOptions);

//Set the cache directory
$backendOptions = array(

'cacheDir' => '../app/cache/'
);

//Create the File backend

2.54. API Indice 475



Phalcon PHP Framework Documentation, Release 1.3.0

$cache = new \Phalcon\Cache\Backend\File($frontCache, $backendOptions);

$content = $cache->start('my-cache');
if ($content === null) {

echo '<h1>', time(), '</h1>';
$cache->save();

} else {
echo $content;

}

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\File constructor

public mixed get (int|string $keyName, [long $lifetime])

Returns a cached content

public save ([int|string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the file backend and stops the frontend

public boolean delete (int|string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it isn’t expired

public mixed increment ([unknown $key_name], [long $value])

Increment of a given key, by number $value

public mixed decrement ([unknown $key_name], [long $value])

Decrement of a given key, by number $value

public boolean flush ()

Immediately invalidates all existing items.

public mixed start (int|string $keyName, [long $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The $keyname allows to identify the created fragment

public stop ([boolean $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public mixed getFrontend () inherited from Phalcon\Cache\Backend

Returns front-end instance adapter related to the back-end

public array getOptions () inherited from Phalcon\Cache\Backend

Returns the backend options

public boolean isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

476 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public boolean isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public setLastKey (string $lastKey) inherited from Phalcon\Cache\Backend

Sets the last key used in the cache

public string getLastKey () inherited from Phalcon\Cache\Backend

Gets the last key stored by the cache

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

2.54.36 Class Phalcon\Cache\Backend\Libmemcached

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Allows to cache output fragments, PHP data or raw data to a libmemcached backend This adapter uses the special
memcached key “_PHCM” to store all the keys internally used by the adapter

<?php

// Cache data for 2 days
$frontCache = new Phalcon\Cache\Frontend\Data(array(

"lifetime" => 172800
));

//Create the Cache setting memcached connection options
$cache = new Phalcon\Cache\Backend\Libmemcached($frontCache, array(

'servers' => array(
array('host' => 'localhost',

'port' => 11211,
'weight' => 1),

),
'client' => array(

Memcached::OPT_HASH => Memcached::HASH_MD5,
Memcached::OPT_PREFIX_KEY => 'prefix.',

)
));

//Cache arbitrary data
$cache->save('my-data', array(1, 2, 3, 4, 5));

//Get data
$data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Libmemcached constructor

protected _connect ()

Create internal connection to memcached

2.54. API Indice 477



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed get (int|string $keyName, [long $lifetime])

Returns a cached content

public save ([int|string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the Memcached backend and stops the frontend

public boolean delete (int|string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it hasn’t expired

public mixed increment ([unknown $key_name], [long $value])

Increment of a given key, by number $value

public mixed decrement ([unknown $key_name], [long $value])

Decrement of a given key, by number $value

public boolean flush ()

Immediately invalidates all existing items.

public getTrackingKey ()

...

public setTrackingKey (unknown $key)

...

public mixed start (int|string $keyName, [long $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The $keyname allows to identify the created fragment

public stop ([boolean $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public mixed getFrontend () inherited from Phalcon\Cache\Backend

Returns front-end instance adapter related to the back-end

public array getOptions () inherited from Phalcon\Cache\Backend

Returns the backend options

public boolean isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public boolean isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public setLastKey (string $lastKey) inherited from Phalcon\Cache\Backend

Sets the last key used in the cache

public string getLastKey () inherited from Phalcon\Cache\Backend

Gets the last key stored by the cache

478 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

2.54.37 Class Phalcon\Cache\Backend\Memcache

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Allows to cache output fragments, PHP data or raw data to a memcache backend This adapter uses the special mem-
cached key “_PHCM” to store all the keys internally used by the adapter

<?php

// Cache data for 2 days
$frontCache = new Phalcon\Cache\Frontend\Data(array(

"lifetime" => 172800
));

//Create the Cache setting memcached connection options
$cache = new Phalcon\Cache\Backend\Memcache($frontCache, array(

'host' => 'localhost',
'port' => 11211,
'persistent' => false

));

//Cache arbitrary data
$cache->save('my-data', array(1, 2, 3, 4, 5));

//Get data
$data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Memcache constructor

protected _connect ()

Create internal connection to memcached

public mixed get (int|string $keyName, [long $lifetime])

Returns a cached content

public save ([int|string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the Memcached backend and stops the frontend

public boolean delete (int|string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it hasn’t expired

2.54. API Indice 479



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed increment ([unknown $key_name], [long $value])

Atomic increment of a given key, by number $value

public mixed decrement ([unknown $key_name], [long $value])

Atomic decrement of a given key, by number $value

public boolean flush ()

Immediately invalidates all existing items.

public getTrackingKey ()

...

public setTrackingKey (unknown $key)

...

public mixed start (int|string $keyName, [long $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The $keyname allows to identify the created fragment

public stop ([boolean $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public mixed getFrontend () inherited from Phalcon\Cache\Backend

Returns front-end instance adapter related to the back-end

public array getOptions () inherited from Phalcon\Cache\Backend

Returns the backend options

public boolean isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public boolean isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public setLastKey (string $lastKey) inherited from Phalcon\Cache\Backend

Sets the last key used in the cache

public string getLastKey () inherited from Phalcon\Cache\Backend

Gets the last key stored by the cache

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

2.54.38 Class Phalcon\Cache\Backend\Memory

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Stores content in memory. Data is lost when the request is finished

480 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Cache data
$frontCache = new Phalcon\Cache\Frontend\Data();

$cache = new Phalcon\Cache\Backend\Memory($frontCache);

//Cache arbitrary data
$cache->save('my-data', array(1, 2, 3, 4, 5));

//Get data
$data = $cache->get('my-data');

Methods

public mixed get (string $keyName, [long $lifetime])

Returns a cached content

public save ([string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the backend and stops the frontend

public boolean delete (string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it hasn’t expired

public mixed increment ([unknown $key_name], [unknown $value])

Increment of given $keyName by $value

public long decrement ([unknown $key_name], [long $value])

Decrement of $keyName by given $value

public boolean flush ()

Immediately invalidates all existing items.

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options]) inherited from Phal-
con\Cache\Backend

Phalcon\Cache\Backend constructor

public mixed start (int|string $keyName, [long $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The $keyname allows to identify the created fragment

public stop ([boolean $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public mixed getFrontend () inherited from Phalcon\Cache\Backend

Returns front-end instance adapter related to the back-end

public array getOptions () inherited from Phalcon\Cache\Backend

2.54. API Indice 481



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the backend options

public boolean isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public boolean isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public setLastKey (string $lastKey) inherited from Phalcon\Cache\Backend

Sets the last key used in the cache

public string getLastKey () inherited from Phalcon\Cache\Backend

Gets the last key stored by the cache

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

2.54.39 Class Phalcon\Cache\Backend\Mongo

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Allows to cache output fragments, PHP data or raw data to a MongoDb backend

<?php

// Cache data for 2 days
$frontCache = new Phalcon\Cache\Frontend\Base64(array(

"lifetime" => 172800
));

//Create a MongoDB cache
$cache = new Phalcon\Cache\Backend\Mongo($frontCache, array(

'server' => "mongodb://localhost",
'db' => 'caches',

'collection' => 'images'
));

//Cache arbitrary data
$cache->save('my-data', file_get_contents('some-image.jpg'));

//Get data
$data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Mongo constructor

protected MongoCollection _getCollection ()

Returns a MongoDb collection based on the backend parameters

public mixed get (int|string $keyName, [long $lifetime])

482 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns a cached content

public save ([int|string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the Mongo backend and stops the frontend

public boolean delete (int|string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it hasn’t expired

public gc ()

...

public mixed increment ([unknown $key_name], [long $value])

Increment of a given key by $value

public mixed decrement ([unknown $key_name], [long $value])

Decrement of a given key by $value

public bool flush ()

Immediately invalidates all existing items.

public mixed start (int|string $keyName, [long $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The $keyname allows to identify the created fragment

public stop ([boolean $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public mixed getFrontend () inherited from Phalcon\Cache\Backend

Returns front-end instance adapter related to the back-end

public array getOptions () inherited from Phalcon\Cache\Backend

Returns the backend options

public boolean isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public boolean isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public setLastKey (string $lastKey) inherited from Phalcon\Cache\Backend

Sets the last key used in the cache

public string getLastKey () inherited from Phalcon\Cache\Backend

Gets the last key stored by the cache

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

2.54. API Indice 483



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.40 Class Phalcon\Cache\Backend\Xcache

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Allows to cache output fragments, PHP data and raw data using an XCache backend

<?php

//Cache data for 2 days
$frontCache = new Phalcon\Cache\Frontend\Data(array(

'lifetime' => 172800
));

$cache = new Phalcon\Cache\Backend\Xcache($frontCache, array(
'prefix' => 'app-data'

));

//Cache arbitrary data
$cache->save('my-data', array(1, 2, 3, 4, 5));

//Get data
$data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Xcache constructor

public mixed get (string $keyName, [long $lifetime])

Returns cached content

public save ([string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the XCache backend and stops the frontend

public boolean delete (string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if the cache entry exists and has not expired

public mixed increment ([unknown $key_name], [long $value])

Atomic increment of a given key, by number $value

public mixed decrement ([unknown $key_name], [long $value])

Atomic decrement of a given key, by number $value

public boolean flush ()

Immediately invalidates all existing items.

public mixed start (int|string $keyName, [long $lifetime]) inherited from Phalcon\Cache\Backend

484 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Starts a cache. The $keyname allows to identify the created fragment

public stop ([boolean $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public mixed getFrontend () inherited from Phalcon\Cache\Backend

Returns front-end instance adapter related to the back-end

public array getOptions () inherited from Phalcon\Cache\Backend

Returns the backend options

public boolean isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public boolean isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public setLastKey (string $lastKey) inherited from Phalcon\Cache\Backend

Sets the last key used in the cache

public string getLastKey () inherited from Phalcon\Cache\Backend

Gets the last key stored by the cache

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

2.54.41 Class Phalcon\Cache\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Cache will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

2.54. API Indice 485



Phalcon PHP Framework Documentation, Release 1.3.0

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.42 Class Phalcon\Cache\Frontend\Base64

extends class Phalcon\Cache\Frontend\Data

implements Phalcon\Cache\FrontendInterface

Allows to cache data converting/deconverting them to base64. This adapters uses the base64_encode/base64_decode
PHP’s functions

<?php

// Cache the files for 2 days using a Base64 frontend
$frontCache = new Phalcon\Cache\Frontend\Base64(array(

"lifetime" => 172800
));

//Create a MongoDB cache
$cache = new Phalcon\Cache\Backend\Mongo($frontCache, array(

'server' => "mongodb://localhost",
'db' => 'caches',

'collection' => 'images'
));

// Try to get cached image
$cacheKey = 'some-image.jpg.cache';
$image = $cache->get($cacheKey);
if ($image === null) {

// Store the image in the cache
$cache->save($cacheKey, file_get_contents('tmp-dir/some-image.jpg'));

}

header('Content-Type: image/jpeg');
echo $image;

Methods

public string beforeStore (mixed $data)

Serializes data before storing them

public mixed afterRetrieve (mixed $data)

Unserializes data after retrieval

public __construct ([array $frontendOptions]) inherited from Phalcon\Cache\Frontend\Data

486 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Phalcon\Cache\Frontend\Data constructor

public int getLifetime () inherited from Phalcon\Cache\Frontend\Data

Returns cache lifetime

public boolean isBuffering () inherited from Phalcon\Cache\Frontend\Data

Check whether if frontend is buffering output

public start () inherited from Phalcon\Cache\Frontend\Data

Starts output frontend. Actually, does nothing

public string getContent () inherited from Phalcon\Cache\Frontend\Data

Returns output cached content

public stop () inherited from Phalcon\Cache\Frontend\Data

Stops output frontend

2.54.43 Class Phalcon\Cache\Frontend\Data

implements Phalcon\Cache\FrontendInterface

Allows to cache native PHP data in a serialized form

<?php

// Cache the files for 2 days using a Data frontend
$frontCache = new Phalcon\Cache\Frontend\Data(array(

"lifetime" => 172800
));

// Create the component that will cache "Data" to a "File" backend
// Set the cache file directory - important to keep the "/" at the end of
// of the value for the folder
$cache = new Phalcon\Cache\Backend\File($frontCache, array(

"cacheDir" => "../app/cache/"
));

// Try to get cached records
$cacheKey = 'robots_order_id.cache';
$robots = $cache->get($cacheKey);
if ($robots === null) {

// $robots is null due to cache expiration or data does not exist
// Make the database call and populate the variable
$robots = Robots::find(array("order" => "id"));

// Store it in the cache
$cache->save($cacheKey, $robots);

}

// Use $robots :)
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

2.54. API Indice 487



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct ([array $frontendOptions])

Phalcon\Cache\Frontend\Data constructor

public int getLifetime ()

Returns cache lifetime

public boolean isBuffering ()

Check whether if frontend is buffering output

public start ()

Starts output frontend. Actually, does nothing

public string getContent ()

Returns output cached content

public stop ()

Stops output frontend

public string beforeStore (mixed $data)

Serializes data before storing them

public mixed afterRetrieve (mixed $data)

Unserializes data after retrieval

2.54.44 Class Phalcon\Cache\Frontend\Igbinary

extends class Phalcon\Cache\Frontend\Data

implements Phalcon\Cache\FrontendInterface

Allows to cache native PHP data in a serialized form using igbinary extension

<?php

// Cache the files for 2 days using Igbinary frontend
$frontCache = new Phalcon\Cache\Frontend\Igbinary(array(

"lifetime" => 172800
));

// Create the component that will cache "Igbinary" to a "File" backend
// Set the cache file directory - important to keep the "/" at the end of
// of the value for the folder
$cache = new Phalcon\Cache\Backend\File($frontCache, array(

"cacheDir" => "../app/cache/"
));

// Try to get cached records
$cacheKey = 'robots_order_id.cache';
$robots = $cache->get($cacheKey);
if ($robots === null) {

// $robots is null due to cache expiration or data do not exist
// Make the database call and populate the variable

488 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$robots = Robots::find(array("order" => "id"));

// Store it in the cache
$cache->save($cacheKey, $robots);

}

// Use $robots :)
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

Methods

public string beforeStore (mixed $data)

Serializes data before storing them

public mixed afterRetrieve (mixed $data)

Unserializes data after retrieval

public __construct ([array $frontendOptions]) inherited from Phalcon\Cache\Frontend\Data

Phalcon\Cache\Frontend\Data constructor

public int getLifetime () inherited from Phalcon\Cache\Frontend\Data

Returns cache lifetime

public boolean isBuffering () inherited from Phalcon\Cache\Frontend\Data

Check whether if frontend is buffering output

public start () inherited from Phalcon\Cache\Frontend\Data

Starts output frontend. Actually, does nothing

public string getContent () inherited from Phalcon\Cache\Frontend\Data

Returns output cached content

public stop () inherited from Phalcon\Cache\Frontend\Data

Stops output frontend

2.54.45 Class Phalcon\Cache\Frontend\Json

extends class Phalcon\Cache\Frontend\Data

implements Phalcon\Cache\FrontendInterface

Allows to cache data converting/deconverting them to JSON. This adapters uses the json_encode/json_decode PHP’s
functions As the data is encoded in JSON other systems accessing the same backend could process them

<?php

// Cache the data for 2 days
$frontCache = new Phalcon\Cache\Frontend\Json(array(

"lifetime" => 172800
));

//Create the Cache setting memcached connection options

2.54. API Indice 489



Phalcon PHP Framework Documentation, Release 1.3.0

$cache = new Phalcon\Cache\Backend\Memcache($frontCache, array(
'host' => 'localhost',
'port' => 11211,
'persistent' => false

));

//Cache arbitrary data
$cache->save('my-data', array(1, 2, 3, 4, 5));

//Get data
$data = $cache->get('my-data');

Methods

public string beforeStore (mixed $data)

Serializes data before storing it

public mixed afterRetrieve (mixed $data)

Unserializes data after retrieving it

public __construct ([array $frontendOptions]) inherited from Phalcon\Cache\Frontend\Data

Phalcon\Cache\Frontend\Data constructor

public int getLifetime () inherited from Phalcon\Cache\Frontend\Data

Returns cache lifetime

public boolean isBuffering () inherited from Phalcon\Cache\Frontend\Data

Check whether if frontend is buffering output

public start () inherited from Phalcon\Cache\Frontend\Data

Starts output frontend. Actually, does nothing

public string getContent () inherited from Phalcon\Cache\Frontend\Data

Returns output cached content

public stop () inherited from Phalcon\Cache\Frontend\Data

Stops output frontend

2.54.46 Class Phalcon\Cache\Frontend\None

extends class Phalcon\Cache\Frontend\Data

implements Phalcon\Cache\FrontendInterface

Discards any kind of frontend data input. This frontend does not have expiration time or any other options

<?php

//Create a None Cache
$frontCache = new Phalcon\Cache\Frontend\None();

// Create the component that will cache "Data" to a "Memcached" backend
// Memcached connection settings
$cache = new Phalcon\Cache\Backend\Memcache($frontCache, array(

490 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

"host" => "localhost",
"port" => "11211"

));

// This Frontend always return the data as it's returned by the backend
$cacheKey = 'robots_order_id.cache';
$robots = $cache->get($cacheKey);
if ($robots === null) {

// This cache doesn't perform any expiration checking, so the data is always expired
// Make the database call and populate the variable
$robots = Robots::find(array("order" => "id"));

$cache->save($cacheKey, $robots);
}

// Use $robots :)
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

Methods

public int getLifetime ()

Returns cache lifetime, always one second expiring content

public beforeStore (mixed $data)

Prepare data to be stored

public afterRetrieve (mixed $data)

Prepares data to be retrieved to user

public __construct ([array $frontendOptions]) inherited from Phalcon\Cache\Frontend\Data

Phalcon\Cache\Frontend\Data constructor

public boolean isBuffering () inherited from Phalcon\Cache\Frontend\Data

Check whether if frontend is buffering output

public start () inherited from Phalcon\Cache\Frontend\Data

Starts output frontend. Actually, does nothing

public string getContent () inherited from Phalcon\Cache\Frontend\Data

Returns output cached content

public stop () inherited from Phalcon\Cache\Frontend\Data

Stops output frontend

2.54.47 Class Phalcon\Cache\Frontend\Output

implements Phalcon\Cache\FrontendInterface

Allows to cache output fragments captured with ob_* functions

2.54. API Indice 491



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Create an Output frontend. Cache the files for 2 days
$frontCache = new Phalcon\Cache\Frontend\Output(array(
"lifetime" => 172800

));

// Create the component that will cache from the "Output" to a "File" backend
// Set the cache file directory - it's important to keep the "/" at the end of
// the value for the folder
$cache = new Phalcon\Cache\Backend\File($frontCache, array(

"cacheDir" => "../app/cache/"
));

// Get/Set the cache file to ../app/cache/my-cache.html
$content = $cache->start("my-cache.html");

// If $content is null then the content will be generated for the cache
if ($content === null) {

//Print date and time
echo date("r");

//Generate a link to the sign-up action
echo Phalcon\Tag::linkTo(

array(
"user/signup",
"Sign Up",
"class" => "signup-button"

)
);

// Store the output into the cache file
$cache->save();

} else {

// Echo the cached output
echo $content;

}

Methods

public __construct ([array $frontendOptions])

Phalcon\Cache\Frontend\Output constructor

public integer getLifetime ()

Returns cache lifetime

public boolean isBuffering ()

Check whether if frontend is buffering output

public start ()

Starts output frontend

public string getContent ()

492 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns output cached content

public stop ()

Stops output frontend

public mixed beforeStore (mixed $data)

Prepare data to be stored

public mixed afterRetrieve (mixed $data)

Prepares data to be retrieved to user

2.54.48 Class Phalcon\Cache\Multiple

Allows to read to chained backends writing to multiple backends

<?php

use Phalcon\Cache\Frontend\Data as DataFrontend,
Phalcon\Cache\Multiple,
Phalcon\Cache\Backend\Apc as ApcCache,
Phalcon\Cache\Backend\Memcache as MemcacheCache,
Phalcon\Cache\Backend\File as FileCache;

$ultraFastFrontend = new DataFrontend(array(
"lifetime" => 3600

));

$fastFrontend = new DataFrontend(array(
"lifetime" => 86400

));

$slowFrontend = new DataFrontend(array(
"lifetime" => 604800

));

//Backends are registered from the fastest to the slower
$cache = new Multiple(array(

new ApcCache($ultraFastFrontend, array(
"prefix" => 'cache',

)),
new MemcacheCache($fastFrontend, array(

"prefix" => 'cache',
"host" => "localhost",
"port" => "11211"

)),
new FileCache($slowFrontend, array(

"prefix" => 'cache',
"cacheDir" => "../app/cache/"

))
));

//Save, saves in every backend
$cache->save('my-key', $data);

2.54. API Indice 493



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct ([Phalcon\Cache\BackendInterface[] $backends])

Phalcon\Cache\Multiple constructor

public Phalcon\Cache\Multiple push (Phalcon\Cache\BackendInterface $backend)

Adds a backend

public mixed get (string $keyName, [long $lifetime])

Returns a cached content reading the internal backends

public mixed start (int|string $keyName, [long $lifetime])

Starts every backend

public save ([string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into all backends and stops the frontend

public boolean delete (int|string $keyName)

Deletes a value from each backend

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists in at least one backend

2.54.49 Class Phalcon\Config

implements ArrayAccess, Countable

Phalcon\Config is designed to simplify the access to, and the use of, configuration data within applications. It provides
a nested object property based user interface for accessing this configuration data within application code.

<?php

$config = new Phalcon\Config(array(
"database" => array(

"adapter" => "Mysql",
"host" => "localhost",
"username" => "scott",
"password" => "cheetah",
"dbname" => "test_db"

),
"phalcon" => array(

"controllersDir" => "../app/controllers/",
"modelsDir" => "../app/models/",
"viewsDir" => "../app/views/"

)
));

Methods

public __construct ([array $arrayConfig])

Phalcon\Config constructor

public boolean offsetExists (unknown $property)

494 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Allows to check whether an attribute is defined using the array-syntax

<?php

var_dump(isset($config['database']));

public mixed get (string $index, [mixed $defaultValue])

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not
defined the default value will be used instead

<?php

echo $config->get('controllersDir', '../app/controllers/');

public string offsetGet (unknown $property)

Gets an attribute using the array-syntax

<?php

print_r($config['database']);

public offsetSet (unknown $property, mixed $value)

Sets an attribute using the array-syntax

<?php

$config['database'] = array('type' => 'Sqlite');

public offsetUnset (unknown $property)

Unsets an attribute using the array-syntax

<?php

unset($config['database']);

public merge (Phalcon\Config $config)

Merges a configuration into the current one

<?php

$appConfig = new Phalcon\Config(array('database' => array('host' => 'localhost')));
$globalConfig->merge($config2);

public array toArray ()

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count ()

...

public __wakeup ()

...

2.54. API Indice 495



Phalcon PHP Framework Documentation, Release 1.3.0

public static Phalcon\Config __set_state ([unknown $properties])

Restores the state of a Phalcon\Config object

public __get (unknown $property)

...

public __set (unknown $property, unknown $value)

...

public __isset (unknown $property)

...

public __unset (unknown $property)

...

2.54.50 Class Phalcon\Config\Adapter\Ini

extends class Phalcon\Config

implements Countable, ArrayAccess

Reads ini files and converts them to Phalcon\Config objects. Given the next configuration file:

<?php

[database]
adapter = Mysql
host = localhost
username = scott
password = cheetah
dbname = test_db

[phalcon]
controllersDir = "../app/controllers/"
modelsDir = "../app/models/"
viewsDir = "../app/views/"

You can read it as follows:

<?php

$config = new Phalcon\Config\Adapter\Ini("path/config.ini");
echo $config->phalcon->controllersDir;
echo $config->database->username;

Methods

public __construct (string $filePath)

Phalcon\Config\Adapter\Ini constructor

public boolean offsetExists (unknown $property) inherited from Phalcon\Config

Allows to check whether an attribute is defined using the array-syntax

496 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

var_dump(isset($config['database']));

public mixed get (string $index, [mixed $defaultValue]) inherited from Phalcon\Config

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not
defined the default value will be used instead

<?php

echo $config->get('controllersDir', '../app/controllers/');

public string offsetGet (unknown $property) inherited from Phalcon\Config

Gets an attribute using the array-syntax

<?php

print_r($config['database']);

public offsetSet (unknown $property, mixed $value) inherited from Phalcon\Config

Sets an attribute using the array-syntax

<?php

$config['database'] = array('type' => 'Sqlite');

public offsetUnset (unknown $property) inherited from Phalcon\Config

Unsets an attribute using the array-syntax

<?php

unset($config['database']);

public merge (Phalcon\Config $config) inherited from Phalcon\Config

Merges a configuration into the current one

<?php

$appConfig = new Phalcon\Config(array('database' => array('host' => 'localhost')));
$globalConfig->merge($config2);

public array toArray () inherited from Phalcon\Config

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count () inherited from Phalcon\Config

...

public __wakeup () inherited from Phalcon\Config

...

public static Phalcon\Config __set_state ([unknown $properties]) inherited from Phalcon\Config

2.54. API Indice 497



Phalcon PHP Framework Documentation, Release 1.3.0

Restores the state of a Phalcon\Config object

public __get (unknown $property) inherited from Phalcon\Config

...

public __set (unknown $property, unknown $value) inherited from Phalcon\Config

...

public __isset (unknown $property) inherited from Phalcon\Config

...

public __unset (unknown $property) inherited from Phalcon\Config

...

2.54.51 Class Phalcon\Config\Adapter\Json

extends class Phalcon\Config

implements Countable, ArrayAccess

Reads JSON files and converts them to Phalcon\Config objects. Given the following configuration file:

<?php

{"phalcon":{"baseuri":"\/phalcon\/"},"models":{"metadata":"memory"}}

You can read it as follows:

<?php

$config = new Phalcon\Config\Adapter\Json("path/config.json");
echo $config->phalcon->baseuri;
echo $config->models->metadata;

Methods

public __construct (string $filePath)

Phalcon\Config\Adapter\Json constructor

public boolean offsetExists (unknown $property) inherited from Phalcon\Config

Allows to check whether an attribute is defined using the array-syntax

<?php

var_dump(isset($config['database']));

public mixed get (string $index, [mixed $defaultValue]) inherited from Phalcon\Config

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not
defined the default value will be used instead

<?php

echo $config->get('controllersDir', '../app/controllers/');

498 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string offsetGet (unknown $property) inherited from Phalcon\Config

Gets an attribute using the array-syntax

<?php

print_r($config['database']);

public offsetSet (unknown $property, mixed $value) inherited from Phalcon\Config

Sets an attribute using the array-syntax

<?php

$config['database'] = array('type' => 'Sqlite');

public offsetUnset (unknown $property) inherited from Phalcon\Config

Unsets an attribute using the array-syntax

<?php

unset($config['database']);

public merge (Phalcon\Config $config) inherited from Phalcon\Config

Merges a configuration into the current one

<?php

$appConfig = new Phalcon\Config(array('database' => array('host' => 'localhost')));
$globalConfig->merge($config2);

public array toArray () inherited from Phalcon\Config

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count () inherited from Phalcon\Config

...

public __wakeup () inherited from Phalcon\Config

...

public static Phalcon\Config __set_state ([unknown $properties]) inherited from Phalcon\Config

Restores the state of a Phalcon\Config object

public __get (unknown $property) inherited from Phalcon\Config

...

public __set (unknown $property, unknown $value) inherited from Phalcon\Config

...

public __isset (unknown $property) inherited from Phalcon\Config

...

public __unset (unknown $property) inherited from Phalcon\Config

2.54. API Indice 499



Phalcon PHP Framework Documentation, Release 1.3.0

...

2.54.52 Class Phalcon\Config\Adapter\Php

extends class Phalcon\Config

implements Countable, ArrayAccess

Reads php files and converts them to Phalcon\Config objects. Given the next configuration file:

<?php

<?php
return array(
'database' => array(

'adapter' => 'Mysql',
'host' => 'localhost',
'username' => 'scott',
'password' => 'cheetah',
'dbname' => 'test_db'

),

'phalcon' => array(
'controllersDir' => '../app/controllers/',
'modelsDir' => '../app/models/',
'viewsDir' => '../app/views/'

));

You can read it as follows:

<?php

$config = new Phalcon\Config\Adapter\Php("path/config.php");
echo $config->phalcon->controllersDir;
echo $config->database->username;

Methods

public __construct (string $filePath)

Phalcon\Config\Adapter\Php constructor

public boolean offsetExists (unknown $property) inherited from Phalcon\Config

Allows to check whether an attribute is defined using the array-syntax

<?php

var_dump(isset($config['database']));

public mixed get (string $index, [mixed $defaultValue]) inherited from Phalcon\Config

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not
defined the default value will be used instead

<?php

echo $config->get('controllersDir', '../app/controllers/');

500 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string offsetGet (unknown $property) inherited from Phalcon\Config

Gets an attribute using the array-syntax

<?php

print_r($config['database']);

public offsetSet (unknown $property, mixed $value) inherited from Phalcon\Config

Sets an attribute using the array-syntax

<?php

$config['database'] = array('type' => 'Sqlite');

public offsetUnset (unknown $property) inherited from Phalcon\Config

Unsets an attribute using the array-syntax

<?php

unset($config['database']);

public merge (Phalcon\Config $config) inherited from Phalcon\Config

Merges a configuration into the current one

<?php

$appConfig = new Phalcon\Config(array('database' => array('host' => 'localhost')));
$globalConfig->merge($config2);

public array toArray () inherited from Phalcon\Config

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count () inherited from Phalcon\Config

...

public __wakeup () inherited from Phalcon\Config

...

public static Phalcon\Config __set_state ([unknown $properties]) inherited from Phalcon\Config

Restores the state of a Phalcon\Config object

public __get (unknown $property) inherited from Phalcon\Config

...

public __set (unknown $property, unknown $value) inherited from Phalcon\Config

...

public __isset (unknown $property) inherited from Phalcon\Config

...

public __unset (unknown $property) inherited from Phalcon\Config

2.54. API Indice 501



Phalcon PHP Framework Documentation, Release 1.3.0

...

2.54.53 Class Phalcon\Config\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Config will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.54 Class Phalcon\Crypt

implements Phalcon\CryptInterface

Provides encryption facilities to phalcon applications

<?php

$crypt = new Phalcon\Crypt();

$key = 'le password';
$text = 'This is a secret text';

502 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

$encrypted = $crypt->encrypt($text, $key);

echo $crypt->decrypt($encrypted, $key);

Constants

integer PADDING_DEFAULT

integer PADDING_ANSI_X_923

integer PADDING_PKCS7

integer PADDING_ISO_10126

integer PADDING_ISO_IEC_7816_4

integer PADDING_ZERO

integer PADDING_SPACE

Methods

public Phalcon\Encrypt setCipher (string $cipher)

Sets the cipher algorithm

public string getCipher ()

Returns the current cipher

public Phalcon\Encrypt setMode (unknown $mode)

Sets the encrypt/decrypt mode

public string getMode ()

Returns the current encryption mode

public Phalcon\Encrypt setKey (string $key)

Sets the encryption key

public string getKey ()

Returns the encryption key

public Phalcon\CryptInterface setPadding (unknown $scheme)

public int getPadding ()

Returns the padding scheme

public string encrypt (string $text, [string $key])

Encrypts a text

<?php

$encrypted = $crypt->encrypt("Ultra-secret text", "encrypt password");

public string decrypt (string $text, [string $key])

Decrypts an encrypted text

2.54. API Indice 503



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

echo $crypt->decrypt($encrypted, "decrypt password");

public string encryptBase64 (string $text, [string $key], [unknown $safe])

Encrypts a text returning the result as a base64 string

public string decryptBase64 (string $text, [string $key], [unknown $safe])

Decrypt a text that is coded as a base64 string

public array getAvailableCiphers ()

Returns a list of available cyphers

public array getAvailableModes ()

Returns a list of available modes

2.54.55 Class Phalcon\Crypt\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Crypt use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

504 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

String representation of the exception

2.54.56 Class Phalcon\DI

implements Phalcon\DiInterface

Phalcon\DI is a component that implements Dependency Injection/Service Location of services and it’s itself a con-
tainer for them. Since Phalcon is highly decoupled, Phalcon\DI is essential to integrate the different components of
the framework. The developer can also use this component to inject dependencies and manage global instances of
the different classes used in the application. Basically, this component implements the Inversion of Control pattern.
Applying this, the objects do not receive their dependencies using setters or constructors, but requesting a service
dependency injector. This reduces the overall complexity, since there is only one way to get the required dependencies
within a component. Additionally, this pattern increases testability in the code, thus making it less prone to errors.

<?php

$di = new Phalcon\DI();

//Using a string definition
$di->set('request', 'Phalcon\Http\Request', true);

//Using an anonymous function
$di->set('request', function(){
return new Phalcon\Http\Request();

}, true);

$request = $di->getRequest();

Methods

public __construct ()

Phalcon\DI constructor

public Phalcon\DI\ServiceInterface set (string $name, mixed $definition, [boolean $shared])

Registers a service in the services container

public remove (string $name)

Removes a service in the services container

public mixed getRaw (string $name)

Returns a service definition without resolving

public Phalcon\DI\ServiceInterface getService (string $name)

Returns a Phalcon\DI\Service instance

public Phalcon\DI\ServiceInterface setService (Phalcon\DI\ServiceInterface $rawDefinition)

Sets a service using a raw Phalcon\DI\Service definition

public mixed get (string $name, [array $parameters])

Resolves the service based on its configuration

public mixed getShared (string $name, [array $parameters])

Resolves a service, the resolved service is stored in the DI, subsequent requests for this service will return the same
instance

2.54. API Indice 505



Phalcon PHP Framework Documentation, Release 1.3.0

public boolean has (string $name)

Check whether the DI contains a service by a name

public boolean wasFreshInstance ()

Check whether the last service obtained via getShared produced a fresh instance or an existing one

public Phalcon\DI\Service [] getServices ()

Return the services registered in the DI

public static setDefault (Phalcon\DiInterface $dependencyInjector)

Set a default dependency injection container to be obtained into static methods

public static Phalcon\DiInterface getDefault ()

Return the lastest DI created

public static reset ()

Resets the internal default DI

public Phalcon\DI\ServiceInterface attempt (string $name, mixed $definition, [boolean $shared])

Attempts to register a service in the services container Only is successful if a service hasn’t been registered previously
with the same name

public Phalcon\DI\ServiceInterface setShared (string $name, mixed $definition)

Registers an “always shared” service in the services container

public setRaw (unknown $rawDefinition)

...

public boolean offsetExists (unknown $property)

Check if a service is registered using the array syntax. Alias for Phalcon\Di::has()

public offsetSet (unknown $property, unknown $value)

Allows to register a shared service using the array syntax. Alias for Phalcon\Di::setShared()

<?php

$di['request'] = new Phalcon\Http\Request();

public mixed offsetGet (unknown $property)

Allows to obtain a shared service using the array syntax. Alias for Phalcon\Di::getShared()

<?php

var_dump($di['request']);

public offsetUnset (unknown $property)

Removes a service from the services container using the array syntax. Alias for Phalcon\Di::remove()

public mixed __call (string $method, [array $arguments])

Magic method to get or set services using setters/getters

public __clone ()

...

506 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.57 Class Phalcon\DI\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\DI will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.58 Class Phalcon\DI\FactoryDefault

extends class Phalcon\DI

implements Phalcon\DiInterface

This is a variant of the standard Phalcon\DI. By default it automatically registers all the services provided by the
framework. Thanks to this, the developer does not need to register each service individually providing a full stack
framework

2.54. API Indice 507



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct ()

Phalcon\DI\FactoryDefault constructor

public Phalcon\DI\ServiceInterface set (string $name, mixed $definition, [boolean $shared]) inherited from Phal-
con\DI

Registers a service in the services container

public remove (string $name) inherited from Phalcon\DI

Removes a service in the services container

public mixed getRaw (string $name) inherited from Phalcon\DI

Returns a service definition without resolving

public Phalcon\DI\ServiceInterface getService (string $name) inherited from Phalcon\DI

Returns a Phalcon\DI\Service instance

public Phalcon\DI\ServiceInterface setService (Phalcon\DI\ServiceInterface $rawDefinition) inherited from Phal-
con\DI

Sets a service using a raw Phalcon\DI\Service definition

public mixed get (string $name, [array $parameters]) inherited from Phalcon\DI

Resolves the service based on its configuration

public mixed getShared (string $name, [array $parameters]) inherited from Phalcon\DI

Resolves a service, the resolved service is stored in the DI, subsequent requests for this service will return the same
instance

public boolean has (string $name) inherited from Phalcon\DI

Check whether the DI contains a service by a name

public boolean wasFreshInstance () inherited from Phalcon\DI

Check whether the last service obtained via getShared produced a fresh instance or an existing one

public Phalcon\DI\Service [] getServices () inherited from Phalcon\DI

Return the services registered in the DI

public static setDefault (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI

Set a default dependency injection container to be obtained into static methods

public static Phalcon\DiInterface getDefault () inherited from Phalcon\DI

Return the lastest DI created

public static reset () inherited from Phalcon\DI

Resets the internal default DI

public Phalcon\DI\ServiceInterface attempt (string $name, mixed $definition, [boolean $shared]) inherited from Phal-
con\DI

Attempts to register a service in the services container Only is successful if a service hasn’t been registered previously
with the same name

public Phalcon\DI\ServiceInterface setShared (string $name, mixed $definition) inherited from Phalcon\DI

508 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Registers an “always shared” service in the services container

public setRaw (unknown $rawDefinition) inherited from Phalcon\DI

...

public boolean offsetExists (unknown $property) inherited from Phalcon\DI

Check if a service is registered using the array syntax. Alias for Phalcon\Di::has()

public offsetSet (unknown $property, unknown $value) inherited from Phalcon\DI

Allows to register a shared service using the array syntax. Alias for Phalcon\Di::setShared()

<?php

$di['request'] = new Phalcon\Http\Request();

public mixed offsetGet (unknown $property) inherited from Phalcon\DI

Allows to obtain a shared service using the array syntax. Alias for Phalcon\Di::getShared()

<?php

var_dump($di['request']);

public offsetUnset (unknown $property) inherited from Phalcon\DI

Removes a service from the services container using the array syntax. Alias for Phalcon\Di::remove()

public mixed __call (string $method, [array $arguments]) inherited from Phalcon\DI

Magic method to get or set services using setters/getters

public __clone () inherited from Phalcon\DI

...

2.54.59 Class Phalcon\DI\FactoryDefault\CLI

extends class Phalcon\DI\FactoryDefault

implements Phalcon\DiInterface

This is a variant of the standard Phalcon\DI. By default it automatically registers all the services provided by the
framework. Thanks to this, the developer does not need to register each service individually. This class is specially
suitable for CLI applications

Methods

public __construct ()

Phalcon\DI\FactoryDefault\CLI constructor

public Phalcon\DI\ServiceInterface set (string $name, mixed $definition, [boolean $shared]) inherited from Phal-
con\DI

Registers a service in the services container

public remove (string $name) inherited from Phalcon\DI

Removes a service in the services container

public mixed getRaw (string $name) inherited from Phalcon\DI

2.54. API Indice 509



Phalcon PHP Framework Documentation, Release 1.3.0

Returns a service definition without resolving

public Phalcon\DI\ServiceInterface getService (string $name) inherited from Phalcon\DI

Returns a Phalcon\DI\Service instance

public Phalcon\DI\ServiceInterface setService (Phalcon\DI\ServiceInterface $rawDefinition) inherited from Phal-
con\DI

Sets a service using a raw Phalcon\DI\Service definition

public mixed get (string $name, [array $parameters]) inherited from Phalcon\DI

Resolves the service based on its configuration

public mixed getShared (string $name, [array $parameters]) inherited from Phalcon\DI

Resolves a service, the resolved service is stored in the DI, subsequent requests for this service will return the same
instance

public boolean has (string $name) inherited from Phalcon\DI

Check whether the DI contains a service by a name

public boolean wasFreshInstance () inherited from Phalcon\DI

Check whether the last service obtained via getShared produced a fresh instance or an existing one

public Phalcon\DI\Service [] getServices () inherited from Phalcon\DI

Return the services registered in the DI

public static setDefault (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI

Set a default dependency injection container to be obtained into static methods

public static Phalcon\DiInterface getDefault () inherited from Phalcon\DI

Return the lastest DI created

public static reset () inherited from Phalcon\DI

Resets the internal default DI

public Phalcon\DI\ServiceInterface attempt (string $name, mixed $definition, [boolean $shared]) inherited from Phal-
con\DI

Attempts to register a service in the services container Only is successful if a service hasn’t been registered previously
with the same name

public Phalcon\DI\ServiceInterface setShared (string $name, mixed $definition) inherited from Phalcon\DI

Registers an “always shared” service in the services container

public setRaw (unknown $rawDefinition) inherited from Phalcon\DI

...

public boolean offsetExists (unknown $property) inherited from Phalcon\DI

Check if a service is registered using the array syntax. Alias for Phalcon\Di::has()

public offsetSet (unknown $property, unknown $value) inherited from Phalcon\DI

Allows to register a shared service using the array syntax. Alias for Phalcon\Di::setShared()

<?php

$di['request'] = new Phalcon\Http\Request();

510 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed offsetGet (unknown $property) inherited from Phalcon\DI

Allows to obtain a shared service using the array syntax. Alias for Phalcon\Di::getShared()

<?php

var_dump($di['request']);

public offsetUnset (unknown $property) inherited from Phalcon\DI

Removes a service from the services container using the array syntax. Alias for Phalcon\Di::remove()

public mixed __call (string $method, [array $arguments]) inherited from Phalcon\DI

Magic method to get or set services using setters/getters

public __clone () inherited from Phalcon\DI

...

2.54.60 Abstract class Phalcon\DI\Injectable

implements Phalcon\DI\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

This class allows to access services in the services container by just only accessing a public property with the same
name of a registered service

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

public __get (unknown $property)

Magic method __get

2.54.61 Class Phalcon\DI\Service

implements Phalcon\DI\ServiceInterface

Represents individually a service in the services container

<?php

$service = new Phalcon\DI\Service('request', 'Phalcon\Http\Request');
$request = $service->resolve();

2.54. API Indice 511



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

Methods

public __construct (string $name, mixed $definition, [boolean $shared])

public getName ()

Returns the service’s name

public setShared (boolean $shared)

Sets if the service is shared or not

public boolean isShared ()

Check whether the service is shared or not

public setSharedInstance (mixed $sharedInstance)

Sets/Resets the shared instance related to the service

public setDefinition (mixed $definition)

Set the service definition

public mixed getDefinition ()

Returns the service definition

public object resolve ([array $parameters], [Phalcon\DiInterface $dependencyInjector])

Resolves the service

public Phalcon\DI\Service setParameter (long $position, array $parameter)

Changes a parameter in the definition without resolve the service

public array getParameter (int $position)

Returns a parameter in a specific position

public bool isResolved ()

Returns true if the service was resolved

public static Phalcon\DI\Service __set_state ([unknown $properties])

Restore the internal state of a service

2.54.62 Class Phalcon\DI\Service\Builder

This class builds instances based on complex definitions

Methods

protected mixed _buildParameter ()

Resolves a constructor/call parameter

protected array _buildParameters ()

Resolves an array of parameters

512 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed build (Phalcon\DiInterface $dependencyInjector, array $definition, [array $parameters])

Builds a service using a complex service definition

2.54.63 Abstract class Phalcon\Db

Phalcon\Db and its related classes provide a simple SQL database interface for Phalcon Framework. The Phalcon\Db
is the basic class you use to connect your PHP application to an RDBMS. There is a different adapter class for
each brand of RDBMS. This component is intended to lower level database operations. If you want to interact with
databases using higher level of abstraction use Phalcon\Mvc\Model. Phalcon\Db is an abstract class. You only can
use it with a database adapter like Phalcon\Db\Adapter\Pdo

<?php

try {

$connection = new Phalcon\Db\Adapter\Pdo\Mysql(array(
'host' => '192.168.0.11',
'username' => 'sigma',
'password' => 'secret',
'dbname' => 'blog',
'port' => '3306',

));

$result = $connection->query("SELECT * FROM robots LIMIT 5");
$result->setFetchMode(Phalcon\Db::FETCH_NUM);
while ($robot = $result->fetch()) {
print_r($robot);

}

} catch (Phalcon\Db\Exception $e) {
echo $e->getMessage(), PHP_EOL;
}

Constants

integer FETCH_USE_DEFAULT

integer FETCH_LAZY

integer FETCH_ASSOC

integer FETCH_NUM

integer FETCH_BOTH

integer FETCH_OBJ

integer FETCH_BOUND

integer FETCH_COLUMN

integer FETCH_CLASS

integer FETCH_INTO

integer FETCH_FUNC

integer FETCH_NAMED

integer FETCH_KEY_PAIR

2.54. API Indice 513



Phalcon PHP Framework Documentation, Release 1.3.0

integer FETCH_GROUP

integer FETCH_UNIQUE

integer FETCH_CLASSTYPE

integer FETCH_SERIALIZE

integer FETCH_PROPS_LATE

Methods

public static setup (array $options)

Enables/disables options in the Database component

2.54.64 Abstract class Phalcon\Db\Adapter

implements Phalcon\Events\EventsAwareInterface, Phalcon\Db\AdapterInterface

Base class for Phalcon\Db adapters

Methods

protected __construct ()

Phalcon\Db\Adapter constructor

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

public setDialect (unknown $dialect)

Sets the dialect used to produce the SQL

public Phalcon\Db\DialectInterface getDialect ()

Returns internal dialect instance

public array fetchOne (string $sqlQuery, [int $fetchMode], [unknown $placeholders])

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [unknown $placeholders])

Dumps the complete result of a query into an array

514 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {

print_r($robot);
}

//Getting all robots that contains word "robot" withing the name
$robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
Phalcon\Db::FETCH_ASSOC,
array('name' => '%robot%')

);
foreach($robots as $robot){

print_r($robot);
}

public boolean insert (string $table, array $values, [array $fields], [array $dataTypes])

Inserts data into a table using custom RBDM SQL syntax

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Next SQL sentence is sent to the database system
INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string $table, array $fields, array $values, [string $whereCondition], [array $dataTypes])

Updates data on a table using custom RBDM SQL syntax

<?php

//Updating existing robot
$success = $connection->update(

"robots",
array("name"),
array("New Astro Boy"),
"id = 101"

);

//Next SQL sentence is sent to the database system
UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string $table, [string $whereCondition], [array $placeholders], [array $dataTypes])

Deletes data from a table using custom RBDM SQL syntax

<?php

//Deleting existing robot
$success = $connection->delete(

"robots",
"id = 101"

2.54. API Indice 515



Phalcon PHP Framework Documentation, Release 1.3.0

);

//Next SQL sentence is generated
DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList)

Gets a list of columns

public string limit (string $sqlQuery, int $number)

Appends a LIMIT clause to $sqlQuery argument

<?php

echo $connection->limit("SELECT * FROM robots", 5);

public string tableExists (string $tableName, [string $schemaName])

Generates SQL checking for the existence of a schema.table

<?php

var_dump($connection->tableExists("blog", "posts"));

public string viewExists (string $viewName, [string $schemaName])

Generates SQL checking for the existence of a schema.view

<?php

var_dump($connection->viewExists("active_users", "posts"));

public string forUpdate (string $sqlQuery)

Returns a SQL modified with a FOR UPDATE clause

public string sharedLock (string $sqlQuery)

Returns a SQL modified with a LOCK IN SHARE MODE clause

public boolean createTable (string $tableName, string $schemaName, array $definition)

Creates a table

public boolean dropTable (string $tableName, [string $schemaName], [boolean $ifExists])

Drops a table from a schema/database

public boolean createView (unknown $viewName, array $definition, [string $schemaName])

Creates a view

public boolean dropView (string $viewName, [string $schemaName], [boolean $ifExists])

Drops a view

public boolean addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Adds a column to a table

public boolean modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Modifies a table column based on a definition

public boolean dropColumn (string $tableName, string $schemaName, string $columnName)

516 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Drops a column from a table

public boolean addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Adds an index to a table

public boolean dropIndex (string $tableName, string $schemaName, string $indexName)

Drop an index from a table

public boolean addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Adds a primary key to a table

public boolean dropPrimaryKey (string $tableName, string $schemaName)

Drops a table’s primary key

public boolean true addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $ref-
erence)

Adds a foreign key to a table

public boolean true dropForeignKey (string $tableName, string $schemaName, string $referenceName)

Drops a foreign key from a table

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Returns the SQL column definition from a column

public array listTables ([string $schemaName])

List all tables on a database

<?php

print_r($connection->listTables("blog"));

public array listViews ([string $schemaName])

List all views on a database

<?php

print_r($connection->listViews("blog")); ?>

public Phalcon\Db\Index [] describeIndexes (string $table, [string $schema])

Lists table indexes

<?php

print_r($connection->describeIndexes('robots_parts'));

public Phalcon\Db\Reference [] describeReferences (string $table, [string $schema])

Lists table references

<?php

print_r($connection->describeReferences('robots_parts'));

public array tableOptions (string $tableName, [string $schemaName])

Gets creation options from a table

2.54. API Indice 517



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

print_r($connection->tableOptions('robots'));

public boolean createSavepoint (string $name)

Creates a new savepoint

public boolean releaseSavepoint (string $name)

Releases given savepoint

public boolean rollbackSavepoint (string $name)

Rollbacks given savepoint

public Phalcon\Db\AdapterInterface setNestedTransactionsWithSavepoints (boolean $nestedTransactionsWith-
Savepoints)

Set if nested transactions should use savepoints

public boolean isNestedTransactionsWithSavepoints ()

Returns if nested transactions should use savepoints

public string getNestedTransactionSavepointName ()

Returns the savepoint name to use for nested transactions

public Phalcon\Db\RawValue getDefaultIdValue ()

Returns the default identity value to be inserted in an identity column

<?php

//Inserting a new robot with a valid default value for the column 'id'
$success = $connection->insert(

"robots",
array($connection->getDefaultIdValue(), "Astro Boy", 1952),
array("id", "name", "year")

);

public boolean supportSequences ()

Check whether the database system requires a sequence to produce auto-numeric values

public boolean useExplicitIdValue ()

Check whether the database system requires an explicit value for identity columns

public array getDescriptor ()

Return descriptor used to connect to the active database

public string getConnectionId ()

Gets the active connection unique identifier

public string getSQLStatement ()

Active SQL statement in the object

public string getRealSQLStatement ()

Active SQL statement in the object without replace bound paramters

public array getSQLVariables ()

518 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Active SQL statement in the object

public array getSQLBindTypes ()

Active SQL statement in the object

public string getType ()

Returns type of database system the adapter is used for

public string getDialectType ()

Returns the name of the dialect used

abstract public boolean connect ([array $descriptor]) inherited from Phalcon\Db\AdapterInterface

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a
database connection

abstract public Phalcon\Db\ResultInterface query (string $sqlStatement, [array $placeholders], [array $dataTypes])
inherited from Phalcon\Db\AdapterInterface

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server return rows

abstract public boolean execute (string $sqlStatement, [array $placeholders], [array $dataTypes]) inherited from Phal-
con\Db\AdapterInterface

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server don’t return any row

abstract public int affectedRows () inherited from Phalcon\Db\AdapterInterface

Returns the number of affected rows by the last INSERT/UPDATE/DELETE reported by the database system

abstract public boolean close () inherited from Phalcon\Db\AdapterInterface

Closes active connection returning success. Phalcon automatically closes and destroys active connections within
Phalcon\Db\Pool

abstract public string escapeIdentifier (string $identifier) inherited from Phalcon\Db\AdapterInterface

Escapes a column/table/schema name

abstract public string escapeString (string $str) inherited from Phalcon\Db\AdapterInterface

Escapes a value to avoid SQL injections

abstract public array convertBoundParams (string $sqlStatement, array $params) inherited from Phal-
con\Db\AdapterInterface

Converts bound params like :name: or ?1 into ? bind params

abstract public int lastInsertId ([string $sequenceName]) inherited from Phalcon\Db\AdapterInterface

Returns insert id for the auto_increment column inserted in the last SQL statement

abstract public boolean begin () inherited from Phalcon\Db\AdapterInterface

Starts a transaction in the connection

abstract public boolean rollback () inherited from Phalcon\Db\AdapterInterface

Rollbacks the active transaction in the connection

abstract public boolean commit () inherited from Phalcon\Db\AdapterInterface

Commits the active transaction in the connection

2.54. API Indice 519



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public boolean isUnderTransaction () inherited from Phalcon\Db\AdapterInterface

Checks whether connection is under database transaction

abstract public PDO getInternalHandler () inherited from Phalcon\Db\AdapterInterface

Return internal PDO handler

abstract public Phalcon\Db\ColumnInterface [] describeColumns (string $table, [string $schema]) inherited from
Phalcon\Db\AdapterInterface

Returns an array of Phalcon\Db\Column objects describing a table

2.54.65 Abstract class Phalcon\Db\Adapter\Pdo

extends abstract class Phalcon\Db\Adapter

implements Phalcon\Db\AdapterInterface, Phalcon\Events\EventsAwareInterface

Phalcon\Db\Adapter\Pdo is the Phalcon\Db that internally uses PDO to connect to a database

<?php

$connection = new Phalcon\Db\Adapter\Pdo\Mysql(array(
'host' => '192.168.0.11',
'username' => 'sigma',
'password' => 'secret',
'dbname' => 'blog',
'port' => '3306'

));

Methods

public __construct (array $descriptor)

Constructor for Phalcon\Db\Adapter\Pdo

public boolean connect ([array $descriptor])

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a
database connection

<?php

//Make a connection
$connection = new Phalcon\Db\Adapter\Pdo\Mysql(array(
'host' => '192.168.0.11',
'username' => 'sigma',
'password' => 'secret',
'dbname' => 'blog',

));

//Reconnect
$connection->connect();

public PDOStatement prepare (string $sqlStatement)

Returns a PDO prepared statement to be executed with ‘executePrepared’

520 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public PDOStatement executePrepared (PDOStatement $statement, array $placeholders, array $dataTypes)

Executes a prepared statement binding. This function uses integer indexes starting from zero

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public Phalcon\Db\ResultInterface query (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes])

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public boolean execute (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes])

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server doesn’t return any row

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public int affectedRows ()

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public boolean close ()

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when
the request ends

public string escapeIdentifier (string $identifier)

Escapes a column/table/schema name

<?php

$escapedTable = $connection->escapeIdentifier('robots');
$escapedTable = $connection->escapeIdentifier(array('store', 'robots'));

public string escapeString (string $str)

Escapes a value to avoid SQL injections according to the active charset in the connection

2.54. API Indice 521



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public array convertBoundParams (unknown $sqlStatement, array $params)

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

public int lastInsertId ([string $sequenceName])

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Getting the generated id
$id = $connection->lastInsertId();

public boolean begin ([boolean $nesting])

Starts a transaction in the connection

public boolean rollback ([boolean $nesting])

Rollbacks the active transaction in the connection

public boolean commit ([boolean $nesting])

Commits the active transaction in the connection

public int getTransactionLevel ()

Returns the current transaction nesting level

public boolean isUnderTransaction ()

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public PDO getInternalHandler ()

Return internal PDO handler

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (unknown $dialect) inherited from Phalcon\Db\Adapter

522 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the dialect used to produce the SQL

public Phalcon\Db\DialectInterface getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public array fetchOne (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {

print_r($robot);
}

//Getting all robots that contains word "robot" withing the name
$robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
Phalcon\Db::FETCH_ASSOC,
array('name' => '%robot%')

);
foreach($robots as $robot){

print_r($robot);
}

public boolean insert (string $table, array $values, [array $fields], [array $dataTypes]) inherited from Phal-
con\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Next SQL sentence is sent to the database system
INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string $table, array $fields, array $values, [string $whereCondition], [array $dataTypes])
inherited from Phalcon\Db\Adapter

2.54. API Indice 523



Phalcon PHP Framework Documentation, Release 1.3.0

Updates data on a table using custom RBDM SQL syntax

<?php

//Updating existing robot
$success = $connection->update(

"robots",
array("name"),
array("New Astro Boy"),
"id = 101"

);

//Next SQL sentence is sent to the database system
UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited
from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

<?php

//Deleting existing robot
$success = $connection->delete(

"robots",
"id = 101"

);

//Next SQL sentence is generated
DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public string limit (string $sqlQuery, int $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

echo $connection->limit("SELECT * FROM robots", 5);

public string tableExists (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

var_dump($connection->tableExists("blog", "posts"));

public string viewExists (string $viewName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

<?php

var_dump($connection->viewExists("active_users", "posts"));

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

524 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public boolean createTable (string $tableName, string $schemaName, array $definition) inherited from Phal-
con\Db\Adapter

Creates a table

public boolean dropTable (string $tableName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

Drops a table from a schema/database

public boolean createView (unknown $viewName, array $definition, [string $schemaName]) inherited from Phal-
con\Db\Adapter

Creates a view

public boolean dropView (string $viewName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

Drops a view

public boolean addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column) inher-
ited from Phalcon\Db\Adapter

Adds a column to a table

public boolean modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)
inherited from Phalcon\Db\Adapter

Modifies a table column based on a definition

public boolean dropColumn (string $tableName, string $schemaName, string $columnName) inherited from Phal-
con\Db\Adapter

Drops a column from a table

public boolean addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) inherited
from Phalcon\Db\Adapter

Adds an index to a table

public boolean dropIndex (string $tableName, string $schemaName, string $indexName) inherited from Phal-
con\Db\Adapter

Drop an index from a table

public boolean addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) in-
herited from Phalcon\Db\Adapter

Adds a primary key to a table

public boolean dropPrimaryKey (string $tableName, string $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

public boolean true addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $ref-
erence) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public boolean true dropForeignKey (string $tableName, string $schemaName, string $referenceName) inherited
from Phalcon\Db\Adapter

Drops a foreign key from a table

2.54. API Indice 525



Phalcon PHP Framework Documentation, Release 1.3.0

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public array listTables ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

<?php

print_r($connection->listTables("blog"));

public array listViews ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog")); ?>

public Phalcon\Db\Index [] describeIndexes (string $table, [string $schema]) inherited from Phalcon\Db\Adapter

Lists table indexes

<?php

print_r($connection->describeIndexes('robots_parts'));

public Phalcon\Db\Reference [] describeReferences (string $table, [string $schema]) inherited from Phal-
con\Db\Adapter

Lists table references

<?php

print_r($connection->describeReferences('robots_parts'));

public array tableOptions (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

print_r($connection->tableOptions('robots'));

public boolean createSavepoint (string $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public boolean releaseSavepoint (string $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public boolean rollbackSavepoint (string $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

public Phalcon\Db\AdapterInterface setNestedTransactionsWithSavepoints (boolean $nestedTransactionsWith-
Savepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public boolean isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

526 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public Phalcon\Db\RawValue getDefaultIdValue () inherited from Phalcon\Db\Adapter

Returns the default identity value to be inserted in an identity column

<?php

//Inserting a new robot with a valid default value for the column 'id'
$success = $connection->insert(

"robots",
array($connection->getDefaultIdValue(), "Astro Boy", 1952),
array("id", "name", "year")

);

public boolean supportSequences () inherited from Phalcon\Db\Adapter

Check whether the database system requires a sequence to produce auto-numeric values

public boolean useExplicitIdValue () inherited from Phalcon\Db\Adapter

Check whether the database system requires an explicit value for identity columns

public array getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public string getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLVariables () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getType () inherited from Phalcon\Db\Adapter

Returns type of database system the adapter is used for

public string getDialectType () inherited from Phalcon\Db\Adapter

Returns the name of the dialect used

abstract public Phalcon\Db\ColumnInterface [] describeColumns (string $table, [string $schema]) inherited from
Phalcon\Db\AdapterInterface

Returns an array of Phalcon\Db\Column objects describing a table

2.54.66 Class Phalcon\Db\Adapter\Pdo\Mysql

extends abstract class Phalcon\Db\Adapter\Pdo

implements Phalcon\Events\EventsAwareInterface, Phalcon\Db\AdapterInterface

2.54. API Indice 527



Phalcon PHP Framework Documentation, Release 1.3.0

Specific functions for the Mysql database system

<?php

$config = array(
"host" => "192.168.0.11",
"dbname" => "blog",
"port" => 3306,
"username" => "sigma",
"password" => "secret"

);

$connection = new Phalcon\Db\Adapter\Pdo\Mysql($config);

Methods

public string escapeIdentifier (string $identifier)

Escapes a column/table/schema name

public Phalcon\Db\Column [] describeColumns (string $table, [string $schema])

Returns an array of Phalcon\Db\Column objects describing a table

<?php

print_r($connection->describeColumns("posts")); ?>

public __construct (array $descriptor) inherited from Phalcon\Db\Adapter\Pdo

Constructor for Phalcon\Db\Adapter\Pdo

public boolean connect ([array $descriptor]) inherited from Phalcon\Db\Adapter\Pdo

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a
database connection

<?php

//Make a connection
$connection = new Phalcon\Db\Adapter\Pdo\Mysql(array(
'host' => '192.168.0.11',
'username' => 'sigma',
'password' => 'secret',
'dbname' => 'blog',

));

//Reconnect
$connection->connect();

public PDOStatement prepare (string $sqlStatement) inherited from Phalcon\Db\Adapter\Pdo

Returns a PDO prepared statement to be executed with ‘executePrepared’

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public PDOStatement executePrepared (PDOStatement $statement, array $placeholders, array $dataTypes) inherited
from Phalcon\Db\Adapter\Pdo

528 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Executes a prepared statement binding. This function uses integer indexes starting from zero

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public Phalcon\Db\ResultInterface query (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes])
inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public boolean execute (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes]) inherited from Phal-
con\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server doesn’t return any row

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public int affectedRows () inherited from Phalcon\Db\Adapter\Pdo

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public boolean close () inherited from Phalcon\Db\Adapter\Pdo

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when
the request ends

public string escapeString (string $str) inherited from Phalcon\Db\Adapter\Pdo

Escapes a value to avoid SQL injections according to the active charset in the connection

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public array convertBoundParams (unknown $sqlStatement, array $params) inherited from Phal-
con\Db\Adapter\Pdo

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

2.54. API Indice 529



Phalcon PHP Framework Documentation, Release 1.3.0

public int lastInsertId ([string $sequenceName]) inherited from Phalcon\Db\Adapter\Pdo

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Getting the generated id
$id = $connection->lastInsertId();

public boolean begin ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Starts a transaction in the connection

public boolean rollback ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Rollbacks the active transaction in the connection

public boolean commit ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Commits the active transaction in the connection

public int getTransactionLevel () inherited from Phalcon\Db\Adapter\Pdo

Returns the current transaction nesting level

public boolean isUnderTransaction () inherited from Phalcon\Db\Adapter\Pdo

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public PDO getInternalHandler () inherited from Phalcon\Db\Adapter\Pdo

Return internal PDO handler

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (unknown $dialect) inherited from Phalcon\Db\Adapter

Sets the dialect used to produce the SQL

public Phalcon\Db\DialectInterface getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public array fetchOne (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Returns the first row in a SQL query result

530 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {

print_r($robot);
}

//Getting all robots that contains word "robot" withing the name
$robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
Phalcon\Db::FETCH_ASSOC,
array('name' => '%robot%')

);
foreach($robots as $robot){

print_r($robot);
}

public boolean insert (string $table, array $values, [array $fields], [array $dataTypes]) inherited from Phal-
con\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Next SQL sentence is sent to the database system
INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string $table, array $fields, array $values, [string $whereCondition], [array $dataTypes])
inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax

<?php

//Updating existing robot
$success = $connection->update(

"robots",
array("name"),

2.54. API Indice 531



Phalcon PHP Framework Documentation, Release 1.3.0

array("New Astro Boy"),
"id = 101"

);

//Next SQL sentence is sent to the database system
UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited
from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

<?php

//Deleting existing robot
$success = $connection->delete(

"robots",
"id = 101"

);

//Next SQL sentence is generated
DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public string limit (string $sqlQuery, int $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

echo $connection->limit("SELECT * FROM robots", 5);

public string tableExists (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

var_dump($connection->tableExists("blog", "posts"));

public string viewExists (string $viewName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

<?php

var_dump($connection->viewExists("active_users", "posts"));

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public boolean createTable (string $tableName, string $schemaName, array $definition) inherited from Phal-
con\Db\Adapter

Creates a table

532 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public boolean dropTable (string $tableName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

Drops a table from a schema/database

public boolean createView (unknown $viewName, array $definition, [string $schemaName]) inherited from Phal-
con\Db\Adapter

Creates a view

public boolean dropView (string $viewName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

Drops a view

public boolean addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column) inher-
ited from Phalcon\Db\Adapter

Adds a column to a table

public boolean modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)
inherited from Phalcon\Db\Adapter

Modifies a table column based on a definition

public boolean dropColumn (string $tableName, string $schemaName, string $columnName) inherited from Phal-
con\Db\Adapter

Drops a column from a table

public boolean addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) inherited
from Phalcon\Db\Adapter

Adds an index to a table

public boolean dropIndex (string $tableName, string $schemaName, string $indexName) inherited from Phal-
con\Db\Adapter

Drop an index from a table

public boolean addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) in-
herited from Phalcon\Db\Adapter

Adds a primary key to a table

public boolean dropPrimaryKey (string $tableName, string $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

public boolean true addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $ref-
erence) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public boolean true dropForeignKey (string $tableName, string $schemaName, string $referenceName) inherited
from Phalcon\Db\Adapter

Drops a foreign key from a table

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public array listTables ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

2.54. API Indice 533



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

print_r($connection->listTables("blog"));

public array listViews ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog")); ?>

public Phalcon\Db\Index [] describeIndexes (string $table, [string $schema]) inherited from Phalcon\Db\Adapter

Lists table indexes

<?php

print_r($connection->describeIndexes('robots_parts'));

public Phalcon\Db\Reference [] describeReferences (string $table, [string $schema]) inherited from Phal-
con\Db\Adapter

Lists table references

<?php

print_r($connection->describeReferences('robots_parts'));

public array tableOptions (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

print_r($connection->tableOptions('robots'));

public boolean createSavepoint (string $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public boolean releaseSavepoint (string $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public boolean rollbackSavepoint (string $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

public Phalcon\Db\AdapterInterface setNestedTransactionsWithSavepoints (boolean $nestedTransactionsWith-
Savepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public boolean isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

public string getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public Phalcon\Db\RawValue getDefaultIdValue () inherited from Phalcon\Db\Adapter

Returns the default identity value to be inserted in an identity column

534 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Inserting a new robot with a valid default value for the column 'id'
$success = $connection->insert(

"robots",
array($connection->getDefaultIdValue(), "Astro Boy", 1952),
array("id", "name", "year")

);

public boolean supportSequences () inherited from Phalcon\Db\Adapter

Check whether the database system requires a sequence to produce auto-numeric values

public boolean useExplicitIdValue () inherited from Phalcon\Db\Adapter

Check whether the database system requires an explicit value for identity columns

public array getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public string getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLVariables () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getType () inherited from Phalcon\Db\Adapter

Returns type of database system the adapter is used for

public string getDialectType () inherited from Phalcon\Db\Adapter

Returns the name of the dialect used

2.54.67 Class Phalcon\Db\Adapter\Pdo\Oracle

extends abstract class Phalcon\Db\Adapter\Pdo

implements Phalcon\Events\EventsAwareInterface, Phalcon\Db\AdapterInterface

Specific functions for the Oracle database system

<?php

$config = array(
"dbname" => "//localhost/dbname",
"username" => "oracle",
"password" => "oracle"

);

2.54. API Indice 535



Phalcon PHP Framework Documentation, Release 1.3.0

$connection = new Phalcon\Db\Adapter\Pdo\Oracle($config);

Methods

public boolean connect ([array $descriptor])

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a
database connection.

public Phalcon\Db\Column [] describeColumns (string $table, [string $schema])

Returns an array of Phalcon\Db\Column objects describing a table <code>print_r($connection-
>describeColumns(“posts”)); ?>

public int lastInsertId ([string $sequenceName])

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Getting the generated id
$id = $connection->lastInsertId();

public boolean useExplicitIdValue ()

Check whether the database system requires an explicit value for identity columns

public Phalcon\Db\RawValue getDefaultIdValue ()

Return the default identity value to insert in an identity column

public boolean supportSequences ()

Check whether the database system requires a sequence to produce auto-numeric values

public __construct (array $descriptor) inherited from Phalcon\Db\Adapter\Pdo

Constructor for Phalcon\Db\Adapter\Pdo

public PDOStatement prepare (string $sqlStatement) inherited from Phalcon\Db\Adapter\Pdo

Returns a PDO prepared statement to be executed with ‘executePrepared’

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public PDOStatement executePrepared (PDOStatement $statement, array $placeholders, array $dataTypes) inherited
from Phalcon\Db\Adapter\Pdo

Executes a prepared statement binding. This function uses integer indexes starting from zero

536 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public Phalcon\Db\ResultInterface query (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes])
inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public boolean execute (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes]) inherited from Phal-
con\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server doesn’t return any row

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public int affectedRows () inherited from Phalcon\Db\Adapter\Pdo

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public boolean close () inherited from Phalcon\Db\Adapter\Pdo

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when
the request ends

public string escapeIdentifier (string $identifier) inherited from Phalcon\Db\Adapter\Pdo

Escapes a column/table/schema name

<?php

$escapedTable = $connection->escapeIdentifier('robots');
$escapedTable = $connection->escapeIdentifier(array('store', 'robots'));

public string escapeString (string $str) inherited from Phalcon\Db\Adapter\Pdo

Escapes a value to avoid SQL injections according to the active charset in the connection

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public array convertBoundParams (unknown $sqlStatement, array $params) inherited from Phal-
con\Db\Adapter\Pdo

2.54. API Indice 537



Phalcon PHP Framework Documentation, Release 1.3.0

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

public boolean begin ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Starts a transaction in the connection

public boolean rollback ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Rollbacks the active transaction in the connection

public boolean commit ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Commits the active transaction in the connection

public int getTransactionLevel () inherited from Phalcon\Db\Adapter\Pdo

Returns the current transaction nesting level

public boolean isUnderTransaction () inherited from Phalcon\Db\Adapter\Pdo

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public PDO getInternalHandler () inherited from Phalcon\Db\Adapter\Pdo

Return internal PDO handler

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (unknown $dialect) inherited from Phalcon\Db\Adapter

Sets the dialect used to produce the SQL

public Phalcon\Db\DialectInterface getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public array fetchOne (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

538 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public array fetchAll (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {

print_r($robot);
}

//Getting all robots that contains word "robot" withing the name
$robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
Phalcon\Db::FETCH_ASSOC,
array('name' => '%robot%')

);
foreach($robots as $robot){

print_r($robot);
}

public boolean insert (string $table, array $values, [array $fields], [array $dataTypes]) inherited from Phal-
con\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Next SQL sentence is sent to the database system
INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string $table, array $fields, array $values, [string $whereCondition], [array $dataTypes])
inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax

<?php

//Updating existing robot
$success = $connection->update(

"robots",
array("name"),
array("New Astro Boy"),
"id = 101"

);

//Next SQL sentence is sent to the database system
UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited
from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

2.54. API Indice 539



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Deleting existing robot
$success = $connection->delete(

"robots",
"id = 101"

);

//Next SQL sentence is generated
DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public string limit (string $sqlQuery, int $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

echo $connection->limit("SELECT * FROM robots", 5);

public string tableExists (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

var_dump($connection->tableExists("blog", "posts"));

public string viewExists (string $viewName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

<?php

var_dump($connection->viewExists("active_users", "posts"));

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public boolean createTable (string $tableName, string $schemaName, array $definition) inherited from Phal-
con\Db\Adapter

Creates a table

public boolean dropTable (string $tableName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

Drops a table from a schema/database

public boolean createView (unknown $viewName, array $definition, [string $schemaName]) inherited from Phal-
con\Db\Adapter

Creates a view

public boolean dropView (string $viewName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

540 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Drops a view

public boolean addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column) inher-
ited from Phalcon\Db\Adapter

Adds a column to a table

public boolean modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)
inherited from Phalcon\Db\Adapter

Modifies a table column based on a definition

public boolean dropColumn (string $tableName, string $schemaName, string $columnName) inherited from Phal-
con\Db\Adapter

Drops a column from a table

public boolean addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) inherited
from Phalcon\Db\Adapter

Adds an index to a table

public boolean dropIndex (string $tableName, string $schemaName, string $indexName) inherited from Phal-
con\Db\Adapter

Drop an index from a table

public boolean addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) in-
herited from Phalcon\Db\Adapter

Adds a primary key to a table

public boolean dropPrimaryKey (string $tableName, string $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

public boolean true addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $ref-
erence) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public boolean true dropForeignKey (string $tableName, string $schemaName, string $referenceName) inherited
from Phalcon\Db\Adapter

Drops a foreign key from a table

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public array listTables ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

<?php

print_r($connection->listTables("blog"));

public array listViews ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog")); ?>

2.54. API Indice 541



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Db\Index [] describeIndexes (string $table, [string $schema]) inherited from Phalcon\Db\Adapter

Lists table indexes

<?php

print_r($connection->describeIndexes('robots_parts'));

public Phalcon\Db\Reference [] describeReferences (string $table, [string $schema]) inherited from Phal-
con\Db\Adapter

Lists table references

<?php

print_r($connection->describeReferences('robots_parts'));

public array tableOptions (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

print_r($connection->tableOptions('robots'));

public boolean createSavepoint (string $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public boolean releaseSavepoint (string $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public boolean rollbackSavepoint (string $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

public Phalcon\Db\AdapterInterface setNestedTransactionsWithSavepoints (boolean $nestedTransactionsWith-
Savepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public boolean isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

public string getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public array getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public string getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLVariables () inherited from Phalcon\Db\Adapter

542 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Active SQL statement in the object

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getType () inherited from Phalcon\Db\Adapter

Returns type of database system the adapter is used for

public string getDialectType () inherited from Phalcon\Db\Adapter

Returns the name of the dialect used

2.54.68 Class Phalcon\Db\Adapter\Pdo\Postgresql

extends abstract class Phalcon\Db\Adapter\Pdo

implements Phalcon\Events\EventsAwareInterface, Phalcon\Db\AdapterInterface

Specific functions for the Postgresql database system

<?php

$config = array(
"host" => "192.168.0.11",
"dbname" => "blog",
"username" => "postgres",
"password" => ""

);

$connection = new Phalcon\Db\Adapter\Pdo\Postgresql($config);

Methods

public boolean connect ([array $descriptor])

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a
database connection. Support set search_path after connectted if schema is specified in config.

public Phalcon\Db\Column [] describeColumns (string $table, [string $schema])

Returns an array of Phalcon\Db\Column objects describing a table <code>print_r($connection-
>describeColumns(“posts”)); ?>

public boolean useExplicitIdValue ()

Check whether the database system requires an explicit value for identity columns

public Phalcon\Db\RawValue getDefaultIdValue ()

Return the default identity value to insert in an identity column

public boolean supportSequences ()

Check whether the database system requires a sequence to produce auto-numeric values

public __construct (array $descriptor) inherited from Phalcon\Db\Adapter\Pdo

Constructor for Phalcon\Db\Adapter\Pdo

public PDOStatement prepare (string $sqlStatement) inherited from Phalcon\Db\Adapter\Pdo

Returns a PDO prepared statement to be executed with ‘executePrepared’

2.54. API Indice 543



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public PDOStatement executePrepared (PDOStatement $statement, array $placeholders, array $dataTypes) inherited
from Phalcon\Db\Adapter\Pdo

Executes a prepared statement binding. This function uses integer indexes starting from zero

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public Phalcon\Db\ResultInterface query (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes])
inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public boolean execute (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes]) inherited from Phal-
con\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server doesn’t return any row

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public int affectedRows () inherited from Phalcon\Db\Adapter\Pdo

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public boolean close () inherited from Phalcon\Db\Adapter\Pdo

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when
the request ends

public string escapeIdentifier (string $identifier) inherited from Phalcon\Db\Adapter\Pdo

Escapes a column/table/schema name

<?php

$escapedTable = $connection->escapeIdentifier('robots');
$escapedTable = $connection->escapeIdentifier(array('store', 'robots'));

544 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string escapeString (string $str) inherited from Phalcon\Db\Adapter\Pdo

Escapes a value to avoid SQL injections according to the active charset in the connection

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public array convertBoundParams (unknown $sqlStatement, array $params) inherited from Phal-
con\Db\Adapter\Pdo

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

public int lastInsertId ([string $sequenceName]) inherited from Phalcon\Db\Adapter\Pdo

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Getting the generated id
$id = $connection->lastInsertId();

public boolean begin ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Starts a transaction in the connection

public boolean rollback ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Rollbacks the active transaction in the connection

public boolean commit ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Commits the active transaction in the connection

public int getTransactionLevel () inherited from Phalcon\Db\Adapter\Pdo

Returns the current transaction nesting level

public boolean isUnderTransaction () inherited from Phalcon\Db\Adapter\Pdo

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public PDO getInternalHandler () inherited from Phalcon\Db\Adapter\Pdo

Return internal PDO handler

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

2.54. API Indice 545



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (unknown $dialect) inherited from Phalcon\Db\Adapter

Sets the dialect used to produce the SQL

public Phalcon\Db\DialectInterface getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public array fetchOne (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {

print_r($robot);
}

//Getting all robots that contains word "robot" withing the name
$robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
Phalcon\Db::FETCH_ASSOC,
array('name' => '%robot%')

);
foreach($robots as $robot){

print_r($robot);
}

public boolean insert (string $table, array $values, [array $fields], [array $dataTypes]) inherited from Phal-
con\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

546 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Next SQL sentence is sent to the database system
INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string $table, array $fields, array $values, [string $whereCondition], [array $dataTypes])
inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax

<?php

//Updating existing robot
$success = $connection->update(

"robots",
array("name"),
array("New Astro Boy"),
"id = 101"

);

//Next SQL sentence is sent to the database system
UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited
from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

<?php

//Deleting existing robot
$success = $connection->delete(

"robots",
"id = 101"

);

//Next SQL sentence is generated
DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public string limit (string $sqlQuery, int $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

echo $connection->limit("SELECT * FROM robots", 5);

public string tableExists (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

var_dump($connection->tableExists("blog", "posts"));

public string viewExists (string $viewName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

2.54. API Indice 547



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

var_dump($connection->viewExists("active_users", "posts"));

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public boolean createTable (string $tableName, string $schemaName, array $definition) inherited from Phal-
con\Db\Adapter

Creates a table

public boolean dropTable (string $tableName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

Drops a table from a schema/database

public boolean createView (unknown $viewName, array $definition, [string $schemaName]) inherited from Phal-
con\Db\Adapter

Creates a view

public boolean dropView (string $viewName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

Drops a view

public boolean addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column) inher-
ited from Phalcon\Db\Adapter

Adds a column to a table

public boolean modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)
inherited from Phalcon\Db\Adapter

Modifies a table column based on a definition

public boolean dropColumn (string $tableName, string $schemaName, string $columnName) inherited from Phal-
con\Db\Adapter

Drops a column from a table

public boolean addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) inherited
from Phalcon\Db\Adapter

Adds an index to a table

public boolean dropIndex (string $tableName, string $schemaName, string $indexName) inherited from Phal-
con\Db\Adapter

Drop an index from a table

public boolean addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) in-
herited from Phalcon\Db\Adapter

Adds a primary key to a table

public boolean dropPrimaryKey (string $tableName, string $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

548 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public boolean true addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $ref-
erence) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public boolean true dropForeignKey (string $tableName, string $schemaName, string $referenceName) inherited
from Phalcon\Db\Adapter

Drops a foreign key from a table

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public array listTables ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

<?php

print_r($connection->listTables("blog"));

public array listViews ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog")); ?>

public Phalcon\Db\Index [] describeIndexes (string $table, [string $schema]) inherited from Phalcon\Db\Adapter

Lists table indexes

<?php

print_r($connection->describeIndexes('robots_parts'));

public Phalcon\Db\Reference [] describeReferences (string $table, [string $schema]) inherited from Phal-
con\Db\Adapter

Lists table references

<?php

print_r($connection->describeReferences('robots_parts'));

public array tableOptions (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

print_r($connection->tableOptions('robots'));

public boolean createSavepoint (string $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public boolean releaseSavepoint (string $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public boolean rollbackSavepoint (string $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

2.54. API Indice 549



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Db\AdapterInterface setNestedTransactionsWithSavepoints (boolean $nestedTransactionsWith-
Savepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public boolean isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

public string getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public array getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public string getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLVariables () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getType () inherited from Phalcon\Db\Adapter

Returns type of database system the adapter is used for

public string getDialectType () inherited from Phalcon\Db\Adapter

Returns the name of the dialect used

2.54.69 Class Phalcon\Db\Adapter\Pdo\Sqlite

extends abstract class Phalcon\Db\Adapter\Pdo

implements Phalcon\Events\EventsAwareInterface, Phalcon\Db\AdapterInterface

Specific functions for the Sqlite database system

<?php

$config = array(
"dbname" => "/tmp/test.sqlite"

);

$connection = new Phalcon\Db\Adapter\Pdo\Sqlite($config);

550 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public boolean connect ([array $descriptor])

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a
database connection.

public Phalcon\Db\Column [] describeColumns (string $table, [string $schema])

Returns an array of Phalcon\Db\Column objects describing a table

<?php

print_r($connection->describeColumns("posts")); ?>

public Phalcon\Db\Index [] describeIndexes (string $table, [string $schema])

Lists table indexes

public Phalcon\Db\Reference [] describeReferences (string $table, [string $schema])

Lists table references

public boolean useExplicitIdValue ()

Check whether the database system requires an explicit value for identity columns

public __construct (array $descriptor) inherited from Phalcon\Db\Adapter\Pdo

Constructor for Phalcon\Db\Adapter\Pdo

public PDOStatement prepare (string $sqlStatement) inherited from Phalcon\Db\Adapter\Pdo

Returns a PDO prepared statement to be executed with ‘executePrepared’

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public PDOStatement executePrepared (PDOStatement $statement, array $placeholders, array $dataTypes) inherited
from Phalcon\Db\Adapter\Pdo

Executes a prepared statement binding. This function uses integer indexes starting from zero

<?php

$statement = $connection->prepare('SELECT * FROM robots WHERE name = :name');
$pdoResult = $connection->executePrepared($statement, array('name' => 'Voltron'));

public Phalcon\Db\ResultInterface query (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes])
inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public boolean execute (string $sqlStatement, [unknown $placeholders], [unknown $dataTypes]) inherited from Phal-
con\Db\Adapter\Pdo

2.54. API Indice 551



Phalcon PHP Framework Documentation, Release 1.3.0

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server doesn’t return any row

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public int affectedRows () inherited from Phalcon\Db\Adapter\Pdo

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public boolean close () inherited from Phalcon\Db\Adapter\Pdo

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when
the request ends

public string escapeIdentifier (string $identifier) inherited from Phalcon\Db\Adapter\Pdo

Escapes a column/table/schema name

<?php

$escapedTable = $connection->escapeIdentifier('robots');
$escapedTable = $connection->escapeIdentifier(array('store', 'robots'));

public string escapeString (string $str) inherited from Phalcon\Db\Adapter\Pdo

Escapes a value to avoid SQL injections according to the active charset in the connection

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public array convertBoundParams (unknown $sqlStatement, array $params) inherited from Phal-
con\Db\Adapter\Pdo

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

public int lastInsertId ([string $sequenceName]) inherited from Phalcon\Db\Adapter\Pdo

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

552 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Getting the generated id
$id = $connection->lastInsertId();

public boolean begin ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Starts a transaction in the connection

public boolean rollback ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Rollbacks the active transaction in the connection

public boolean commit ([boolean $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Commits the active transaction in the connection

public int getTransactionLevel () inherited from Phalcon\Db\Adapter\Pdo

Returns the current transaction nesting level

public boolean isUnderTransaction () inherited from Phalcon\Db\Adapter\Pdo

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public PDO getInternalHandler () inherited from Phalcon\Db\Adapter\Pdo

Return internal PDO handler

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (unknown $dialect) inherited from Phalcon\Db\Adapter

Sets the dialect used to produce the SQL

public Phalcon\Db\DialectInterface getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public array fetchOne (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [unknown $placeholders]) inherited from Phal-
con\Db\Adapter

2.54. API Indice 553



Phalcon PHP Framework Documentation, Release 1.3.0

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {

print_r($robot);
}

//Getting all robots that contains word "robot" withing the name
$robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
Phalcon\Db::FETCH_ASSOC,
array('name' => '%robot%')

);
foreach($robots as $robot){

print_r($robot);
}

public boolean insert (string $table, array $values, [array $fields], [array $dataTypes]) inherited from Phal-
con\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

//Inserting a new robot
$success = $connection->insert(

"robots",
array("Astro Boy", 1952),
array("name", "year")

);

//Next SQL sentence is sent to the database system
INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string $table, array $fields, array $values, [string $whereCondition], [array $dataTypes])
inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax

<?php

//Updating existing robot
$success = $connection->update(

"robots",
array("name"),
array("New Astro Boy"),
"id = 101"

);

//Next SQL sentence is sent to the database system
UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited
from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

554 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Deleting existing robot
$success = $connection->delete(

"robots",
"id = 101"

);

//Next SQL sentence is generated
DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public string limit (string $sqlQuery, int $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

echo $connection->limit("SELECT * FROM robots", 5);

public string tableExists (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

var_dump($connection->tableExists("blog", "posts"));

public string viewExists (string $viewName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

<?php

var_dump($connection->viewExists("active_users", "posts"));

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public boolean createTable (string $tableName, string $schemaName, array $definition) inherited from Phal-
con\Db\Adapter

Creates a table

public boolean dropTable (string $tableName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

Drops a table from a schema/database

public boolean createView (unknown $viewName, array $definition, [string $schemaName]) inherited from Phal-
con\Db\Adapter

Creates a view

public boolean dropView (string $viewName, [string $schemaName], [boolean $ifExists]) inherited from Phal-
con\Db\Adapter

2.54. API Indice 555



Phalcon PHP Framework Documentation, Release 1.3.0

Drops a view

public boolean addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column) inher-
ited from Phalcon\Db\Adapter

Adds a column to a table

public boolean modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)
inherited from Phalcon\Db\Adapter

Modifies a table column based on a definition

public boolean dropColumn (string $tableName, string $schemaName, string $columnName) inherited from Phal-
con\Db\Adapter

Drops a column from a table

public boolean addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) inherited
from Phalcon\Db\Adapter

Adds an index to a table

public boolean dropIndex (string $tableName, string $schemaName, string $indexName) inherited from Phal-
con\Db\Adapter

Drop an index from a table

public boolean addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) in-
herited from Phalcon\Db\Adapter

Adds a primary key to a table

public boolean dropPrimaryKey (string $tableName, string $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

public boolean true addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $ref-
erence) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public boolean true dropForeignKey (string $tableName, string $schemaName, string $referenceName) inherited
from Phalcon\Db\Adapter

Drops a foreign key from a table

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public array listTables ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

<?php

print_r($connection->listTables("blog"));

public array listViews ([string $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog")); ?>

556 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public array tableOptions (string $tableName, [string $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

print_r($connection->tableOptions('robots'));

public boolean createSavepoint (string $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public boolean releaseSavepoint (string $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public boolean rollbackSavepoint (string $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

public Phalcon\Db\AdapterInterface setNestedTransactionsWithSavepoints (boolean $nestedTransactionsWith-
Savepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public boolean isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

public string getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public Phalcon\Db\RawValue getDefaultIdValue () inherited from Phalcon\Db\Adapter

Returns the default identity value to be inserted in an identity column

<?php

//Inserting a new robot with a valid default value for the column 'id'
$success = $connection->insert(

"robots",
array($connection->getDefaultIdValue(), "Astro Boy", 1952),
array("id", "name", "year")

);

public boolean supportSequences () inherited from Phalcon\Db\Adapter

Check whether the database system requires a sequence to produce auto-numeric values

public array getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public string getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLVariables () inherited from Phalcon\Db\Adapter

2.54. API Indice 557



Phalcon PHP Framework Documentation, Release 1.3.0

Active SQL statement in the object

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public string getType () inherited from Phalcon\Db\Adapter

Returns type of database system the adapter is used for

public string getDialectType () inherited from Phalcon\Db\Adapter

Returns the name of the dialect used

2.54.70 Class Phalcon\Db\Column

implements Phalcon\Db\ColumnInterface

Allows to define columns to be used on create or alter table operations

<?php

use Phalcon\Db\Column as Column;

//column definition
$column = new Column("id", array(
"type" => Column::TYPE_INTEGER,
"size" => 10,
"unsigned" => true,
"notNull" => true,
"autoIncrement" => true,
"first" => true

));

//add column to existing table
$connection->addColumn("robots", null, $column);

Constants

integer TYPE_INTEGER

integer TYPE_DATE

integer TYPE_VARCHAR

integer TYPE_DECIMAL

integer TYPE_DATETIME

integer TYPE_CHAR

integer TYPE_TEXT

integer TYPE_FLOAT

integer TYPE_BOOLEAN

integer TYPE_DOUBLE

integer BIND_PARAM_NULL

integer BIND_PARAM_INT

558 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

integer BIND_PARAM_STR

integer BIND_PARAM_BOOL

integer BIND_PARAM_DECIMAL

integer BIND_SKIP

Methods

public __construct (string $columnName, array $definition)

Phalcon\Db\Column constructor

public string getSchemaName ()

Returns schema’s table related to column

public string getName ()

Returns column name

public int getType ()

Returns column type

public int getSize ()

Returns column size

public int getScale ()

Returns column scale

public boolean isUnsigned ()

Returns true if number column is unsigned

public boolean isNotNull ()

Not null

public boolean isPrimary ()

Column is part of the primary key?

public boolean isAutoIncrement ()

Auto-Increment

public boolean isNumeric ()

Check whether column have an numeric type

public boolean isFirst ()

Check whether column have first position in table

public string getAfterPosition ()

Check whether field absolute to position in table

public int getBindType ()

Returns the type of bind handling

public static PhalconDbColumn __set_state ([unknown $properties])

Restores the internal state of a Phalcon\Db\Column object

2.54. API Indice 559



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.71 Abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

This is the base class to each database dialect. This implements common methods to transform intermediate code into
its RDBM related syntax

Methods

public string limit (string $sqlQuery, int $number)

Generates the SQL for LIMIT clause

<?php

$sql = $dialect->limit('SELECT * FROM robots', 10);
echo $sql; // SELECT * FROM robots LIMIT 10

public string forUpdate (string $sqlQuery)

Returns a SQL modified with a FOR UPDATE clause

<?php

$sql = $dialect->forUpdate('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots FOR UPDATE

public string sharedLock (string $sqlQuery)

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

$sql = $dialect->sharedLock('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

public string getColumnList (array $columnList)

Gets a list of columns with escaped identifiers

<?php

echo $dialect->getColumnList(array('column1', 'column'));

public string getSqlExpression (array $expression, [string $escapeChar])

Transforms an intermediate representation for a expression into a database system valid expression

public string getSqlTable (array $table, [string $escapeChar])

Transform an intermediate representation for a schema/table into a database system valid expression

public string select (array $definition)

Builds a SELECT statement

public boolean supportsSavepoints ()

Checks whether the platform supports savepoints

public boolean supportsReleaseSavepoints ()

Checks whether the platform supports releasing savepoints.

560 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string createSavepoint (string $name)

Generate SQL to create a new savepoint

public string releaseSavepoint (string $name)

Generate SQL to release a savepoint

public string rollbackSavepoint (string $name)

Generate SQL to rollback a savepoint

abstract public getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phal-
con\Db\DialectInterface

Gets the column name in MySQL

abstract public string addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)
inherited from Phalcon\Db\DialectInterface

Generates SQL to add a column to a table

abstract public string modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $col-
umn) inherited from Phalcon\Db\DialectInterface

Generates SQL to modify a column in a table

abstract public string dropColumn (string $tableName, string $schemaName, string $columnName) inherited from
Phalcon\Db\DialectInterface

Generates SQL to delete a column from a table

abstract public string addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index) inher-
ited from Phalcon\Db\DialectInterface

Generates SQL to add an index to a table

abstract public string dropIndex (string $tableName, string $schemaName, string $indexName) inherited from Phal-
con\Db\DialectInterface

Generates SQL to delete an index from a table

abstract public string addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)
inherited from Phalcon\Db\DialectInterface

Generates SQL to add the primary key to a table

abstract public string dropPrimaryKey (string $tableName, string $schemaName) inherited from Phal-
con\Db\DialectInterface

Generates SQL to delete primary key from a table

abstract public string addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface
$reference) inherited from Phalcon\Db\DialectInterface

Generates SQL to add an index to a table

abstract public string dropForeignKey (string $tableName, string $schemaName, string $referenceName) inherited
from Phalcon\Db\DialectInterface

Generates SQL to delete a foreign key from a table

abstract public string createTable (string $tableName, string $schemaName, array $definition) inherited from Phal-
con\Db\DialectInterface

Generates SQL to create a table

2.54. API Indice 561



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public string dropTable (string $tableName, string $schemaName) inherited from Phal-
con\Db\DialectInterface

Generates SQL to drop a table

abstract public string createView (string $viewName, array $definition, string $schemaName) inherited from Phal-
con\Db\DialectInterface

Generates SQL to create a view

abstract public string dropView (string $viewName, string $schemaName, [unknown $ifExists]) inherited from Phal-
con\Db\DialectInterface

Generates SQL to drop a view

abstract public string tableExists (string $tableName, [string $schemaName]) inherited from Phal-
con\Db\DialectInterface

Generates SQL checking for the existence of a schema.table

abstract public string viewExists (string $viewName, [string $schemaName]) inherited from Phal-
con\Db\DialectInterface

Generates SQL checking for the existence of a schema.view

abstract public string describeColumns (string $table, [string $schema]) inherited from Phalcon\Db\DialectInterface

Generates SQL to describe a table

abstract public array listTables ([string $schemaName]) inherited from Phalcon\Db\DialectInterface

List all tables on database

abstract public array listViews ([string $schemaName]) inherited from Phalcon\Db\DialectInterface

List all views on database

abstract public string describeIndexes (string $table, [string $schema]) inherited from Phalcon\Db\DialectInterface

Generates SQL to query indexes on a table

abstract public string describeReferences (string $table, [string $schema]) inherited from Phal-
con\Db\DialectInterface

Generates SQL to query foreign keys on a table

abstract public string tableOptions (string $table, [string $schema]) inherited from Phalcon\Db\DialectInterface

Generates the SQL to describe the table creation options

2.54.72 Class Phalcon\Db\Dialect\Mysql

extends abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

Generates database specific SQL for the MySQL RBDMS

Methods

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Gets the column name in MySQL

public string addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

562 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Generates SQL to add a column to a table

public string modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to modify a column in a table

public string dropColumn (string $tableName, string $schemaName, string $columnName)

Generates SQL to delete a column from a table

public string addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add an index to a table

public string dropIndex (string $tableName, string $schemaName, string $indexName)

Generates SQL to delete an index from a table

public string addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add the primary key to a table

public string dropPrimaryKey (string $tableName, string $schemaName)

Generates SQL to delete primary key from a table

public string addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $reference)

Generates SQL to add an index to a table

public string dropForeignKey (string $tableName, string $schemaName, string $referenceName)

Generates SQL to delete a foreign key from a table

protected array _getTableOptions ()

Generates SQL to add the table creation options

public string createTable (string $tableName, string $schemaName, array $definition)

Generates SQL to create a table in MySQL

public string dropTable (string $tableName, string $schemaName)

Generates SQL to drop a table

public string createView (string $viewName, array $definition, string $schemaName)

Generates SQL to create a view

public string dropView (string $viewName, string $schemaName, [boolean $ifExists])

Generates SQL to drop a view

public string tableExists (string $tableName, [string $schemaName])

Generates SQL checking for the existence of a schema.table

<?php

echo $dialect->tableExists("posts", "blog");
echo $dialect->tableExists("posts");

public string viewExists (string $viewName, [string $schemaName])

Generates SQL checking for the existence of a schema.view

public string describeColumns (string $table, [string $schema])

Generates SQL describing a table

2.54. API Indice 563



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

print_r($dialect->describeColumns("posts")) ?>

public array listTables ([string $schemaName])

List all tables on database

<?php

print_r($dialect->listTables("blog")) ?>

public array listViews ([string $schemaName])

Generates the SQL to list all views of a schema or user

public string describeIndexes (string $table, [string $schema])

Generates SQL to query indexes on a table

public string describeReferences (string $table, [string $schema])

Generates SQL to query foreign keys on a table

public string tableOptions (string $table, [string $schema])

Generates the SQL to describe the table creation options

public string limit (string $sqlQuery, int $number) inherited from Phalcon\Db\Dialect

Generates the SQL for LIMIT clause

<?php

$sql = $dialect->limit('SELECT * FROM robots', 10);
echo $sql; // SELECT * FROM robots LIMIT 10

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a FOR UPDATE clause

<?php

$sql = $dialect->forUpdate('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots FOR UPDATE

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

$sql = $dialect->sharedLock('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

public string getColumnList (array $columnList) inherited from Phalcon\Db\Dialect

Gets a list of columns with escaped identifiers

<?php

echo $dialect->getColumnList(array('column1', 'column'));

564 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string getSqlExpression (array $expression, [string $escapeChar]) inherited from Phalcon\Db\Dialect

Transforms an intermediate representation for a expression into a database system valid expression

public string getSqlTable (array $table, [string $escapeChar]) inherited from Phalcon\Db\Dialect

Transform an intermediate representation for a schema/table into a database system valid expression

public string select (array $definition) inherited from Phalcon\Db\Dialect

Builds a SELECT statement

public boolean supportsSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports savepoints

public boolean supportsReleaseSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports releasing savepoints.

public string createSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to create a new savepoint

public string releaseSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to release a savepoint

public string rollbackSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to rollback a savepoint

2.54.73 Class Phalcon\Db\Dialect\Oracle

extends abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

Generates database specific SQL for the Oracle RBDMS

Methods

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Gets the column name in Oracle

public string addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to add a column to a table

public string modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to modify a column in a table

public string dropColumn (string $tableName, string $schemaName, string $columnName)

Generates SQL to delete a column from a table

public string addIndex (string $tableName, string $schemaName, Phalcon\Db\Index $index)

Generates SQL to add an index to a table

public string dropIndex (string $tableName, string $schemaName, string $indexName)

Generates SQL to delete an index from a table

public string addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\Index $index)

2.54. API Indice 565



Phalcon PHP Framework Documentation, Release 1.3.0

Generates SQL to add the primary key to a table

public string dropPrimaryKey (string $tableName, string $schemaName)

Generates SQL to delete primary key from a table

public string addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $reference)

Generates SQL to add an index to a table

public string dropForeignKey (string $tableName, string $schemaName, string $referenceName)

Generates SQL to delete a foreign key from a table

protected array _getTableOptions ()

Generates SQL to add the table creation options

public string createTable (string $tableName, string $schemaName, array $definition)

Generates SQL to create a table in PostgreSQL

public boolean dropTable (string $tableName, string $schemaName)

Generates SQL to drop a table

public string createView (string $viewName, array $definition, string $schemaName)

Generates SQL to create a view

public string dropView (string $viewName, string $schemaName, [boolean $ifExists])

Generates SQL to drop a view

public string tableExists (string $tableName, [string $schemaName])

Generates SQL checking for the existence of a schema.table

<?php

var_dump($dialect->tableExists("posts", "blog"));
var_dump($dialect->tableExists("posts"));

public string viewExists (string $viewName, [string $schemaName])

Generates SQL checking for the existence of a schema.view

public string describeColumns (string $table, [string $schema])

Generates a SQL describing a table

<?php

print_r($dialect->describeColumns("posts")); ?>

public array listTables ([string $schemaName])

List all tables on database

<?php

print_r($dialect->listTables("blog")) ?>

public array listViews ([string $schemaName])

Generates the SQL to list all views of a schema or user

public string describeIndexes (string $table, [string $schema])

566 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Generates SQL to query indexes on a table

public string describeReferences (string $table, [string $schema])

Generates SQL to query foreign keys on a table

public string tableOptions (string $table, [string $schema])

Generates the SQL to describe the table creation options

public string getSqlTable (array $table, [string $escapeChar])

Transform an intermediate representation for a schema/table into a database system valid expression

public string limit (string $sqlQuery, int $number)

Generates the SQL for LIMIT clause

<?php

$sql = $dialect->limit('SELECT * FROM robots', 10);
echo $sql; // SELECT * FROM robots LIMIT 10

public string select (array $definition)

Builds a SELECT statement

public boolean supportsSavepoints ()

Checks whether the platform supports savepoints

public boolean supportsReleaseSavepoints ()

Checks whether the platform supports releasing savepoints.

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a FOR UPDATE clause

<?php

$sql = $dialect->forUpdate('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots FOR UPDATE

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

$sql = $dialect->sharedLock('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

public string getColumnList (array $columnList) inherited from Phalcon\Db\Dialect

Gets a list of columns with escaped identifiers

<?php

echo $dialect->getColumnList(array('column1', 'column'));

public string getSqlExpression (array $expression, [string $escapeChar]) inherited from Phalcon\Db\Dialect

Transforms an intermediate representation for a expression into a database system valid expression

public string createSavepoint (string $name) inherited from Phalcon\Db\Dialect

2.54. API Indice 567



Phalcon PHP Framework Documentation, Release 1.3.0

Generate SQL to create a new savepoint

public string releaseSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to release a savepoint

public string rollbackSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to rollback a savepoint

2.54.74 Class Phalcon\Db\Dialect\Postgresql

extends abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

Generates database specific SQL for the PostgreSQL RBDMS

Methods

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Gets the column name in PostgreSQL

public string addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to add a column to a table

public string modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to modify a column in a table

public string dropColumn (string $tableName, string $schemaName, string $columnName)

Generates SQL to delete a column from a table

public string addIndex (string $tableName, string $schemaName, Phalcon\Db\Index $index)

Generates SQL to add an index to a table

public string dropIndex (string $tableName, string $schemaName, string $indexName)

Generates SQL to delete an index from a table

public string addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\Index $index)

Generates SQL to add the primary key to a table

public string dropPrimaryKey (string $tableName, string $schemaName)

Generates SQL to delete primary key from a table

public string addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface $reference)

Generates SQL to add an index to a table

public string dropForeignKey (string $tableName, string $schemaName, string $referenceName)

Generates SQL to delete a foreign key from a table

protected array _getTableOptions ()

Generates SQL to add the table creation options

public string createTable (string $tableName, string $schemaName, array $definition)

Generates SQL to create a table in PostgreSQL

568 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public boolean dropTable (string $tableName, string $schemaName)

Generates SQL to drop a table

public string createView (string $viewName, array $definition, string $schemaName)

Generates SQL to create a view

public string dropView (string $viewName, string $schemaName, [boolean $ifExists])

Generates SQL to drop a view

public string tableExists (string $tableName, [string $schemaName])

Generates SQL checking for the existence of a schema.table <code>echo $dialect->tableExists(“posts”, “blog”)
<code>echo $dialect->tableExists(“posts”)

public string viewExists (string $viewName, [string $schemaName])

Generates SQL checking for the existence of a schema.view

public string describeColumns (string $table, [string $schema])

Generates a SQL describing a table <code>print_r($dialect->describeColumns(“posts”) ?>

public array listTables ([string $schemaName])

List all tables on database

<?php

print_r($dialect->listTables("blog")) ?>

public array listViews ([string $schemaName])

Generates the SQL to list all views of a schema or user

public string describeIndexes (string $table, [string $schema])

Generates SQL to query indexes on a table

public string describeReferences (string $table, [string $schema])

Generates SQL to query foreign keys on a table

public string tableOptions (string $table, [string $schema])

Generates the SQL to describe the table creation options

public string limit (string $sqlQuery, int $number) inherited from Phalcon\Db\Dialect

Generates the SQL for LIMIT clause

<?php

$sql = $dialect->limit('SELECT * FROM robots', 10);
echo $sql; // SELECT * FROM robots LIMIT 10

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a FOR UPDATE clause

<?php

$sql = $dialect->forUpdate('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots FOR UPDATE

2.54. API Indice 569



Phalcon PHP Framework Documentation, Release 1.3.0

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

$sql = $dialect->sharedLock('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

public string getColumnList (array $columnList) inherited from Phalcon\Db\Dialect

Gets a list of columns with escaped identifiers

<?php

echo $dialect->getColumnList(array('column1', 'column'));

public string getSqlExpression (array $expression, [string $escapeChar]) inherited from Phalcon\Db\Dialect

Transforms an intermediate representation for a expression into a database system valid expression

public string getSqlTable (array $table, [string $escapeChar]) inherited from Phalcon\Db\Dialect

Transform an intermediate representation for a schema/table into a database system valid expression

public string select (array $definition) inherited from Phalcon\Db\Dialect

Builds a SELECT statement

public boolean supportsSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports savepoints

public boolean supportsReleaseSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports releasing savepoints.

public string createSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to create a new savepoint

public string releaseSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to release a savepoint

public string rollbackSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to rollback a savepoint

2.54.75 Class Phalcon\Db\Dialect\Sqlite

extends abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

Generates database specific SQL for the SQLite RDBMS

Methods

public string getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Gets the column name in Sqlite

public string addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

570 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Generates SQL to add a column to a table

public string modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to modify a column in a table

public string dropColumn (string $tableName, string $schemaName, string $columnName)

Generates SQL to delete a column from a table

public string addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add an index to a table

public string dropIndex (string $tableName, string $schemaName, string $indexName)

Generates SQL to delete an index from a table

public string addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add the primary key to a table

public string dropPrimaryKey (string $tableName, string $schemaName)

Generates SQL to delete primary key from a table

public string addForeignKey (string $tableName, string $schemaName, Phalcon\Db\Reference $reference)

Generates SQL to add an index to a table

public string dropForeignKey (string $tableName, string $schemaName, string $referenceName)

Generates SQL to delete a foreign key from a table

protected array _getTableOptions ()

Generates SQL to add the table creation options

public string createTable (string $tableName, string $schemaName, array $definition)

Generates SQL to create a table in Sqlite

public boolean dropTable (string $tableName, string $schemaName)

Generates SQL to drop a table

public string createView (string $viewName, array $definition, string $schemaName)

Generates SQL to create a view

public string dropView (string $viewName, string $schemaName, [boolean $ifExists])

Generates SQL to drop a view

public string tableExists (string $tableName, [string $schemaName])

Generates SQL checking for the existence of a schema.table <code>echo $dialect->tableExists(“posts”, “blog”)
<code>echo $dialect->tableExists(“posts”)

public string viewExists (string $viewName, [string $schemaName])

Generates SQL checking for the existence of a schema.view

public string describeColumns (string $table, [string $schema])

Generates a SQL describing a table <code>print_r($dialect->describeColumns(“posts”) ?>

public array listTables ([string $schemaName])

List all tables on database <code>print_r($dialect->listTables(“blog”)) ?>

2.54. API Indice 571



Phalcon PHP Framework Documentation, Release 1.3.0

public array listViews ([string $schemaName])

Generates the SQL to list all views of a schema or user

public string describeIndexes (string $table, [string $schema])

Generates SQL to query indexes on a table

public string describeIndex (string $indexName)

Generates SQL to query indexes detail on a table

public string describeReferences (string $table, [string $schema])

Generates SQL to query foreign keys on a table

public string tableOptions (string $table, [string $schema])

Generates the SQL to describe the table creation options

public string limit (string $sqlQuery, int $number) inherited from Phalcon\Db\Dialect

Generates the SQL for LIMIT clause

<?php

$sql = $dialect->limit('SELECT * FROM robots', 10);
echo $sql; // SELECT * FROM robots LIMIT 10

public string forUpdate (string $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a FOR UPDATE clause

<?php

$sql = $dialect->forUpdate('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots FOR UPDATE

public string sharedLock (string $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

$sql = $dialect->sharedLock('SELECT * FROM robots');
echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

public string getColumnList (array $columnList) inherited from Phalcon\Db\Dialect

Gets a list of columns with escaped identifiers

<?php

echo $dialect->getColumnList(array('column1', 'column'));

public string getSqlExpression (array $expression, [string $escapeChar]) inherited from Phalcon\Db\Dialect

Transforms an intermediate representation for a expression into a database system valid expression

public string getSqlTable (array $table, [string $escapeChar]) inherited from Phalcon\Db\Dialect

Transform an intermediate representation for a schema/table into a database system valid expression

public string select (array $definition) inherited from Phalcon\Db\Dialect

Builds a SELECT statement

572 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public boolean supportsSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports savepoints

public boolean supportsReleaseSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports releasing savepoints.

public string createSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to create a new savepoint

public string releaseSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to release a savepoint

public string rollbackSavepoint (string $name) inherited from Phalcon\Db\Dialect

Generate SQL to rollback a savepoint

2.54.76 Class Phalcon\Db\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Db will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54. API Indice 573



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.77 Class Phalcon\Db\Index

implements Phalcon\Db\IndexInterface

Allows to define indexes to be used on tables. Indexes are a common way to enhance database performance. An index
allows the database server to find and retrieve specific rows much faster than it could do without an index

Methods

public __construct (string $indexName, array $columns)

Phalcon\Db\Index constructor

public string getName ()

Gets the index name

public array getColumns ()

Gets the columns that comprends the index

public static Phalcon\Db\IndexInterface __set_state ([unknown $properties])

Restore a Phalcon\Db\Index object from export

2.54.78 Class Phalcon\Db\Profiler

Instances of Phalcon\Db can generate execution profiles on SQL statements sent to the relational database. Profiled
information includes execution time in miliseconds. This helps you to identify bottlenecks in your applications.

<?php

$profiler = new Phalcon\Db\Profiler();

//Set the connection profiler
$connection->setProfiler($profiler);

$sql = "SELECT buyer_name, quantity, product_name
FROM buyers LEFT JOIN products ON
buyers.pid=products.id";

//Execute a SQL statement
$connection->query($sql);

//Get the last profile in the profiler
$profile = $profiler->getLastProfile();

echo "SQL Statement: ", $profile->getSQLStatement(), "\n";
echo "Start Time: ", $profile->getInitialTime(), "\n";
echo "Final Time: ", $profile->getFinalTime(), "\n";
echo "Total Elapsed Time: ", $profile->getTotalElapsedSeconds(), "\n";

Methods

public Phalcon\Db\Profiler startProfile (string $sqlStatement, [unknown $sqlVariables], [unknown $sqlBindTypes])

Starts the profile of a SQL sentence

574 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Db\Profiler stopProfile ()

Stops the active profile

public integer getNumberTotalStatements ()

Returns the total number of SQL statements processed

public double getTotalElapsedSeconds ()

Returns the total time in seconds spent by the profiles

public Phalcon\Db\Profiler\Item [] getProfiles ()

Returns all the processed profiles

public Phalcon\Db\Profiler reset ()

Resets the profiler, cleaning up all the profiles

public Phalcon\Db\Profiler\Item getLastProfile ()

Returns the last profile executed in the profiler

2.54.79 Class Phalcon\Db\Profiler\Item

This class identifies each profile in a Phalcon\Db\Profiler

Methods

public setSQLStatement (string $sqlStatement)

Sets the SQL statement related to the profile

public string getSQLStatement ()

Returns the SQL statement related to the profile

public setSQLVariables (unknown $sqlVariables)

Sets the SQL variables related to the profile

public array getSQLVariables ()

Returns the SQL variables related to the profile

public setSQLBindTypes (unknown $sqlBindTypes)

Sets the SQL bind types related to the profile

public array getSQLBindTypes ()

Returns the SQL bind types related to the profile

public setInitialTime (int $initialTime)

Sets the timestamp on when the profile started

public setFinalTime (int $finalTime)

Sets the timestamp on when the profile ended

public double getInitialTime ()

Returns the initial time in milseconds on when the profile started

public double getFinalTime ()

2.54. API Indice 575



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the initial time in milseconds on when the profile ended

public double getTotalElapsedSeconds ()

Returns the total time in seconds spent by the profile

2.54.80 Class Phalcon\Db\RawValue

This class allows to insert/update raw data without quoting or formating. The next example shows how to use the
MySQL now() function as a field value.

<?php

$subscriber = new Subscribers();
$subscriber->email = 'andres@phalconphp.com';
$subscriber->created_at = new Phalcon\Db\RawValue('now()');
$subscriber->save();

Methods

public __construct (string $value)

Phalcon\Db\RawValue constructor

public string getValue ()

Returns internal raw value without quoting or formating

public __toString ()

Magic method __toString returns raw value without quoting or formating

2.54.81 Class Phalcon\Db\Reference

implements Phalcon\Db\ReferenceInterface

Allows to define reference constraints on tables

<?php

$reference = new Phalcon\Db\Reference("field_fk", array(
'referencedSchema' => "invoicing",
'referencedTable' => "products",
'columns' => array("product_type", "product_code"),
'referencedColumns' => array("type", "code")

));

Methods

public __construct (string $referenceName, array $definition)

Phalcon\Db\Reference constructor

public string getName ()

Gets the index name

public string getSchemaName ()

576 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Gets the schema where referenced table is

public string getReferencedSchema ()

Gets the schema where referenced table is

public array getColumns ()

Gets local columns which reference is based

public string getReferencedTable ()

Gets the referenced table

public array getReferencedColumns ()

Gets referenced columns

public static Phalcon\Db\Reference __set_state ([unknown $properties])

Restore a Phalcon\Db\Reference object from export

2.54.82 Class Phalcon\Db\Result\Pdo

Encapsulates the resultset internals

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$result->setFetchMode(Phalcon\Db::FETCH_NUM);
while ($robot = $result->fetchArray()) {

print_r($robot);
}

Methods

public __construct (Phalcon\Db\AdapterInterface $connection, PDOStatement $result, [string $sqlStatement], [array
$bindParams], [array $bindTypes])

Phalcon\Db\Result\Pdo constructor

public boolean execute ()

Allows to executes the statement again. Some database systems don’t support scrollable cursors, So, as cursors are
forward only, we need to execute the cursor again to fetch rows from the begining

public mixed fetch ()

Fetches an array/object of strings that corresponds to the fetched row, or FALSE if there are no more rows. This
method is affected by the active fetch flag set using Phalcon\Db\Result\Pdo::setFetchMode

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$result->setFetchMode(Phalcon\Db::FETCH_OBJ);
while ($robot = $result->fetch()) {

echo $robot->name;
}

2.54. API Indice 577



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed fetchArray ()

Returns an array of strings that corresponds to the fetched row, or FALSE if there are no more rows. This method is
affected by the active fetch flag set using Phalcon\Db\Result\Pdo::setFetchMode

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$result->setFetchMode(Phalcon\Db::FETCH_NUM);
while ($robot = $result->fetchArray()) {

print_r($robot);
}

public array fetchAll ()

Returns an array of arrays containing all the records in the result This method is affected by the active fetch flag set
using Phalcon\Db\Result\Pdo::setFetchMode

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$robots = $result->fetchAll();

public int numRows ()

Gets number of rows returned by a resulset

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
echo 'There are ', $result->numRows(), ' rows in the resulset';

public dataSeek (int $number)

Moves internal resulset cursor to another position letting us to fetch a certain row

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$result->dataSeek(2); // Move to third row on result
$row = $result->fetch(); // Fetch third row

public setFetchMode (int $fetchMode)

Changes the fetching mode affecting Phalcon\Db\Result\Pdo::fetch()

<?php

//Return array with integer indexes
$result->setFetchMode(Phalcon\Db::FETCH_NUM);

//Return associative array without integer indexes
$result->setFetchMode(Phalcon\Db::FETCH_ASSOC);

//Return associative array together with integer indexes
$result->setFetchMode(Phalcon\Db::FETCH_BOTH);

//Return an object
$result->setFetchMode(Phalcon\Db::FETCH_OBJ);

public PDOStatement getInternalResult ()

Gets the internal PDO result object

578 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.83 Class Phalcon\Debug

Provides debug capabilities to Phalcon applications

Methods

public Phalcon\Debug setUri (string $uri)

Change the base URI for static resources

public Phalcon\Debug setShowBackTrace (boolean $showBackTrace)

Sets if files the exception’s backtrace must be showed

public Phalcon\Debug setShowFiles (boolean $showFiles)

Set if files part of the backtrace must be shown in the output

public Phalcon\Debug setShowFileFragment (boolean $showFileFragment)

Sets if files must be completely opened and showed in the output or just the fragment related to the exception

public Phalcon\Debug listen ([boolean $exceptions], [boolean $lowSeverity])

Listen for uncaught exceptions and unsilent notices or warnings

public Phalcon\Debug listenExceptions ()

Listen for uncaught exceptions

public Phalcon\Debug listenLowSeverity ()

Listen for unsilent notices or warnings

public Phalcon\Debug debugVar (mixed $var, [string $key])

Adds a variable to the debug output

public Phalcon\Debug clearVars ()

Clears are variables added previously

protected string _escapeString ()

Escapes a string with htmlentities

protected string _getArrayDump ()

Produces a recursive representation of an array

protected string _getVarDump ()

Produces an string representation of a variable

public string getMajorVersion ()

Returns the major framework’s version

public string getVersion ()

Generates a link to the current version documentation

public string getCssSources ()

Returns the css sources

public string getJsSources ()

Returns the javascript sources

2.54. API Indice 579



Phalcon PHP Framework Documentation, Release 1.3.0

protected showTraceItem ()

Shows a backtrace item

public boolean onUncaughtException (Exception $exception)

Handles uncaught exceptions

public string getCharset ()

Returns the character set used to display the HTML

public PhalconDebug setCharset (string $charset)

Sets the character set used to display the HTML

public int getLinesBeforeContext ()

Returns the number of lines deplayed before the error line

public PhalconDebug setLinesBeforeContext (int $lines)

Sets the number of lines deplayed before the error line

public int getLinesAfterContext ()

Returns the number of lines deplayed after the error line

public PhalconDebug setLinesAfterContext (int $lines)

Sets the number of lines deplayed after the error line

protected getFileLink (unknown $file, unknown $line, unknown $format)

...

2.54.84 Abstract class Phalcon\Dispatcher

implements Phalcon\DispatcherInterface, Phalcon\DI\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

This is the base class for Phalcon\Mvc\Dispatcher and Phalcon\CLI\Dispatcher. This class can’t be instantiated di-
rectly, you can use it to create your own dispatchers

Constants

integer EXCEPTION_NO_DI

integer EXCEPTION_CYCLIC_ROUTING

integer EXCEPTION_HANDLER_NOT_FOUND

integer EXCEPTION_INVALID_HANDLER

integer EXCEPTION_INVALID_PARAMS

integer EXCEPTION_ACTION_NOT_FOUND

Methods

public __construct ()

Phalcon\Dispatcher constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

580 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

public setActionSuffix (string $actionSuffix)

Sets the default action suffix

public setModuleName (string $moduleName)

Sets the module where the controller is (only informative)

public string getModuleName ()

Gets the module where the controller class is

public setNamespaceName (string $namespaceName)

Sets the namespace where the controller class is

public string getNamespaceName ()

Gets a namespace to be prepended to the current handler name

public setDefaultNamespace (string $namespace)

Sets the default namespace

public string getDefaultNamespace ()

Returns the default namespace

public setDefaultAction (string $actionName)

Sets the default action name

public setActionName (string $actionName)

Sets the action name to be dispatched

public string getActionName ()

Gets the lastest dispatched action name

public setParams (array $params)

Sets action params to be dispatched

public array getParams ()

Gets action params

public setParam (mixed $param, mixed $value)

Set a param by its name or numeric index

public mixed getParam (mixed $param, [string|array $filters])

Gets a param by its name or numeric index

public string getActiveMethod ()

2.54. API Indice 581



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the current method to be/executed in the dispatcher

public boolean isFinished ()

Checks if the dispatch loop is finished or has more pendent controllers/tasks to disptach

public setReturnedValue (mixed $value)

Sets the latest returned value by an action manually

public mixed getReturnedValue ()

Returns value returned by the lastest dispatched action

public object dispatch ()

Dispatches a handle action taking into account the routing parameters

public forward (array $forward)

Forwards the execution flow to another controller/action Dispatchers are unique per module. Forwarding between
modules is not allowed

<?php

$this->dispatcher->forward(array('controller' => 'posts', 'action' => 'index'));

public boolean wasForwarded ()

Check if the current executed action was forwarded by another one

public string getHandlerClass ()

Possible class name that will be located to dispatch the request

2.54.85 Class Phalcon\Escaper

implements Phalcon\EscaperInterface

Escapes different kinds of text securing them. By using this component you may prevent XSS attacks. This component
only works with UTF-8. The PREG extension needs to be compiled with UTF-8 support.

<?php

$escaper = new Phalcon\Escaper();
$escaped = $escaper->escapeCss("font-family: <Verdana>");
echo $escaped; // font\2D family\3A \20 \3C Verdana\3E

Methods

public setEncoding (string $encoding)

Sets the encoding to be used by the escaper

<?php

$escaper->setEncoding('utf-8');

public string getEncoding ()

Returns the internal encoding used by the escaper

public setHtmlQuoteType (int $quoteType)

582 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the HTML quoting type for htmlspecialchars

<?php

$escaper->setHtmlQuoteType(ENT_XHTML);

public string detectEncoding (string $str)

Detect the character encoding of a string to be handled by an encoder Special-handling for chr(172) and chr(128) to
chr(159) which fail to be detected by mb_detect_encoding()

public string normalizeEncoding (string $str)

Utility to normalize a string’s encoding to UTF-32.

public string escapeHtml (string $text)

Escapes a HTML string. Internally uses htmlspecialchars

public string escapeHtmlAttr (unknown $text)

Escapes a HTML attribute string

public string escapeCss (string $css)

Escape CSS strings by replacing non-alphanumeric chars by their hexadecimal escaped representation

public string escapeJs (string $js)

Escape javascript strings by replacing non-alphanumeric chars by their hexadecimal escaped representation

public string escapeUrl (string $url)

Escapes a URL. Internally uses rawurlencode

2.54.86 Class Phalcon\Escaper\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Escaper will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

2.54. API Indice 583



Phalcon PHP Framework Documentation, Release 1.3.0

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.87 Class Phalcon\Events\Event

This class offers contextual information of a fired event in the EventsManager

Methods

public __construct (string $type, object $source, [mixed $data], [boolean $cancelable])

Phalcon\Events\Event constructor

public setType (string $eventType)

Set the event’s type

public string getType ()

Returns the event’s type

public object getSource ()

Returns the event’s source

public setData (string $data)

Set the event’s data

public mixed getData ()

Returns the event’s data

public setCancelable (boolean $cancelable)

Sets if the event is cancelable

public boolean getCancelable ()

Check whether the event is cancelable

public stop ()

Stops the event preventing propagation

public isStopped ()

Check whether the event is currently stopped

584 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.88 Class Phalcon\Events\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Events will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.89 Class Phalcon\Events\Manager

implements Phalcon\Events\ManagerInterface

Phalcon Events Manager, offers an easy way to intercept and manipulate, if needed, the normal flow of operation.
With the EventsManager the developer can create hooks or plugins that will offer monitoring of data, manipulation,
conditional execution and much more.

Methods

public attach (string $eventType, object|callable $handler)

Attach a listener to the events manager

public enablePriorities (boolean $enablePriorities)

2.54. API Indice 585



Phalcon PHP Framework Documentation, Release 1.3.0

Set if priorities are enabled in the EventsManager

public boolean arePrioritiesEnabled ()

Returns if priorities are enabled

public collectResponses (boolean $collect)

Tells the event manager if it needs to collect all the responses returned by every registered listener in a single fire

public isCollecting ()

Check if the events manager is collecting all all the responses returned by every registered listener in a single fire

public array getResponses ()

Returns all the responses returned by every handler executed by the last ‘fire’ executed

public detachAll ([string $type])

Removes all events from the EventsManager

public mixed fireQueue (SplPriorityQueue $queue, Phalcon\Events\Event $event)

Internal handler to call a queue of events

public mixed fire (string $eventType, object $source, [mixed $data])

Fires an event in the events manager causing that active listeners be notified about it

<?php

$eventsManager->fire('db', $connection);

public boolean hasListeners (string $type)

Check whether certain type of event has listeners

public array getListeners (string $type)

Returns all the attached listeners of a certain type

public dettachAll ([unknown $type])

...

2.54.90 Class Phalcon\Exception

extends Exception

All framework exceptions should use or extend this exception

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

586 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.91 Class Phalcon\Filter

implements Phalcon\FilterInterface

The Phalcon\Filter component provides a set of commonly needed data filters. It provides object oriented wrappers to
the php filter extension. Also allows the developer to define his/her own filters

<?php

$filter = new Phalcon\Filter();
$filter->sanitize("some(one)@exa\\mple.com", "email"); // returns "someone@example.com"
$filter->sanitize("hello<<", "string"); // returns "hello"
$filter->sanitize("!100a019", "int"); // returns "100019"
$filter->sanitize("!100a019.01a", "float"); // returns "100019.01"

Methods

public Phalcon\Filter add (string $name, callable $handler)

Adds a user-defined filter

public mixed sanitize (mixed $value, mixed $filters)

Sanitizes a value with a specified single or set of filters

protected mixed _sanitize ()

Internal sanitize wrapper to filter_var

public object[] getFilters ()

Return the user-defined filters in the instance

2.54. API Indice 587



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.92 Class Phalcon\Filter\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Filter will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.93 Abstract class Phalcon\Flash

Shows HTML notifications related to different circumstances. Classes can be stylized using CSS

<?php

$flash->success("The record was successfully deleted");
$flash->error("Cannot open the file");

588 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct ([array $cssClasses])

Phalcon\Flash constructor

public Phalcon\FlashInterface setImplicitFlush (boolean $implicitFlush)

Set whether the output must be implictly flushed to the output or returned as string

public Phalcon\FlashInterface setAutomaticHtml (boolean $automaticHtml)

Set if the output must be implictily formatted with HTML

public Phalcon\FlashInterface setCssClasses (array $cssClasses)

Set an array with CSS classes to format the messages

public string error (string $message)

Shows a HTML error message

<?php

$flash->error('This is an error');

public string notice (string $message)

Shows a HTML notice/information message

<?php

$flash->notice('This is an information');

public string success (string $message)

Shows a HTML success message

<?php

$flash->success('The process was finished successfully');

public string warning (string $message)

Shows a HTML warning message

<?php

$flash->warning('Hey, this is important');

public outputMessage (string $type, string $message)

Outputs a message formatting it with HTML

<?php

$flash->outputMessage('error', $message);

2.54.94 Class Phalcon\Flash\Direct

extends abstract class Phalcon\Flash

implements Phalcon\FlashInterface

2.54. API Indice 589



Phalcon PHP Framework Documentation, Release 1.3.0

This is a variant of the Phalcon\Flash that inmediately outputs any message passed to it

Methods

public string message (string $type, string $message)

Outputs a message

public __construct ([array $cssClasses]) inherited from Phalcon\Flash

Phalcon\Flash constructor

public Phalcon\FlashInterface setImplicitFlush (boolean $implicitFlush) inherited from Phalcon\Flash

Set whether the output must be implictly flushed to the output or returned as string

public Phalcon\FlashInterface setAutomaticHtml (boolean $automaticHtml) inherited from Phalcon\Flash

Set if the output must be implictily formatted with HTML

public Phalcon\FlashInterface setCssClasses (array $cssClasses) inherited from Phalcon\Flash

Set an array with CSS classes to format the messages

public string error (string $message) inherited from Phalcon\Flash

Shows a HTML error message

<?php

$flash->error('This is an error');

public string notice (string $message) inherited from Phalcon\Flash

Shows a HTML notice/information message

<?php

$flash->notice('This is an information');

public string success (string $message) inherited from Phalcon\Flash

Shows a HTML success message

<?php

$flash->success('The process was finished successfully');

public string warning (string $message) inherited from Phalcon\Flash

Shows a HTML warning message

<?php

$flash->warning('Hey, this is important');

public outputMessage (string $type, string $message) inherited from Phalcon\Flash

Outputs a message formatting it with HTML

<?php

$flash->outputMessage('error', $message);

590 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.95 Class Phalcon\Flash\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Flash will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.96 Class Phalcon\Flash\Session

extends abstract class Phalcon\Flash

implements Phalcon\FlashInterface, Phalcon\DI\InjectionAwareInterface

Temporarily stores the messages in session, then messages can be printed in the next request

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

2.54. API Indice 591



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the internal dependency injector

protected array _getSessionMessages ()

Returns the messages stored in session

protected _setSessionMessages ()

Stores the messages in session

public message (string $type, string $message)

Adds a message to the session flasher

public array getMessages ([string $type], [boolean $remove])

Returns the messages in the session flasher

public output ([boolean $remove])

Prints the messages in the session flasher

public has (unknown $type)

bool \Phalcon\Flash\Session::has(string $type)

public __construct ([array $cssClasses]) inherited from Phalcon\Flash

Phalcon\Flash constructor

public Phalcon\FlashInterface setImplicitFlush (boolean $implicitFlush) inherited from Phalcon\Flash

Set whether the output must be implictly flushed to the output or returned as string

public Phalcon\FlashInterface setAutomaticHtml (boolean $automaticHtml) inherited from Phalcon\Flash

Set if the output must be implictily formatted with HTML

public Phalcon\FlashInterface setCssClasses (array $cssClasses) inherited from Phalcon\Flash

Set an array with CSS classes to format the messages

public string error (string $message) inherited from Phalcon\Flash

Shows a HTML error message

<?php

$flash->error('This is an error');

public string notice (string $message) inherited from Phalcon\Flash

Shows a HTML notice/information message

<?php

$flash->notice('This is an information');

public string success (string $message) inherited from Phalcon\Flash

Shows a HTML success message

<?php

$flash->success('The process was finished successfully');

592 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string warning (string $message) inherited from Phalcon\Flash

Shows a HTML warning message

<?php

$flash->warning('Hey, this is important');

public outputMessage (string $type, string $message) inherited from Phalcon\Flash

Outputs a message formatting it with HTML

<?php

$flash->outputMessage('error', $message);

2.54.97 Abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

This is a base class for form elements

Methods

public __construct (string $name, [array $attributes])

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form)

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm ()

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name)

Sets the element’s name

public string getName ()

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters)

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter)

Adds a filter to current list of filters

public mixed getFilters ()

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge])

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator)

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators ()

2.54. API Indice 593



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked])

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value)

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue])

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes)

Sets default attributes for the element

public array getAttributes ()

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value)

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue])

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options)

Sets options for the element

public array getUserOptions ()

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label)

Sets the element label

public string getLabel ()

Returns the element’s label

public string label (unknown $attributes)

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value)

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault ()

Returns the default value assigned to the element

public mixed getValue ()

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages ()

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages ()

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group)

594 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message)

Appends a message to the internal message list

public Phalcon\Forms\Element clear ()

Clears every element in the form to its default value

public string __toString ()

Magic method __toString renders the widget without attributes

abstract public string render ([array $attributes]) inherited from Phalcon\Forms\ElementInterface

Renders the element widget

2.54.98 Class Phalcon\Forms\Element\Check

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=check] for forms

Methods

public string render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

2.54. API Indice 595



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

596 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.99 Class Phalcon\Forms\Element\Date

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=date] for forms

Methods

public string render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

2.54. API Indice 597



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

598 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.100 Class Phalcon\Forms\Element\Email

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=email] for forms

Methods

public string render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

2.54. API Indice 599



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

600 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.101 Class Phalcon\Forms\Element\File

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=file] for forms

Methods

public string render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

2.54. API Indice 601



Phalcon PHP Framework Documentation, Release 1.3.0

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

602 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.102 Class Phalcon\Forms\Element\Hidden

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=hidden] for forms

2.54. API Indice 603



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public string render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

604 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54. API Indice 605



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.103 Class Phalcon\Forms\Element\Numeric

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=number] for forms

Methods

public string render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

606 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

2.54. API Indice 607



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.104 Class Phalcon\Forms\Element\Password

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=password] for forms

Methods

public string render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

608 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

2.54. API Indice 609



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.105 Class Phalcon\Forms\Element\Radio

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

input[type=”radio”] for forms

Methods

public string render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

610 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

2.54. API Indice 611



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.106 Class Phalcon\Forms\Element\Select

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component SELECT (choice) for forms

Methods

public __construct (string $name, [object|array $options], [array $attributes])

Phalcon\Forms\Element constructor

public Phalcon\Forms\Element setOptions (array|object $options)

Set the choice’s options

public array|object getOptions ()

Returns the choices’ options

public $this addOption (array $option)

Adds an option to the current options

public string render ([array $attributes])

Renders the element widget returning html

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

612 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

2.54. API Indice 613



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.107 Class Phalcon\Forms\Element\Submit

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=submit] for forms

Methods

public string render ([array $attributes])

Renders the element widget

614 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

2.54. API Indice 615



Phalcon PHP Framework Documentation, Release 1.3.0

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

616 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.108 Class Phalcon\Forms\Element\Text

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component INPUT[type=text] for forms

Methods

public string render ([array $attributes])

Renders the element widget

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

2.54. API Indice 617



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

618 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.109 Class Phalcon\Forms\Element\TextArea

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Component TEXTAREA for forms

Methods

public string render ([array $attributes])

Renders the element widget

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form) inherited from Phal-
con\Forms\Element

Sets the parent form to the element

public Phalcon\Forms\ElementInterface getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public Phalcon\Forms\ElementInterface setName (string $name) inherited from Phalcon\Forms\Element

Sets the element’s name

public string getName () inherited from Phalcon\Forms\Element

Returns the element’s name

public Phalcon\Forms\ElementInterface setFilters (array|string $filters) inherited from Phalcon\Forms\Element

Sets the element’s filters

public Phalcon\Forms\ElementInterface addFilter (string $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element’s filters

public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge]) inherited from
Phalcon\Forms\Element

Adds a group of validators

public Phalcon\Forms\ElementInterface addValidator (unknown $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public Phalcon\Validation\ValidatorInterface [] getValidators () inherited from Phalcon\Forms\Element

2.54. API Indice 619



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the validators registered for the element

public array prepareAttributes ([array $attributes], [boolean $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phal-
con\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public Phalcon\Forms\ElementInterface setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public array getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phal-
con\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public array getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public Phalcon\Forms\ElementInterface setLabel (string $label) inherited from Phalcon\Forms\Element

Sets the element label

public string getLabel () inherited from Phalcon\Forms\Element

Returns the element’s label

public string label (unknown $attributes) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

public mixed getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public mixed getValue () inherited from Phalcon\Forms\Element

Returns the element’s value

public Phalcon\Validation\Message\Group getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public boolean hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

620 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group) inherited from
Phalcon\Forms\Element

Sets the validation messages related to the element

public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message) inherited from
Phalcon\Forms\Element

Appends a message to the internal message list

public Phalcon\Forms\Element clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public string __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

2.54.110 Class Phalcon\Forms\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Forms will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54. API Indice 621



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.111 Class Phalcon\Forms\Form

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface, Countable, Iterator,
Traversable

This component allows to build forms using an object-oriented interface

Methods

public __construct ([object $entity], [array $userOptions])

Phalcon\Forms\Form constructor

public Phalcon\Forms\Form setAction (string $action)

Sets the form’s action

public string getAction ()

Returns the form’s action

public Phalcon\Forms\Form setUserOption (string $option, mixed $value)

Sets an option for the form

public mixed getUserOption (string $option, [mixed $defaultValue])

Returns the value of an option if present

public Phalcon\Forms\ElementInterface setUserOptions (array $options)

Sets options for the element

public array getUserOptions ()

Returns the options for the element

public Phalcon\Forms\Form setEntity (object $entity)

Sets the entity related to the model

public object getEntity ()

Returns the entity related to the model

public Phalcon\Forms\ElementInterface [] getElements ()

Returns the form elements added to the form

public Phalcon\Forms\Form bind (array $data, object $entity, [array $whitelist])

Binds data to the entity

public boolean isValid ([array $data], [object $entity])

Validates the form

public Phalcon\Validation\Message\Group getMessages ([boolean $byItemName])

Returns the messages generated in the validation

public Phalcon\Validation\Message\Group [] getMessagesFor (unknown $name)

Returns the messages generated for a specific element

public boolean hasMessagesFor (unknown $name)

622 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Check if messages were generated for a specific element

public Phalcon\Forms\Form add (Phalcon\Forms\ElementInterface $element, [string $postion], [unknown $type])

Adds an element to the form

public string render (string $name, [array $attributes])

Renders a specific item in the form

public Phalcon\Forms\ElementInterface get (string $name)

Returns an element added to the form by its name

public string label (string $name, [unknown $attributes])

Generate the label of a element added to the form including HTML

public string getLabel (string $name)

Returns a label for an element

public mixed getValue (string $name)

Gets a value from the internal related entity or from the default value

public boolean has (string $name)

Check if the form contains an element

public boolean remove (string $name)

Removes an element from the form

public Phalcon\Forms\Form clear ([array $fields])

Clears every element in the form to its default value

public int count ()

Returns the number of elements in the form

public rewind ()

Rewinds the internal iterator

public Phalcon\Validation\Message current ()

Returns the current element in the iterator

public int key ()

Returns the current position/key in the iterator

public next ()

Moves the internal iteration pointer to the next position

public boolean valid ()

Check if the current element in the iterator is valid

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

2.54. API Indice 623



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.112 Class Phalcon\Forms\Manager

Manages forms within the application. Allowing the developer to access them from any part of the application

Methods

public __construct ()

...

public Phalcon\Forms\Form create ([string $name], [object $entity])

Creates a form registering it in the forms manager

public Phalcon\Forms\Form get (string $name)

Returns a form by its name

public boolean has (string $name)

Checks if a form is registered in the forms manager

public Phalcon\Forms\Manager set (string $name, Phalcon\Forms\Form $form)

Registers a form in the Forms Manager

2.54.113 Class Phalcon\Http\Cookie

implements Phalcon\DI\InjectionAwareInterface

Provide OO wrappers to manage a HTTP cookie

Methods

public __construct (string $name, [mixed $value], [int $expire], [string $path], [boolean $secure], [string $domain],
[boolean $httpOnly])

Phalcon\Http\Cookie constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public Phalcon\Http\CookieInterface setValue (string $value)

Sets the cookie’s value

public mixed getValue ([string|array $filters], [string $defaultValue])

624 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the cookie’s value

public Phalcon\Http\Cookie send ()

Sends the cookie to the HTTP client Stores the cookie definition in session

public Phalcon\Http\Cookie restore ()

Reads the cookie-related info from the SESSION to restore the cookie as it was set This method is automatically called
internally so normally you don’t need to call it

public delete ()

Deletes the cookie by setting an expire time in the past

public Phalcon\Http\Cookie useEncryption (boolean $useEncryption)

Sets if the cookie must be encrypted/decrypted automatically

public boolean isUsingEncryption ()

Check if the cookie is using implicit encryption

public Phalcon\Http\Cookie setExpiration (int $expire)

Sets the cookie’s expiration time

public string getExpiration ()

Returns the current expiration time

public Phalcon\Http\Cookie setPath (string $path)

Sets the cookie’s expiration time

public string getPath ()

Returns the current cookie’s path

public Phalcon\Http\Cookie setDomain (string $domain)

Sets the domain that the cookie is available to

public string getDomain ()

Returns the domain that the cookie is available to

public Phalcon\Http\Cookie setSecure (boolean $secure)

Sets if the cookie must only be sent when the connection is secure (HTTPS)

public boolean getSecure ()

Returns whether the cookie must only be sent when the connection is secure (HTTPS)

public Phalcon\Http\Cookie setHttpOnly (boolean $httpOnly)

Sets if the cookie is accessible only through the HTTP protocol

public boolean getHttpOnly ()

Returns if the cookie is accessible only through the HTTP protocol

public mixed __toString ()

Magic __toString method converts the cookie’s value to string

2.54. API Indice 625



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.114 Class Phalcon\Http\Cookie\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Http\Cookie will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.115 Class Phalcon\Http\Request

implements Phalcon\Http\RequestInterface, Phalcon\DI\InjectionAwareInterface

Encapsulates request information for easy and secure access from application controllers. The request object is a
simple value object that is passed between the dispatcher and controller classes. It packages the HTTP request envi-
ronment.

<?php

$request = new Phalcon\Http\Request();
if ($request->isPost() == true) {

if ($request->isAjax() == true) {
echo 'Request was made using POST and AJAX';

}
}

626 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public mixed get ([string $name], [string|array $filters], [mixed $defaultValue])

Gets a variable from the $_REQUEST superglobal applying filters if needed. If no parameters are given the $_RE-
QUEST superglobal is returned

<?php

//Returns value from $_REQUEST["user_email"] without sanitizing
$userEmail = $request->get("user_email");

//Returns value from $_REQUEST["user_email"] with sanitizing
$userEmail = $request->get("user_email", "email");

public mixed getPost ([string $name], [string|array $filters], [mixed $defaultValue])

Gets a variable from the $_POST superglobal applying filters if needed If no parameters are given the $_POST super-
global is returned

<?php

//Returns value from $_POST["user_email"] without sanitizing
$userEmail = $request->getPost("user_email");

//Returns value from $_POST["user_email"] with sanitizing
$userEmail = $request->getPost("user_email", "email");

public mixed getPut ([string $name], [string|array $filters], [mixed $defaultValue])

Gets a variable from put request

<?php

$userEmail = $request->getPut("user_email");

$userEmail = $request->getPut("user_email", "email");

public mixed getQuery ([string $name], [string|array $filters], [mixed $defaultValue])

Gets variable from $_GET superglobal applying filters if needed If no parameters are given the $_GET superglobal is
returned

<?php

//Returns value from $_GET["id"] without sanitizing
$id = $request->getQuery("id");

//Returns value from $_GET["id"] with sanitizing
$id = $request->getQuery("id", "int");

//Returns value from $_GET["id"] with a default value
$id = $request->getQuery("id", null, 150);

2.54. API Indice 627



Phalcon PHP Framework Documentation, Release 1.3.0

public mixed getServer (string $name)

Gets variable from $_SERVER superglobal

public boolean has (string $name)

Checks whether $_REQUEST superglobal has certain index

public boolean hasPost (string $name)

Checks whether $_POST superglobal has certain index

public boolean hasPut (string $name)

Checks whether put has certain index

public boolean hasQuery (string $name)

Checks whether $_GET superglobal has certain index

public mixed hasServer (string $name)

Checks whether $_SERVER superglobal has certain index

public string getHeader (string $header)

Gets HTTP header from request data

public string getScheme ()

Gets HTTP schema (http/https)

public boolean isAjax ()

Checks whether request has been made using ajax. Checks if $_SERVER[’HTTP_X_REQUESTED_WITH’]==’XMLHttpRequest’

public boolean isSoapRequested ()

Checks whether request has been made using SOAP

public boolean isSecureRequest ()

Checks whether request has been made using any secure layer

public string getRawBody ()

Gets HTTP raw request body

public string getJsonRawBody ()

Gets decoded JSON HTTP raw request body

public string getServerAddress ()

Gets active server address IP

public string getServerName ()

Gets active server name

public string getHttpHost ()

Gets information about schema, host and port used by the request

public string getClientAddress ([boolean $trustForwardedHeader])

Gets most possible client IPv4 Address. This method search in $_SERVER[’REMOTE_ADDR’] and optionally in
$_SERVER[’HTTP_X_FORWARDED_FOR’]

public string getMethod ()

628 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Gets HTTP method which request has been made

public string getURI ()

Gets HTTP URI which request has been made

public string getUserAgent ()

Gets HTTP user agent used to made the request

public boolean isMethod (string|array $methods)

Check if HTTP method match any of the passed methods

public boolean isPost ()

Checks whether HTTP method is POST. if $_SERVER[’REQUEST_METHOD’]==’POST’

public boolean isGet ()

Checks whether HTTP method is GET. if $_SERVER[’REQUEST_METHOD’]==’GET’

public boolean isPut ()

Checks whether HTTP method is PUT. if $_SERVER[’REQUEST_METHOD’]==’PUT’

public boolean isPatch ()

Checks whether HTTP method is PATCH. if $_SERVER[’REQUEST_METHOD’]==’PATCH’

public boolean isHead ()

Checks whether HTTP method is HEAD. if $_SERVER[’REQUEST_METHOD’]==’HEAD’

public boolean isDelete ()

Checks whether HTTP method is DELETE. if $_SERVER[’REQUEST_METHOD’]==’DELETE’

public boolean isOptions ()

Checks whether HTTP method is OPTIONS. if $_SERVER[’REQUEST_METHOD’]==’OPTIONS’

public boolean hasFiles ([unknown $notErrored])

Checks whether request includes attached files

public Phalcon\Http\Request\File [] getUploadedFiles ([boolean $notErrored])

Gets attached files as Phalcon\Http\Request\File instances

public array getHeaders ()

Returns the available headers in the request

public string getHTTPReferer ()

Gets web page that refers active request. ie: http://www.google.com

protected array _getQualityHeader ()

Process a request header and return an array of values with their qualities

protected string _getBestQuality ()

Process a request header and return the one with best quality

public array getAcceptableContent ()

Gets array with mime/types and their quality accepted by the browser/client from $_SERVER[’HTTP_ACCEPT’]

public array getBestAccept ()

2.54. API Indice 629

http://www.google.com


Phalcon PHP Framework Documentation, Release 1.3.0

Gets best mime/type accepted by the browser/client from $_SERVER[’HTTP_ACCEPT’]

public array getClientCharsets ()

Gets charsets array and their quality accepted by the browser/client from $_SERVER[’HTTP_ACCEPT_CHARSET’]

public string getBestCharset ()

Gets best charset accepted by the browser/client from $_SERVER[’HTTP_ACCEPT_CHARSET’]

public array getLanguages ()

Gets languages array and their quality accepted by the browser/client from
$_SERVER[’HTTP_ACCEPT_LANGUAGE’]

public string getBestLanguage ()

Gets best language accepted by the browser/client from $_SERVER[’HTTP_ACCEPT_LANGUAGE’]

public array getBasicAuth ()

Gets auth info accepted by the browser/client from $_SERVER[’PHP_AUTH_USER’]

public array getDigestAuth ()

Gets auth info accepted by the browser/client from $_SERVER[’PHP_AUTH_DIGEST’]

2.54.116 Class Phalcon\Http\Request\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Http\Request will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

630 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.117 Class Phalcon\Http\Request\File

implements Phalcon\Http\Request\FileInterface

Provides OO wrappers to the $_FILES superglobal

<?php

class PostsController extends \Phalcon\Mvc\Controller
{

public function uploadAction()
{

//Check if the user has uploaded files
if ($this->request->hasFiles() == true) {

//Print the real file names and their sizes
foreach ($this->request->getUploadedFiles() as $file){

echo $file->getName(), " ", $file->getSize(), "\n";
}

}
}

}

Methods

public __construct (array $file)

Phalcon\Http\Request\File constructor

public int getSize ()

Returns the file size of the uploaded file

public string getName ()

Returns the real name of the uploaded file

public string getTempName ()

Returns the temporary name of the uploaded file

public string getType ()

Returns the mime type reported by the browser This mime type is not completely secure, use getRealType() instead

public string getRealType ()

Gets the real mime type of the upload file using finfo

public string getError ()

Returns the error code

public string getKey ()

2.54. API Indice 631



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the file key

public boolean isUploadedFile ()

Checks whether the file has been uploaded via Post.

public boolean moveTo (string $destination)

Moves the temporary file to a destination within the application

public static __set_state (unknown $params)

...

2.54.118 Class Phalcon\Http\Response

implements Phalcon\Http\ResponseInterface, Phalcon\DI\InjectionAwareInterface

Part of the HTTP cycle is return responses to the clients. Phalcon\HTTP\Response is the Phalcon component respon-
sible to achieve this task. HTTP responses are usually composed by headers and body.

<?php

$response = new Phalcon\Http\Response();
$response->setStatusCode(200, "OK");
$response->setContent("<html><body>Hello</body></html>");
$response->send();

Methods

public __construct ([string $content], [int $code], [string $status])

Phalcon\Http\Response constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public Phalcon\Http\ResponseInterface setStatusCode (int $code, string $message)

Sets the HTTP response code

<?php

$response->setStatusCode(404, "Not Found");

public Phalcon\Http\ResponseInterface setHeaders (Phalcon\Http\Response\HeadersInterface $headers)

Sets a headers bag for the response externally

public Phalcon\Http\Response\HeadersInterface getHeaders ()

Returns headers set by the user

public Phalcon\Http\ResponseInterface setCookies (Phalcon\Http\Response\CookiesInterface $cookies)

Sets a cookies bag for the response externally

public Phalcon\Http\Response\CookiesInterface getCookies ()

632 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns coookies set by the user

public Phalcon\Http\ResponseInterface setHeader (string $name, string $value)

Overwrites a header in the response

<?php

$response->setHeader("Content-Type", "text/plain");

public Phalcon\Http\ResponseInterface setRawHeader (string $header)

Send a raw header to the response

<?php

$response->setRawHeader("HTTP/1.1 404 Not Found");

public Phalcon\Http\ResponseInterface resetHeaders ()

Resets all the stablished headers

public PhalconHttpResponseInterface setExpires (DateTime $datetime)

Sets a Expires header to use HTTP cache

<?php

$this->response->setExpires(new DateTime());

public Phalcon\Http\ResponseInterface setNotModified ()

Sends a Not-Modified response

public Phalcon\Http\ResponseInterface setContentType (string $contentType, [string $charset])

Sets the response content-type mime, optionally the charset

<?php

$response->setContentType('application/pdf');
$response->setContentType('text/plain', 'UTF-8');

public setEtag (string $etag)

Set a custom ETag

<?php

$response->setEtag(md5(time()));

public Phalcon\Http\ResponseInterface redirect ([string|array $location], [boolean $externalRedirect], [int $status-
Code])

Redirect by HTTP to another action or URL

<?php

//Using a string redirect (internal/external)
$response->redirect("posts/index");
$response->redirect("http://en.wikipedia.org", true);
$response->redirect("http://www.example.com/new-location", true, 301);

//Making a redirection based on a named route

2.54. API Indice 633



Phalcon PHP Framework Documentation, Release 1.3.0

$response->redirect(array(
"for" => "index-lang",
"lang" => "jp",
"controller" => "index"

));

public Phalcon\Http\ResponseInterface setContent (string $content)

Sets HTTP response body

<?php

$response->setContent("<h1>Hello!</h1>");

public Phalcon\Http\ResponseInterface setJsonContent (string $content)

Sets HTTP response body. The parameter is automatically converted to JSON

<?php

$response->setJsonContent(array("status" => "OK"));
$response->setJsonContent(array("status" => "OK"), JSON_NUMERIC_CHECK);

•

public Phalcon\Http\ResponseInterface appendContent (string $content)

Appends a string to the HTTP response body

public string getContent ()

Gets the HTTP response body

public boolean isSent ()

Check if the response is already sent

public Phalcon\Http\ResponseInterface sendHeaders ()

Sends headers to the client

public Phalcon\Http\ResponseInterface sendCookies ()

Sends cookies to the client

public Phalcon\Http\ResponseInterface send ()

Prints out HTTP response to the client

public setFileToSend (string $filePath, [string $attachmentName])

Sets an attached file to be sent at the end of the request

2.54.119 Class Phalcon\Http\Response\Cookies

implements Phalcon\Http\Response\CookiesInterface, Phalcon\DI\InjectionAwareInterface

This class is a bag to manage the cookies A cookies bag is automatically registered as part of the ‘response’ service in
the DI

634 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public Phalcon\Http\Response\Cookies useEncryption (boolean $useEncryption)

Set if cookies in the bag must be automatically encrypted/decrypted

public boolean isUsingEncryption ()

Returns if the bag is automatically encrypting/decrypting cookies

public Phalcon\Http\Response\Cookies set (string $name, [mixed $value], [int $expire], [string $path], [boolean $se-
cure], [string $domain], [boolean $httpOnly])

Sets a cookie to be sent at the end of the request This method overrides any cookie set before with the same name

public Phalcon\Http\Cookie get (string $name)

Gets a cookie from the bag

public boolean has (string $name)

Check if a cookie is defined in the bag or exists in the $_COOKIE superglobal

public boolean delete (string $name)

Deletes a cookie by its name This method does not removes cookies from the $_COOKIE superglobal

public boolean send ()

Sends the cookies to the client Cookies aren’t sent if headers are sent in the current request

public Phalcon\Http\Response\Cookies reset ()

Reset set cookies

2.54.120 Class Phalcon\Http\Response\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Http\Response will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

2.54. API Indice 635



Phalcon PHP Framework Documentation, Release 1.3.0

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.121 Class Phalcon\Http\Response\Headers

implements Phalcon\Http\Response\HeadersInterface

This class is a bag to manage the response headers

Methods

public set (string $name, string $value)

Sets a header to be sent at the end of the request

public string get (string $name)

Gets a header value from the internal bag

public setRaw (string $header)

Sets a raw header to be sent at the end of the request

public remove (unknown $header_index)

Removes a header to be sent at the end of the request

public boolean send ()

Sends the headers to the client

public reset ()

Reset set headers

public array toArray ()

Returns the current headers as an array

public static Phalcon\Http\Response\Headers __set_state (array $data)

Restore a Phalcon\Http\Response\Headers object

636 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.122 Abstract class Phalcon\Image

Image manipulation support. Allows images to be resized, cropped, etc.

<?php

$image = new Phalcon\Image\Adapter\GD("upload/test.jpg");
$image->resize(200, 200);
$image->save();

Constants

integer NONE

integer WIDTH

integer HEIGHT

integer AUTO

integer INVERSE

integer PRECISE

integer TENSILE

integer HORIZONTAL

integer VERTICAL

integer GD

integer IMAGICK

2.54.123 Abstract class Phalcon\Image\Adapter

implements Phalcon\Image\AdapterInterface

Base class for Phalcon\Image adapters

Methods

public string getRealPath ()

Returns the real path of the image file

public int getWidth ()

Returns the width of images

public int getHeight ()

Returns the height of images

public int getType ()

Returns the type of images

public string getMime ()

Returns the mime of images

public resource getImage ()

2.54. API Indice 637



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the image of images

public Phalcon\Image\Adapter resize ([unknown $width], [unknown $height], [unknown $master])

Resize the image to the given size. Either the width or the height can be omitted and the image will be resized
proportionally.

public Phalcon\Image\Adapter liquidRescale (unknown $width, unknown $height, [unknown $delta_x], [unknown
$rigidity])

This method scales the images using liquid rescaling method. Only support Imagick

public Phalcon\Image\Adapter crop (unknown $width, unknown $height, [unknown $offset_x], [unknown $offset_y])

Crop an image to the given size. Either the width or the height can be omitted and the current width or height will be
used.

public Phalcon\Image\Adapter rotate (unknown $degrees)

Rotate the image by a given amount.

public Phalcon\Image\Adapter flip (unknown $direction)

Flip the image along the horizontal or vertical axis.

public Phalcon\Image\Adapter sharpen (unknown $amount)

Sharpen the image by a given amount.

public Phalcon\Image\Adapter reflection ([unknown $height], [unknown $opacity], [unknown $fade_in])

Add a reflection to an image. The most opaque part of the reflection will be equal to the opacity setting and fade out
to full transparent. Alpha transparency is preserved.

public Phalcon\Image\AdapterInterface watermark (unknown $watermark, [unknown $offset_x], [unknown $off-
set_y], [unknown $opacity])

Add a watermark to an image with a specified opacity. Alpha transparency will be preserved.

public Phalcon\Image\Adapter text (unknown $text, [unknown $offset_x], [unknown $offset_y], [unknown $opacity],
[unknown $color], [unknown $size], [unknown $fontfile])

Add a text to an image with a specified opacity.

public Phalcon\Image\Adapter mask (unknown $mask)

Composite one image onto another

public Phalcon\Image\Adapter background (unknown $color, [unknown $quality])

Set the background color of an image. This is only useful for images with alpha transparency.

public Phalcon\Image\Adapter blur ([unknown $radius])

Blur image

public Phalcon\Image\Adapter pixelate ([unknown $amount])

Pixelate image

public boolean save ([unknown $file], [unknown $quality])

Save the image. If the filename is omitted, the original image will be overwritten.

public Phalcon\Image\Adapter render ([unknown $type], [unknown $quality])

Render the image and return the binary string.

abstract protected _resize (unknown $width, unknown $height)

638 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

...

abstract protected _liquidRescale (unknown $width, unknown $height, unknown $delta_x, unknown $regidity)

...

abstract protected _crop (unknown $width, unknown $height, unknown $offset_x, unknown $offset_y)

...

abstract protected _rotate (unknown $degrees)

...

abstract protected _flip (unknown $direction)

...

abstract protected _sharpen (unknown $amount)

...

abstract protected _reflection (unknown $height, unknown $opacity, unknown $fade_in)

...

abstract protected _watermark (unknown $watermark, unknown $offset_x, unknown $offset_y, unknown $opacity)

...

abstract protected _text (unknown $text, unknown $offset_x, unknown $offset_y, unknown $opacity, unknown $r,
unknown $g, unknown $b, unknown $size, unknown $fontfile)

...

abstract protected _mask (unknown $mask)

...

abstract protected _background (unknown $r, unknown $g, unknown $b, unknown $opacity)

...

abstract protected _blur (unknown $radius)

...

abstract protected _pixelate (unknown $amount)

...

abstract protected _save (unknown $file, unknown $quality)

...

abstract protected _render (unknown $type, unknown $quality)

...

2.54.124 Class Phalcon\Image\Adapter\GD

extends abstract class Phalcon\Image\Adapter

implements Phalcon\Image\AdapterInterface

Image manipulation support. Allows images to be resized, cropped, etc.

2.54. API Indice 639



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$image = new Phalcon\Image\Adapter\GD("upload/test.jpg");
$image->resize(200, 200)->rotate(90)->crop(100, 100);
if ($image->save()) {

echo 'success';
}

Methods

public static boolean check ()

Checks if GD is enabled

public __construct (string $file, [unknown $width], [unknown $height])

Phalcon\Image\GD constructor

protected _resize (int $width, int $height)

Execute a resize.

protected Phalcon\Image\Adapter _liquidRescale (unknown $width, unknown $height, unknown $delta_x, unknown
$regidity)

This method scales the images using liquid rescaling method. Only support Imagick

protected _crop (int $width, int $height, int $offset_x, int $offset_y)

Execute a crop.

protected _rotate (int $degrees)

Execute a rotation.

protected _flip (int $direction)

Execute a flip.

protected _sharpen (int $amount)

Execute a sharpen.

protected _reflection (int $height, int $opacity, boolean $fade_in)

Execute a reflection.

protected _watermark (Phalcon\Image\Adapter $watermark, int $offset_x, int $offset_y, int $opacity)

Execute a watermarking.

protected _text (unknown $text, int $offset_x, int $offset_y, int $opacity, int $r, int $g, int $b, int $size, string $fontfile)

Execute a text

protected _mask (unknown $mask)

Composite one image onto another

protected _background (int $r, int $g, int $b, int $opacity)

Execute a background.

protected _blur (unknown $radius)

Blur image

640 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

protected _pixelate (unknown $amount)

Pixelate image

protected boolean _save (string $file, int $quality)

Execute a save.

protected string _render (string $type, int $quality)

Execute a render.

protected resource _create (int $width, int $height)

Create an empty image with the given width and height.

public __destruct ()

Destroys the loaded image to free up resources.

public string getRealPath () inherited from Phalcon\Image\Adapter

Returns the real path of the image file

public int getWidth () inherited from Phalcon\Image\Adapter

Returns the width of images

public int getHeight () inherited from Phalcon\Image\Adapter

Returns the height of images

public int getType () inherited from Phalcon\Image\Adapter

Returns the type of images

public string getMime () inherited from Phalcon\Image\Adapter

Returns the mime of images

public resource getImage () inherited from Phalcon\Image\Adapter

Returns the image of images

public Phalcon\Image\Adapter resize ([unknown $width], [unknown $height], [unknown $master]) inherited from
Phalcon\Image\Adapter

Resize the image to the given size. Either the width or the height can be omitted and the image will be resized
proportionally.

public Phalcon\Image\Adapter liquidRescale (unknown $width, unknown $height, [unknown $delta_x], [unknown
$rigidity]) inherited from Phalcon\Image\Adapter

This method scales the images using liquid rescaling method. Only support Imagick

public Phalcon\Image\Adapter crop (unknown $width, unknown $height, [unknown $offset_x], [unknown $offset_y])
inherited from Phalcon\Image\Adapter

Crop an image to the given size. Either the width or the height can be omitted and the current width or height will be
used.

public Phalcon\Image\Adapter rotate (unknown $degrees) inherited from Phalcon\Image\Adapter

Rotate the image by a given amount.

public Phalcon\Image\Adapter flip (unknown $direction) inherited from Phalcon\Image\Adapter

Flip the image along the horizontal or vertical axis.

public Phalcon\Image\Adapter sharpen (unknown $amount) inherited from Phalcon\Image\Adapter

2.54. API Indice 641



Phalcon PHP Framework Documentation, Release 1.3.0

Sharpen the image by a given amount.

public Phalcon\Image\Adapter reflection ([unknown $height], [unknown $opacity], [unknown $fade_in]) inherited
from Phalcon\Image\Adapter

Add a reflection to an image. The most opaque part of the reflection will be equal to the opacity setting and fade out
to full transparent. Alpha transparency is preserved.

public Phalcon\Image\AdapterInterface watermark (unknown $watermark, [unknown $offset_x], [unknown $off-
set_y], [unknown $opacity]) inherited from Phalcon\Image\Adapter

Add a watermark to an image with a specified opacity. Alpha transparency will be preserved.

public Phalcon\Image\Adapter text (unknown $text, [unknown $offset_x], [unknown $offset_y], [unknown $opacity],
[unknown $color], [unknown $size], [unknown $fontfile]) inherited from Phalcon\Image\Adapter

Add a text to an image with a specified opacity.

public Phalcon\Image\Adapter mask (unknown $mask) inherited from Phalcon\Image\Adapter

Composite one image onto another

public Phalcon\Image\Adapter background (unknown $color, [unknown $quality]) inherited from Phal-
con\Image\Adapter

Set the background color of an image. This is only useful for images with alpha transparency.

public Phalcon\Image\Adapter blur ([unknown $radius]) inherited from Phalcon\Image\Adapter

Blur image

public Phalcon\Image\Adapter pixelate ([unknown $amount]) inherited from Phalcon\Image\Adapter

Pixelate image

public boolean save ([unknown $file], [unknown $quality]) inherited from Phalcon\Image\Adapter

Save the image. If the filename is omitted, the original image will be overwritten.

public Phalcon\Image\Adapter render ([unknown $type], [unknown $quality]) inherited from Phalcon\Image\Adapter

Render the image and return the binary string.

2.54.125 Class Phalcon\Image\Adapter\Imagick

extends abstract class Phalcon\Image\Adapter

implements Phalcon\Image\AdapterInterface

Image manipulation support. Allows images to be resized, cropped, etc.

<?php

$image = new Phalcon\Image\Adapter\Imagick("upload/test.jpg");
$image->resize(200, 200)->rotate(90)->crop(100, 100);
if ($image->save()) {

echo 'success';
}

Methods

public static boolean check ()

642 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Checks if Imagick is enabled

public __construct (string $file, [unknown $width], [unknown $height])

Phalcon\Image\Imagick constructor

protected _resize (int $width, int $height)

Execute a resize.

protected _liquidRescale (unknown $width, unknown $height, unknown $delta_x, unknown $regidity)

This method scales the images using liquid rescaling method. Only support Imagick

protected _crop (int $width, int $height, int $offset_x, int $offset_y)

Execute a crop.

protected _rotate (int $degrees)

Execute a rotation.

protected _flip (int $direction)

Execute a flip.

protected _sharpen (int $amount)

Execute a sharpen.

protected _reflection (int $height, int $opacity, boolean $fade_in)

Execute a reflection.

protected _watermark (Phalcon\Image\Adapter $watermark, int $offset_x, int $offset_y, int $opacity)

Execute a watermarking.

protected _text (unknown $text, int $offset_x, int $offset_y, int $opacity, int $r, int $g, int $b, int $size, string $fontfile)

Execute a text

protected _mask (unknown $mask)

Composite one image onto another

protected _background (int $r, int $g, int $b, int $opacity)

Execute a background.

protected _blur (unknown $radius)

Blur image

protected _pixelate (unknown $amount)

Pixelate image

protected boolean _save (string $file, int $quality)

Execute a save.

protected string _render (string $type, int $quality)

Execute a render.

public __destruct ()

Destroys the loaded image to free up resources.

public getInternalImInstance ()

2.54. API Indice 643



Phalcon PHP Framework Documentation, Release 1.3.0

...

public static setResourceLimit (unknown $resource, unknown $limit)

...

public string getRealPath () inherited from Phalcon\Image\Adapter

Returns the real path of the image file

public int getWidth () inherited from Phalcon\Image\Adapter

Returns the width of images

public int getHeight () inherited from Phalcon\Image\Adapter

Returns the height of images

public int getType () inherited from Phalcon\Image\Adapter

Returns the type of images

public string getMime () inherited from Phalcon\Image\Adapter

Returns the mime of images

public resource getImage () inherited from Phalcon\Image\Adapter

Returns the image of images

public Phalcon\Image\Adapter resize ([unknown $width], [unknown $height], [unknown $master]) inherited from
Phalcon\Image\Adapter

Resize the image to the given size. Either the width or the height can be omitted and the image will be resized
proportionally.

public Phalcon\Image\Adapter liquidRescale (unknown $width, unknown $height, [unknown $delta_x], [unknown
$rigidity]) inherited from Phalcon\Image\Adapter

This method scales the images using liquid rescaling method. Only support Imagick

public Phalcon\Image\Adapter crop (unknown $width, unknown $height, [unknown $offset_x], [unknown $offset_y])
inherited from Phalcon\Image\Adapter

Crop an image to the given size. Either the width or the height can be omitted and the current width or height will be
used.

public Phalcon\Image\Adapter rotate (unknown $degrees) inherited from Phalcon\Image\Adapter

Rotate the image by a given amount.

public Phalcon\Image\Adapter flip (unknown $direction) inherited from Phalcon\Image\Adapter

Flip the image along the horizontal or vertical axis.

public Phalcon\Image\Adapter sharpen (unknown $amount) inherited from Phalcon\Image\Adapter

Sharpen the image by a given amount.

public Phalcon\Image\Adapter reflection ([unknown $height], [unknown $opacity], [unknown $fade_in]) inherited
from Phalcon\Image\Adapter

Add a reflection to an image. The most opaque part of the reflection will be equal to the opacity setting and fade out
to full transparent. Alpha transparency is preserved.

public Phalcon\Image\AdapterInterface watermark (unknown $watermark, [unknown $offset_x], [unknown $off-
set_y], [unknown $opacity]) inherited from Phalcon\Image\Adapter

Add a watermark to an image with a specified opacity. Alpha transparency will be preserved.

644 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Image\Adapter text (unknown $text, [unknown $offset_x], [unknown $offset_y], [unknown $opacity],
[unknown $color], [unknown $size], [unknown $fontfile]) inherited from Phalcon\Image\Adapter

Add a text to an image with a specified opacity.

public Phalcon\Image\Adapter mask (unknown $mask) inherited from Phalcon\Image\Adapter

Composite one image onto another

public Phalcon\Image\Adapter background (unknown $color, [unknown $quality]) inherited from Phal-
con\Image\Adapter

Set the background color of an image. This is only useful for images with alpha transparency.

public Phalcon\Image\Adapter blur ([unknown $radius]) inherited from Phalcon\Image\Adapter

Blur image

public Phalcon\Image\Adapter pixelate ([unknown $amount]) inherited from Phalcon\Image\Adapter

Pixelate image

public boolean save ([unknown $file], [unknown $quality]) inherited from Phalcon\Image\Adapter

Save the image. If the filename is omitted, the original image will be overwritten.

public Phalcon\Image\Adapter render ([unknown $type], [unknown $quality]) inherited from Phalcon\Image\Adapter

Render the image and return the binary string.

2.54.126 Class Phalcon\Image\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Image will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

2.54. API Indice 645



Phalcon PHP Framework Documentation, Release 1.3.0

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.127 Class Phalcon\Kernel

Methods

public static preComputeHashKey (unknown $arrKey)

...

public static preComputeHashKey32 (unknown $arrKey)

...

public static preComputeHashKey64 (unknown $arrKey)

...

2.54.128 Class Phalcon\Loader

implements Phalcon\Events\EventsAwareInterface

This component helps to load your project classes automatically based on some conventions

<?php

//Creates the autoloader
$loader = new Phalcon\Loader();

//Register some namespaces
$loader->registerNamespaces(array(
'Example\Base' => 'vendor/example/base/',
'Example\Adapter' => 'vendor/example/adapter/',
'Example' => 'vendor/example/'

));

//register autoloader
$loader->register();

//Requiring this class will automatically include file vendor/example/adapter/Some.php
$adapter = Example\Adapter\Some();

Methods

public __construct ()

Phalcon\Loader constructor

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

646 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the events manager

public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

public Phalcon\Loader setExtensions (array $extensions)

Sets an array of extensions that the loader must try in each attempt to locate the file

public boolean getExtensions ()

Return file extensions registered in the loader

public Phalcon\Loader registerNamespaces (array $namespaces, [boolean $merge])

Register namespaces and their related directories

public array getNamespaces ()

Return current namespaces registered in the autoloader

public Phalcon\Loader registerPrefixes (array $prefixes, [boolean $merge])

Register directories on which “not found” classes could be found

public getPrefixes ()

Return current prefixes registered in the autoloader

public Phalcon\Loader registerDirs (array $directories, [boolean $merge])

Register directories on which “not found” classes could be found

public getDirs ()

Return current directories registered in the autoloader

public Phalcon\Loader registerClasses (array $classes, [boolean $merge])

Register classes and their locations

public getClasses ()

Return the current class-map registered in the autoloader

public Phalcon\Loader register ()

Register the autoload method

public Phalcon\Loader unregister ()

Unregister the autoload method

public boolean autoLoad (string $className)

Makes the work of autoload registered classes

public string getFoundPath ()

Get the path when a class was found

public string getCheckedPath ()

Get the path the loader is checking for a path

2.54. API Indice 647



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.129 Class Phalcon\Loader\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Loader will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.130 Abstract class Phalcon\Logger

Phalcon\Logger is a component whose purpose is create logs using different backends via adapters, generating options,
formats and filters also implementing transactions.

<?php

$logger = new Phalcon\Logger\Adapter\File("app/logs/test.log");
$logger->log("This is a message");
$logger->log("This is an error", Phalcon\Logger::ERROR);
$logger->error("This is another error");

648 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Constants

integer SPECIAL

integer CUSTOM

integer DEBUG

integer INFO

integer NOTICE

integer WARNING

integer ERROR

integer ALERT

integer CRITICAL

integer EMERGENCE

integer EMERGENCY

2.54.131 Abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Base class for Phalcon\Logger adapters

Methods

public Phalcon\Logger\Adapter setLogLevel (int $level)

Filters the logs sent to the handlers that are less or equal than a specific level

public int getLogLevel ()

Returns the current log level

public Phalcon\Logger\Adapter setFormatter (Phalcon\Logger\FormatterInterface $formatter)

Sets the message formatter

public Phalcon\Logger\Adapter isTransaction ()

Returns the current transaction

public Phalcon\Logger\Adapter begin ()

Starts a transaction

public Phalcon\Logger\Adapter commit ()

Commits the internal transaction

public Phalcon\Logger\Adapter rollback ()

Rollbacks the internal transaction

public emergence (unknown $message, [unknown $context])

...

public Phalcon\Logger\Adapter log (unknown $type, string $message, [array $context])

2.54. API Indice 649



Phalcon PHP Framework Documentation, Release 1.3.0

Logs messages to the internal logger. Appends messages to the log

public Phalcon\Logger\AdapterInterface debug (string $message, [array $context])

Sends/Writes a debug message to the log

public Phalcon\Logger\AdapterInterface info (string $message, [array $context])

Sends/Writes an info message to the log

public Phalcon\Logger\AdapterInterface notice (string $message, [array $context])

Sends/Writes a notice message to the log

public Phalcon\Logger\AdapterInterface warning (string $message, [array $context])

Sends/Writes a warning message to the log

public Phalcon\Logger\AdapterInterface error (string $message, [array $context])

Sends/Writes an error message to the log

public Phalcon\Logger\AdapterInterface critical (string $message, [array $context])

Sends/Writes a critical message to the log

public Phalcon\Logger\AdapterInterface alert (string $message, [array $context])

Sends/Writes an alert message to the log

public Phalcon\Logger\AdapterInterface emergency (string $message, [array $context])

Sends/Writes an emergency message to the log

abstract protected logInternal (unknown $message, unknown $type, unknown $time, unknown $context)

...

abstract public Phalcon\Logger\FormatterInterface getFormatter () inherited from Phalcon\Logger\AdapterInterface

Returns the internal formatter

abstract public boolean close () inherited from Phalcon\Logger\AdapterInterface

Closes the logger

2.54.132 Class Phalcon\Logger\Adapter\File

extends abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Adapter to store logs in plain text files

<?php

$logger = new \Phalcon\Logger\Adapter\File("app/logs/test.log");
$logger->log("This is a message");
$logger->log("This is an error", \Phalcon\Logger::ERROR);
$logger->error("This is another error");
$logger->close();

650 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct (string $name, [array $options])

Phalcon\Logger\Adapter\File constructor

public Phalcon\Logger\Formatter\Line getFormatter ()

Returns the internal formatter

protected logInternal (string $message, int $type, int $time, array $context)

Writes the log to the file itself

public boolean close ()

Closes the logger

public getPath ()

Returns the file path

public __wakeup ()

Opens the internal file handler after unserialization

public Phalcon\Logger\Adapter setLogLevel (int $level) inherited from Phalcon\Logger\Adapter

Filters the logs sent to the handlers that are less or equal than a specific level

public int getLogLevel () inherited from Phalcon\Logger\Adapter

Returns the current log level

public Phalcon\Logger\Adapter setFormatter (Phalcon\Logger\FormatterInterface $formatter) inherited from Phal-
con\Logger\Adapter

Sets the message formatter

public Phalcon\Logger\Adapter isTransaction () inherited from Phalcon\Logger\Adapter

Returns the current transaction

public Phalcon\Logger\Adapter begin () inherited from Phalcon\Logger\Adapter

Starts a transaction

public Phalcon\Logger\Adapter commit () inherited from Phalcon\Logger\Adapter

Commits the internal transaction

public Phalcon\Logger\Adapter rollback () inherited from Phalcon\Logger\Adapter

Rollbacks the internal transaction

public emergence (unknown $message, [unknown $context]) inherited from Phalcon\Logger\Adapter

...

public Phalcon\Logger\Adapter log (unknown $type, string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Logs messages to the internal logger. Appends messages to the log

public Phalcon\Logger\AdapterInterface debug (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a debug message to the log

2.54. API Indice 651



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Logger\AdapterInterface info (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an info message to the log

public Phalcon\Logger\AdapterInterface notice (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a notice message to the log

public Phalcon\Logger\AdapterInterface warning (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a warning message to the log

public Phalcon\Logger\AdapterInterface error (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an error message to the log

public Phalcon\Logger\AdapterInterface critical (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a critical message to the log

public Phalcon\Logger\AdapterInterface alert (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an alert message to the log

public Phalcon\Logger\AdapterInterface emergency (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an emergency message to the log

2.54.133 Class Phalcon\Logger\Adapter\Firephp

extends abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Sends logs to FirePHP

<?php

$logger = new \Phalcon\Logger\Adapter\Firephp("");
$logger->log("This is a message");
$logger->log("This is an error", \Phalcon\Logger::ERROR);
$logger->error("This is another error");

Methods

public Phalcon\Logger\FormatterInterface getFormatter ()

Returns the internal formatter

protected logInternal (string $message, int $type, int $time, array $context)

Writes the log to the stream itself

public boolean close ()

Closes the logger

652 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Logger\Adapter setLogLevel (int $level) inherited from Phalcon\Logger\Adapter

Filters the logs sent to the handlers that are less or equal than a specific level

public int getLogLevel () inherited from Phalcon\Logger\Adapter

Returns the current log level

public Phalcon\Logger\Adapter setFormatter (Phalcon\Logger\FormatterInterface $formatter) inherited from Phal-
con\Logger\Adapter

Sets the message formatter

public Phalcon\Logger\Adapter isTransaction () inherited from Phalcon\Logger\Adapter

Returns the current transaction

public Phalcon\Logger\Adapter begin () inherited from Phalcon\Logger\Adapter

Starts a transaction

public Phalcon\Logger\Adapter commit () inherited from Phalcon\Logger\Adapter

Commits the internal transaction

public Phalcon\Logger\Adapter rollback () inherited from Phalcon\Logger\Adapter

Rollbacks the internal transaction

public emergence (unknown $message, [unknown $context]) inherited from Phalcon\Logger\Adapter

...

public Phalcon\Logger\Adapter log (unknown $type, string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Logs messages to the internal logger. Appends messages to the log

public Phalcon\Logger\AdapterInterface debug (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a debug message to the log

public Phalcon\Logger\AdapterInterface info (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an info message to the log

public Phalcon\Logger\AdapterInterface notice (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a notice message to the log

public Phalcon\Logger\AdapterInterface warning (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a warning message to the log

public Phalcon\Logger\AdapterInterface error (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an error message to the log

public Phalcon\Logger\AdapterInterface critical (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a critical message to the log

2.54. API Indice 653



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Logger\AdapterInterface alert (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an alert message to the log

public Phalcon\Logger\AdapterInterface emergency (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an emergency message to the log

2.54.134 Class Phalcon\Logger\Adapter\Stream

extends abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Sends logs to a valid PHP stream

<?php

$logger = new \Phalcon\Logger\Adapter\Stream("php://stderr");
$logger->log("This is a message");
$logger->log("This is an error", \Phalcon\Logger::ERROR);
$logger->error("This is another error");

Methods

public __construct (string $name, [array $options])

Phalcon\Logger\Adapter\Stream constructor

public Phalcon\Logger\Formatter\Line getFormatter ()

Returns the internal formatter

protected logInternal (string $message, int $type, int $time, array $context)

Writes the log to the stream itself

public boolean close ()

Closes the logger

public Phalcon\Logger\Adapter setLogLevel (int $level) inherited from Phalcon\Logger\Adapter

Filters the logs sent to the handlers that are less or equal than a specific level

public int getLogLevel () inherited from Phalcon\Logger\Adapter

Returns the current log level

public Phalcon\Logger\Adapter setFormatter (Phalcon\Logger\FormatterInterface $formatter) inherited from Phal-
con\Logger\Adapter

Sets the message formatter

public Phalcon\Logger\Adapter isTransaction () inherited from Phalcon\Logger\Adapter

Returns the current transaction

public Phalcon\Logger\Adapter begin () inherited from Phalcon\Logger\Adapter

Starts a transaction

654 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Logger\Adapter commit () inherited from Phalcon\Logger\Adapter

Commits the internal transaction

public Phalcon\Logger\Adapter rollback () inherited from Phalcon\Logger\Adapter

Rollbacks the internal transaction

public emergence (unknown $message, [unknown $context]) inherited from Phalcon\Logger\Adapter

...

public Phalcon\Logger\Adapter log (unknown $type, string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Logs messages to the internal logger. Appends messages to the log

public Phalcon\Logger\AdapterInterface debug (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a debug message to the log

public Phalcon\Logger\AdapterInterface info (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an info message to the log

public Phalcon\Logger\AdapterInterface notice (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a notice message to the log

public Phalcon\Logger\AdapterInterface warning (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a warning message to the log

public Phalcon\Logger\AdapterInterface error (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an error message to the log

public Phalcon\Logger\AdapterInterface critical (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a critical message to the log

public Phalcon\Logger\AdapterInterface alert (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an alert message to the log

public Phalcon\Logger\AdapterInterface emergency (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an emergency message to the log

2.54.135 Class Phalcon\Logger\Adapter\Syslog

extends abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Sends logs to the system logger

2.54. API Indice 655



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$logger = new \Phalcon\Logger\Adapter\Syslog("ident", array(
'option' => LOG_NDELAY,
'facility' => LOG_MAIL

));
$logger->log("This is a message");
$logger->log("This is an error", \Phalcon\Logger::ERROR);
$logger->error("This is another error");

Methods

public __construct (string $name, [array $options])

Phalcon\Logger\Adapter\Syslog constructor

public Phalcon\Logger\Formatter\Line getFormatter ()

Returns the internal formatter

protected logInternal (string $message, int $type, int $time, array $context)

Writes the log to the stream itself

public boolean close ()

Closes the logger

public Phalcon\Logger\Adapter setLogLevel (int $level) inherited from Phalcon\Logger\Adapter

Filters the logs sent to the handlers that are less or equal than a specific level

public int getLogLevel () inherited from Phalcon\Logger\Adapter

Returns the current log level

public Phalcon\Logger\Adapter setFormatter (Phalcon\Logger\FormatterInterface $formatter) inherited from Phal-
con\Logger\Adapter

Sets the message formatter

public Phalcon\Logger\Adapter isTransaction () inherited from Phalcon\Logger\Adapter

Returns the current transaction

public Phalcon\Logger\Adapter begin () inherited from Phalcon\Logger\Adapter

Starts a transaction

public Phalcon\Logger\Adapter commit () inherited from Phalcon\Logger\Adapter

Commits the internal transaction

public Phalcon\Logger\Adapter rollback () inherited from Phalcon\Logger\Adapter

Rollbacks the internal transaction

public emergence (unknown $message, [unknown $context]) inherited from Phalcon\Logger\Adapter

...

public Phalcon\Logger\Adapter log (unknown $type, string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Logs messages to the internal logger. Appends messages to the log

656 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Logger\AdapterInterface debug (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a debug message to the log

public Phalcon\Logger\AdapterInterface info (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an info message to the log

public Phalcon\Logger\AdapterInterface notice (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a notice message to the log

public Phalcon\Logger\AdapterInterface warning (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a warning message to the log

public Phalcon\Logger\AdapterInterface error (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an error message to the log

public Phalcon\Logger\AdapterInterface critical (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes a critical message to the log

public Phalcon\Logger\AdapterInterface alert (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an alert message to the log

public Phalcon\Logger\AdapterInterface emergency (string $message, [array $context]) inherited from Phal-
con\Logger\Adapter

Sends/Writes an emergency message to the log

2.54.136 Class Phalcon\Logger\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Logger will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

2.54. API Indice 657



Phalcon PHP Framework Documentation, Release 1.3.0

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.137 Abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

This is a base class for logger formatters

Methods

public string getTypeString (integer $type)

Returns the string meaning of a logger constant

protected interpolate (string $message, array $context)

Interpolates context values into the message placeholders

abstract public format (string $message, int $type, int $timestamp, array $context) inherited from Phal-
con\Logger\FormatterInterface

Applies a format to a message before sent it to the internal log

2.54.138 Class Phalcon\Logger\Formatter\Firephp

extends abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Formats messages so that they can be sent to FirePHP

Methods

public string getTypeString (integer $type)

Returns the string meaning of a logger constant

public getShowBacktrace ()

...

658 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public setShowBacktrace ([unknown $show])

...

public enableLabels ([unknown $enable])

...

public labelsEnabled ()

...

public string format (string $message, int $type, int $timestamp, unknown $context)

Applies a format to a message before sending it to the log

protected interpolate (string $message, array $context) inherited from Phalcon\Logger\Formatter

Interpolates context values into the message placeholders

2.54.139 Class Phalcon\Logger\Formatter\Json

extends abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Formats messages using JSON encoding

Methods

public string format (string $message, int $type, int $timestamp, unknown $context)

Applies a format to a message before sent it to the internal log

public string getTypeString (integer $type) inherited from Phalcon\Logger\Formatter

Returns the string meaning of a logger constant

protected interpolate (string $message, array $context) inherited from Phalcon\Logger\Formatter

Interpolates context values into the message placeholders

2.54.140 Class Phalcon\Logger\Formatter\Line

extends abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Formats messages using an one-line string

Methods

public __construct ([string $format], [string $dateFormat])

Phalcon\Logger\Formatter\Line construct

public setFormat (string $format)

Set the log format

public format getFormat ()

2.54. API Indice 659



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the log format

public setDateFormat (string $date)

Sets the internal date format

public string getDateFormat ()

Returns the internal date format

public string format (string $message, int $type, int $timestamp, unknown $context)

Applies a format to a message before sent it to the internal log

public string getTypeString (integer $type) inherited from Phalcon\Logger\Formatter

Returns the string meaning of a logger constant

protected interpolate (string $message, array $context) inherited from Phalcon\Logger\Formatter

Interpolates context values into the message placeholders

2.54.141 Class Phalcon\Logger\Formatter\Syslog

extends abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Prepares a message to be used in a Syslog backend

Methods

public array format (string $message, int $type, int $timestamp, unknown $context)

Applies a format to a message before sent it to the internal log

public string getTypeString (integer $type) inherited from Phalcon\Logger\Formatter

Returns the string meaning of a logger constant

protected interpolate (string $message, array $context) inherited from Phalcon\Logger\Formatter

Interpolates context values into the message placeholders

2.54.142 Class Phalcon\Logger\Item

Represents each item in a logging transaction

Methods

public __construct (string $message, integer $type, [integer $time])

Phalcon\Logger\Item constructor

public string getMessage ()

Returns the message

public integer getType ()

Returns the log type

660 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public integer getTime ()

Returns log timestamp

public getContext ()

...

2.54.143 Class Phalcon\Logger\Multiple

Handles multiples logger handlers

Methods

public push (Phalcon\Logger\AdapterInterface $logger)

Pushes a logger to the logger tail

public Phalcon\Logger\AdapterInterface [] getLoggers ()

Returns the registered loggers

public setFormatter (Phalcon\Logger\FormatterInterface $formatter)

Sets a global formatter

public Phalcon\Logger\FormatterInterface getFormatter ()

Returns a formatter

public log (int $type, string $message, [unknown $context])

Sends a message to each registered logger

public emergency (string $message, [unknown $context])

Sends/Writes an emergency message to the log

public emergence (unknown $message, [unknown $context])

...

public debug (string $message, [unknown $context])

Sends/Writes a debug message to the log

public error (string $message, [unknown $context])

Sends/Writes an error message to the log

public info (string $message, [unknown $context])

Sends/Writes an info message to the log

public notice (string $message, [unknown $context])

Sends/Writes a notice message to the log

public warning (string $message, [unknown $context])

Sends/Writes a warning message to the log

public alert (string $message, [unknown $context])

Sends/Writes an alert message to the log

2.54. API Indice 661



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.144 Class Phalcon\Mvc\Application

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface

This component encapsulates all the complex operations behind instantiating every component needed and integrating
it with the rest to allow the MVC pattern to operate as desired.

<?php

class Application extends \Phalcon\Mvc\Application
{

/\**
* Register the services here to make them general or register

* in the ModuleDefinition to make them module-specific

*/
protected function _registerServices()
{

}

/\**
* This method registers all the modules in the application

*/
public function main()
{

$this->registerModules(array(
'frontend' => array(

'className' => 'Multiple\Frontend\Module',
'path' => '../apps/frontend/Module.php'

),
'backend' => array(

'className' => 'Multiple\Backend\Module',
'path' => '../apps/backend/Module.php'

)
));

}
}

$application = new Application();
$application->main();

Methods

public __construct ([Phalcon\DI $dependencyInjector])

public Phalcon\Mvc\Application useImplicitView (boolean $implicitView)

By default. The view is implicitly buffering all the output You can full disable the view component using this method

public registerModules (array $modules, [boolean $merge])

Register an array of modules present in the application

<?php

$this->registerModules(array(

662 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

'frontend' => array(
'className' => 'Multiple\Frontend\Module',
'path' => '../apps/frontend/Module.php'

),
'backend' => array(

'className' => 'Multiple\Backend\Module',
'path' => '../apps/backend/Module.php'

)
));

public array getModules ()

Return the modules registered in the application

public Phalcon\Mvc\Application setDefaultModule (string $defaultModule)

Sets the module name to be used if the router doesn’t return a valid module

public string getDefaultModule ()

Returns the default module name

public Phalcon\Http\ResponseInterface handle ([string $uri])

Handles a MVC request

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.145 Class Phalcon\Mvc\Application\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Mvc\Application class will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

2.54. API Indice 663



Phalcon PHP Framework Documentation, Release 1.3.0

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.146 Class Phalcon\Mvc\Collection

implements Phalcon\Mvc\CollectionInterface, Phalcon\DI\InjectionAwareInterface, Serializable

This component implements a high level abstraction for NoSQL databases which works with documents

Constants

integer OP_NONE

integer OP_CREATE

integer OP_UPDATE

integer OP_DELETE

Methods

final public __construct ([Phalcon\DiInterface $dependencyInjector])

Phalcon\Mvc\Model constructor

public setId (mixed $id)

Sets a value for the _id property, creates a MongoId object if needed

public MongoId getId ()

Returns the value of the _id property

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injection container

public Phalcon\DiInterface getDI ()

664 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the dependency injection container

protected setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets a custom events manager

protected Phalcon\Events\ManagerInterface getEventsManager ()

Returns the custom events manager

public Phalcon\Mvc\Model\ManagerInterface getModelsManager ()

Returns the models manager related to the entity instance

public array getReservedAttributes ()

Returns an array with reserved properties that cannot be part of the insert/update

protected useImplicitObjectIds ()

Sets if a model must use implicit objects ids

protected Phalcon\Mvc\Collection setSource ()

Sets collection name which model should be mapped

public string getSource ()

Returns collection name mapped in the model

public Phalcon\Mvc\Model setConnectionService (string $connectionService)

Sets the DependencyInjection connection service name

public string getConnectionService ()

Returns DependencyInjection connection service

public MongoDb getConnection ()

Retrieves a database connection

public mixed readAttribute (string $attribute)

Reads an attribute value by its name

<?php

echo $robot->readAttribute('name');

public writeAttribute (string $attribute, mixed $value)

Writes an attribute value by its name

<?php

$robot->writeAttribute('name', 'Rosey');

public static Phalcon\Mvc\Collection cloneResult (Phalcon\Mvc\Collection $collection, array $document)

Returns a cloned collection

protected static array _getResultset ()

Returns a collection resultset

protected static int _getGroupResultset ()

Perform a count over a resultset

2.54. API Indice 665



Phalcon PHP Framework Documentation, Release 1.3.0

protected boolean _preSave ()

Executes internal hooks before save a document

protected boolean _postSave ()

Executes internal events after save a document

protected validate ()

Executes validators on every validation call

<?php

use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionIn;

class Subscriptors extends Phalcon\Mvc\Collection
{

public function validation()
{

$this->validate(new ExclusionIn(array(
'field' => 'status',
'domain' => array('A', 'I')

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

public boolean validationHasFailed ()

Check whether validation process has generated any messages

<?php

use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionIn;

class Subscriptors extends Phalcon\Mvc\Collection
{

public function validation()
{

$this->validate(new ExclusionIn(array(
'field' => 'status',
'domain' => array('A', 'I')

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

public boolean fireEvent (string $eventName)

Fires an internal event

public boolean fireEventCancel (string $eventName)

Fires an internal event that cancels the operation

666 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

protected boolean _cancelOperation ()

Cancel the current operation

protected _exists ()

Checks if the document exists in the collection

public Phalcon\Mvc\Model\MessageInterface [] getMessages ()

Returns all the validation messages

<?php

$robot = new Robots();
$robot->type = 'mechanical';
$robot->name = 'Astro Boy';
$robot->year = 1952;
if ($robot->save() == false) {
echo "Umh, We can't store robots right now ";
foreach ($robot->getMessages() as $message) {

echo $message;
}
} else {
echo "Great, a new robot was saved successfully!";
}

public appendMessage (Phalcon\Mvc\Model\MessageInterface $message)

Appends a customized message on the validation process

<?php

use \Phalcon\Mvc\Model\Message as Message;

class Robots extends Phalcon\Mvc\Model
{

public function beforeSave()
{

if ($this->name == 'Peter') {
$message = new Message("Sorry, but a robot cannot be named Peter");
$this->appendMessage($message);

}
}

}

public boolean save ()

Creates/Updates a collection based on the values in the attributes

public static Phalcon\Mvc\Collection findById (string|MongoId $id)

Find a document by its id (_id)

public static array findFirst ([array $parameters])

Allows to query the first record that match the specified conditions

<?php

//What's the first robot in the robots table?
$robot = Robots::findFirst();

2.54. API Indice 667



Phalcon PHP Framework Documentation, Release 1.3.0

echo "The robot name is ", $robot->name, "\n";

//What's the first mechanical robot in robots table?
$robot = Robots::findFirst(array(

array("type" => "mechanical")
));
echo "The first mechanical robot name is ", $robot->name, "\n";

//Get first virtual robot ordered by name
$robot = Robots::findFirst(array(

array("type" => "mechanical"),
"order" => array("name" => 1)

));
echo "The first virtual robot name is ", $robot->name, "\n";

public static array find ([array $parameters])

Allows to query a set of records that match the specified conditions

<?php

//How many robots are there?
$robots = Robots::find();
echo "There are ", count($robots), "\n";

//How many mechanical robots are there?
$robots = Robots::find(array(

array("type" => "mechanical")
));
echo "There are ", count($robots), "\n";

//Get and print virtual robots ordered by name
$robots = Robots::findFirst(array(

array("type" => "virtual"),
"order" => array("name" => 1)

));
foreach ($robots as $robot) {
echo $robot->name, "\n";

}

//Get first 100 virtual robots ordered by name
$robots = Robots::find(array(

array("type" => "virtual"),
"order" => array("name" => 1),
"limit" => 100

));
foreach ($robots as $robot) {
echo $robot->name, "\n";

}

public static array count ([array $parameters])

Perform a count over a collection

<?php

echo 'There are ', Robots::count(), ' robots';

public static array aggregate (array $parameters)

668 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Perform an aggregation using the Mongo aggregation framework

public static array summatory (string $field, [array $conditions], [string $finalize])

Allows to perform a summatory group for a column in the collection

public boolean delete ()

Deletes a model instance. Returning true on success or false otherwise.

<?php

$robot = Robots::findFirst();
$robot->delete();

foreach (Robots::find() as $robot) {
$robot->delete();

}

public array toArray ()

Returns the instance as an array representation

<?php

print_r($robot->toArray());

public string serialize ()

Serializes the object ignoring connections or protected properties

public unserialize ([unknown $serialized])

Unserializes the object from a serialized string

public static array execute (mixed $code, [array $args])

Runs JavaScript code on the database server.

<?php

$ret = Robots::execute("function() { return 'Hello, world!';}");
echo $ret['retval'], "\n";

2.54.147 Class Phalcon\Mvc\Collection\Document

implements ArrayAccess

This component allows Phalcon\Mvc\Collection to return rows without an associated entity. This objects implements
the ArrayAccess interface to allow access the object as object->x or array[x].

Methods

public boolean offsetExists (int $index)

Checks whether an offset exists in the document

public mixed offsetGet (string $index)

Returns the value of a field using the ArrayAccess interfase

public offsetSet (string $index, Phalcon\Mvc\ModelInterface $value)

2.54. API Indice 669



Phalcon PHP Framework Documentation, Release 1.3.0

Change a value using the ArrayAccess interface

public offsetUnset (string $offset)

Rows cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public mixed readAttribute (string $attribute)

Reads an attribute value by its name

<?php

echo $robot->readAttribute('name');

public writeAttribute (string $attribute, mixed $value)

Writes an attribute value by its name

<?php

$robot->writeAttribute('name', 'Rosey');

2.54.148 Class Phalcon\Mvc\Collection\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Mvc\Collection\* classes will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

670 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string __toString () inherited from Exception

String representation of the exception

2.54.149 Class Phalcon\Mvc\Collection\Manager

implements Phalcon\DI\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface, Phal-
con\Mvc\Collection\ManagerInterface

This components controls the initialization of models, keeping record of relations between the different models of the
application. A CollectionManager is injected to a model via a Dependency Injector Container such as Phalcon\DI.

<?php

$di = new Phalcon\DI();

$di->set('collectionManager', function(){
return new Phalcon\Mvc\Collection\Manager();

});

$robot = new Robots($di);

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\DiInterface getDI ()

Returns the DependencyInjector container

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

public setCustomEventsManager (Phalcon\Mvc\CollectionInterface $model, Phalcon\Events\ManagerInterface
$eventsManager)

Sets a custom events manager for a specific model

public Phalcon\Events\ManagerInterface getCustomEventsManager (Phalcon\Mvc\CollectionInterface $model)

Returns a custom events manager related to a model

public initialize (Phalcon\Mvc\CollectionInterface $model)

Initializes a model in the models manager

public bool isInitialized (string $modelName)

Check whether a model is already initialized

public Phalcon\Mvc\CollectionInterface getLastInitialized ()

Get the latest initialized model

public setConnectionService (Phalcon\Mvc\CollectionInterface $model, string $connectionService)

Sets a connection service for a specific model

2.54. API Indice 671



Phalcon PHP Framework Documentation, Release 1.3.0

public useImplicitObjectIds (Phalcon\Mvc\CollectionInterface $model, boolean $useImplicitObjectIds)

Sets if a model must use implicit objects ids

public boolean isUsingImplicitObjectIds (Phalcon\Mvc\CollectionInterface $model)

Checks if a model is using implicit object ids

public Phalcon\Db\AdapterInterface (?) MongoDB getConnection (Phalcon\Mvc\CollectionInterface $model)

Returns the connection related to a model

public notifyEvent (string $eventName, Phalcon\Mvc\CollectionInterface $model)

Receives events generated in the models and dispatches them to a events-manager if available Notify the behaviors
that are listening in the model

2.54.150 Abstract class Phalcon\Mvc\Controller

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface, Phal-
con\Mvc\ControllerInterface

Every application controller should extend this class that encapsulates all the controller functionality The controllers
provide the “flow” between models and views. Controllers are responsible for processing the incoming requests from
the web browser, interrogating the models for data, and passing that data on to the views for presentation.

<?php

class PeopleController extends \Phalcon\Mvc\Controller
{

//This action will be executed by default
public function indexAction()
{

}

public function findAction()
{

}

public function saveAction()
{
//Forwards flow to the index action
return $this->dispatcher->forward(array('controller' => 'people', 'action' => 'index'));

}

}

Methods

final public __construct ()

Phalcon\Mvc\Controller constructor

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

672 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.151 Class Phalcon\Mvc\Dispatcher

extends abstract class Phalcon\Dispatcher

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface, Phal-
con\DispatcherInterface, Phalcon\Mvc\DispatcherInterface

Dispatching is the process of taking the request object, extracting the module name, controller name, action name, and
optional parameters contained in it, and then instantiating a controller and calling an action of that controller.

<?php

$di = new Phalcon\DI();

$dispatcher = new Phalcon\Mvc\Dispatcher();

$dispatcher->setDI($di);

$dispatcher->setControllerName('posts');
$dispatcher->setActionName('index');
$dispatcher->setParams(array());

$controller = $dispatcher->dispatch();

Constants

integer EXCEPTION_NO_DI

integer EXCEPTION_CYCLIC_ROUTING

integer EXCEPTION_HANDLER_NOT_FOUND

integer EXCEPTION_INVALID_HANDLER

integer EXCEPTION_INVALID_PARAMS

integer EXCEPTION_ACTION_NOT_FOUND

Methods

public setControllerSuffix (string $controllerSuffix)

Sets the default controller suffix

2.54. API Indice 673



Phalcon PHP Framework Documentation, Release 1.3.0

public setDefaultController (string $controllerName)

Sets the default controller name

public setControllerName (string $controllerName, [unknown $isExact])

Sets the controller name to be dispatched

public string getControllerName ()

Gets last dispatched controller name

protected _throwDispatchException ()

Throws an internal exception

protected _handleException ()

Handles a user exception phalcon_dispatcher_fire_event() first

public string getControllerClass ()

Possible controller class name that will be located to dispatch the request

public Phalcon\Mvc\ControllerInterface getLastController ()

Returns the lastest dispatched controller

public Phalcon\Mvc\ControllerInterface getActiveController ()

Returns the active controller in the dispatcher

public string getPreviousControllerName ()

Returns the previous controller in the dispatcher

public string getPreviousActionName ()

Returns the previous action in the dispatcher

public __construct () inherited from Phalcon\Dispatcher

Phalcon\Dispatcher constructor

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Dispatcher

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\Dispatcher

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Dispatcher

Sets the events manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\Dispatcher

Returns the internal event manager

public setActionSuffix (string $actionSuffix) inherited from Phalcon\Dispatcher

Sets the default action suffix

public setModuleName (string $moduleName) inherited from Phalcon\Dispatcher

Sets the module where the controller is (only informative)

public string getModuleName () inherited from Phalcon\Dispatcher

Gets the module where the controller class is

674 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public setNamespaceName (string $namespaceName) inherited from Phalcon\Dispatcher

Sets the namespace where the controller class is

public string getNamespaceName () inherited from Phalcon\Dispatcher

Gets a namespace to be prepended to the current handler name

public setDefaultNamespace (string $namespace) inherited from Phalcon\Dispatcher

Sets the default namespace

public string getDefaultNamespace () inherited from Phalcon\Dispatcher

Returns the default namespace

public setDefaultAction (string $actionName) inherited from Phalcon\Dispatcher

Sets the default action name

public setActionName (string $actionName) inherited from Phalcon\Dispatcher

Sets the action name to be dispatched

public string getActionName () inherited from Phalcon\Dispatcher

Gets the lastest dispatched action name

public setParams (array $params) inherited from Phalcon\Dispatcher

Sets action params to be dispatched

public array getParams () inherited from Phalcon\Dispatcher

Gets action params

public setParam (mixed $param, mixed $value) inherited from Phalcon\Dispatcher

Set a param by its name or numeric index

public mixed getParam (mixed $param, [string|array $filters]) inherited from Phalcon\Dispatcher

Gets a param by its name or numeric index

public string getActiveMethod () inherited from Phalcon\Dispatcher

Returns the current method to be/executed in the dispatcher

public boolean isFinished () inherited from Phalcon\Dispatcher

Checks if the dispatch loop is finished or has more pendent controllers/tasks to disptach

public setReturnedValue (mixed $value) inherited from Phalcon\Dispatcher

Sets the latest returned value by an action manually

public mixed getReturnedValue () inherited from Phalcon\Dispatcher

Returns value returned by the lastest dispatched action

public object dispatch () inherited from Phalcon\Dispatcher

Dispatches a handle action taking into account the routing parameters

public forward (array $forward) inherited from Phalcon\Dispatcher

Forwards the execution flow to another controller/action Dispatchers are unique per module. Forwarding between
modules is not allowed

2.54. API Indice 675



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$this->dispatcher->forward(array('controller' => 'posts', 'action' => 'index'));

public boolean wasForwarded () inherited from Phalcon\Dispatcher

Check if the current executed action was forwarded by another one

public string getHandlerClass () inherited from Phalcon\Dispatcher

Possible class name that will be located to dispatch the request

2.54.152 Class Phalcon\Mvc\Dispatcher\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Mvc\Dispatcher will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

676 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.153 Class Phalcon\Mvc\Micro

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface, ArrayAccess

With Phalcon you can create “Micro-Framework like” applications. By doing this, you only need to write a minimal
amount of code to create a PHP application. Micro applications are suitable to small applications, APIs and prototypes
in a practical way.

<?php

$app = new Phalcon\Mvc\Micro();

$app->get('/say/welcome/{name}', function ($name) {
echo "<h1>Welcome $name!</h1>";

});

$app->handle();

Methods

public __construct ([Phalcon\DiInterface $dependencyInjector])

Phalcon\Mvc\Micro constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\Mvc\Router\RouteInterface map (string $routePattern, callable $handler)

Maps a route to a handler without any HTTP method constraint

public Phalcon\Mvc\Router\RouteInterface get (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is GET

public Phalcon\Mvc\Router\RouteInterface post (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is POST

public Phalcon\Mvc\Router\RouteInterface put (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is PUT

public Phalcon\Mvc\Router\RouteInterface patch (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is PATCH

public Phalcon\Mvc\Router\RouteInterface head (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is HEAD

public Phalcon\Mvc\Router\RouteInterface delete (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is DELETE

public Phalcon\Mvc\Router\RouteInterface options (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is OPTIONS

public Phalcon\Mvc\Micro mount (Phalcon\Mvc\Collection $collection)

Mounts a collection of handlers

2.54. API Indice 677



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Mvc\Micro notFound (callable $handler)

Sets a handler that will be called when the router doesn’t match any of the defined routes

public Phalcon\Mvc\RouterInterface getRouter ()

Returns the internal router used by the application

public Phalcon\DI\ServiceInterface setService (string $serviceName, mixed $definition, [boolean $shared])

Sets a service from the DI

public boolean hasService (string $serviceName)

Checks if a service is registered in the DI

public object getService (string $serviceName)

Obtains a service from the DI

public mixed getSharedService (string $serviceName)

Obtains a shared service from the DI

public mixed handle ([string $uri])

Handle the whole request

public stop ()

Stops the middleware execution avoiding than other middlewares be executed

public setActiveHandler (callable $activeHandler)

Sets externally the handler that must be called by the matched route

public callable getActiveHandler ()

Return the handler that will be called for the matched route

public mixed getReturnedValue ()

Returns the value returned by the executed handler

public boolean offsetExists (unknown $serviceName)

Check if a service is registered in the internal services container using the array syntax. Alias for Phal-
con\Mvc\Micro::hasService()

public offsetSet (unknown $serviceName, mixed $definition, [unknown $shared])

Allows to register a shared service in the internal services container using the array syntax. Alias for Phal-
con\Mvc\Micro::setService()

<?php

$app['request'] = new Phalcon\Http\Request();

public mixed offsetGet (unknown $serviceName)

Allows to obtain a shared service in the internal services container using the array syntax. Alias for Phal-
con\Mvc\Micro::getService()

<?php

var_dump($app['request']);

678 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public offsetUnset (string $alias)

Removes a service from the internal services container using the array syntax

public Phalcon\Mvc\Micro before (callable $handler)

Appends a before middleware to be called before execute the route

public Phalcon\Mvc\Micro after (callable $handler)

Appends an ‘after’ middleware to be called after execute the route

public Phalcon\Mvc\Micro finish (callable $handler)

Appends a ‘finish’ middleware to be called when the request is finished

public array getHandlers ()

Returns the internal handlers attached to the application

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.154 Class Phalcon\Mvc\Micro\Collection

implements Phalcon\Mvc\Micro\CollectionInterface

Groups Micro-Mvc handlers as controllers

<?php

$app = new Phalcon\Mvc\Micro();

$collection = new Phalcon\Mvc\Micro\Collection();

$collection->setHandler(new PostsController());

$collection->get('/posts/edit/{id}', 'edit');

$app->mount($collection);

Methods

public Phalcon\Mvc\Micro\CollectionInterface setPrefix (string $prefix)

Sets a prefix for all routes added to the collection

public string getPrefix ()

Returns the collection prefix if any

2.54. API Indice 679



Phalcon PHP Framework Documentation, Release 1.3.0

public array getHandlers ()

Returns the registered handlers

public Phalcon\Mvc\Micro\CollectionInterface setHandler (mixed $handler, [boolean $lazy])

Sets the main handler

public Phalcon\Mvc\Micro\CollectionInterface setLazy (boolean $lazy)

Sets if the main handler must be lazy loaded

public boolean isLazy ()

Returns if the main handler must be lazy loaded

public mixed getHandler ()

Returns the main handler

public Phalcon\Mvc\Micro\CollectionInterface map (string $routePattern, callable $handler)

Maps a route to a handler

public Phalcon\Mvc\Micro\CollectionInterface get (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is GET

public Phalcon\Mvc\Micro\CollectionInterface post (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is POST

public Phalcon\Mvc\Micro\CollectionInterface put (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is PUT

public Phalcon\Mvc\Micro\CollectionInterface patch (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is PATCH

public Phalcon\Mvc\Micro\CollectionInterface head (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is HEAD

public Phalcon\Mvc\Micro\CollectionInterface delete (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is DELETE

public Phalcon\Mvc\Micro\CollectionInterface options (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is OPTIONS

2.54.155 Class Phalcon\Mvc\Micro\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Mvc\Micro will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

680 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.156 Class Phalcon\Mvc\Micro\LazyLoader

Lazy-Load of handlers for Mvc\Micro using auto-loading

Methods

public __construct (string $definition)

Phalcon\Mvc\Micro\LazyLoader constructor

public mixed __call (string $method, array $arguments)

Initializes the internal handler, calling functions on it

2.54.157 Abstract class Phalcon\Mvc\Model

implements Phalcon\Mvc\ModelInterface, Phalcon\Mvc\Model\ResultInterface, Phalcon\DI\InjectionAwareInterface,
Serializable

Phalcon\Mvc\Model connects business objects and database tables to create a persistable domain model where logic
and data are presented in one wrapping. It‘s an implementation of the object-relational mapping (ORM). A model
represents the information (data) of the application and the rules to manipulate that data. Models are primarily used for
managing the rules of interaction with a corresponding database table. In most cases, each table in your database will
correspond to one model in your application. The bulk of your application’s business logic will be concentrated in the
models. Phalcon\Mvc\Model is the first ORM written in C-language for PHP, giving to developers high performance
when interacting with databases while is also easy to use.

2.54. API Indice 681



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$robot = new Robots();
$robot->type = 'mechanical';
$robot->name = 'Astro Boy';
$robot->year = 1952;
if ($robot->save() == false) {
echo "Umh, We can store robots: ";
foreach ($robot->getMessages() as $message) {
echo $message;

}
} else {
echo "Great, a new robot was saved successfully!";

}

Constants

integer OP_NONE

integer OP_CREATE

integer OP_UPDATE

integer OP_DELETE

integer DIRTY_STATE_PERSISTENT

integer DIRTY_STATE_TRANSIENT

integer DIRTY_STATE_DETACHED

Methods

final public __construct ([Phalcon\DiInterface $dependencyInjector], [Phalcon\Mvc\Model\ManagerInterface $mod-
elsManager])

Phalcon\Mvc\Model constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injection container

public Phalcon\DiInterface getDI ()

Returns the dependency injection container

protected setEventsManager ()

Sets a custom events manager

protected Phalcon\Events\ManagerInterface getEventsManager ()

Returns the custom events manager

public Phalcon\Mvc\Model\MetaDataInterface getModelsMetaData ()

Returns the models meta-data service related to the entity instance

public Phalcon\Mvc\Model\ManagerInterface getModelsManager ()

Returns the models manager related to the entity instance

public Phalcon\Mvc\Model setTransaction (Phalcon\Mvc\Model\TransactionInterface $transaction)

682 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets a transaction related to the Model instance

<?php

use Phalcon\Mvc\Model\Transaction\Manager as TxManager;
use Phalcon\Mvc\Model\Transaction\Failed as TxFailed;

try {

$txManager = new TxManager();

$transaction = $txManager->get();

$robot = new Robots();
$robot->setTransaction($transaction);
$robot->name = 'WALL·E';
$robot->created_at = date('Y-m-d');
if ($robot->save() == false) {
$transaction->rollback("Can't save robot");

}

$robotPart = new RobotParts();
$robotPart->setTransaction($transaction);
$robotPart->type = 'head';
if ($robotPart->save() == false) {
$transaction->rollback("Robot part cannot be saved");

}

$transaction->commit();

} catch (TxFailed $e) {
echo 'Failed, reason: ', $e->getMessage();

}

protected Phalcon\Mvc\Model setSource ()

Sets table name which model should be mapped

public string getSource ()

Returns table name mapped in the model

protected Phalcon\Mvc\Model setSchema ()

Sets schema name where table mapped is located

public string getSchema ()

Returns schema name where table mapped is located

public Phalcon\Mvc\Model setConnectionService (string $connectionService)

Sets the DependencyInjection connection service name

public Phalcon\Mvc\Model setReadConnectionService (string $connectionService)

Sets the DependencyInjection connection service name used to read data

public Phalcon\Mvc\Model setWriteConnectionService (string $connectionService)

Sets the DependencyInjection connection service name used to write data

public string getReadConnectionService ()

Returns the DependencyInjection connection service name used to read data related the model

2.54. API Indice 683



Phalcon PHP Framework Documentation, Release 1.3.0

public string getWriteConnectionService ()

Returns the DependencyInjection connection service name used to write data related to the model

public Phalcon\Mvc\Model setDirtyState (int $dirtyState)

Sets the dirty state of the object using one of the DIRTY_STATE_* constants

public int getDirtyState ()

Returns one of the DIRTY_STATE_* constants telling if the record exists in the database or not

public Phalcon\Db\AdapterInterface getReadConnection ()

Gets the connection used to read data for the model

public Phalcon\Db\AdapterInterface getWriteConnection ()

Gets the connection used to write data to the model

public Phalcon\Mvc\Model assign (array $data, [array $columnMap])

Assigns values to a model from an array

<?php

$robot->assign(array(
'type' => 'mechanical',
'name' => 'Astro Boy',
'year' => 1952

));

public static Phalcon\Mvc\Model cloneResultMap (Phalcon\Mvc\Model $base, array $data, array $columnMap, [int
$dirtyState], [boolean $keepSnapshots])

Assigns values to a model from an array returning a new model.

<?php

$robot = \Phalcon\Mvc\Model::cloneResultMap(new Robots(), array(
'type' => 'mechanical',
'name' => 'Astro Boy',
'year' => 1952

));

public static mixed cloneResultMapHydrate (array $data, array $columnMap, int $hydrationMode)

Returns an hydrated result based on the data and the column map

public static Phalcon\Mvc\Model cloneResult (Phalcon\Mvc\Model $base, array $data, [int $dirtyState])

Assigns values to a model from an array returning a new model

<?php

$robot = Phalcon\Mvc\Model::cloneResult(new Robots(), array(
'type' => 'mechanical',
'name' => 'Astro Boy',
'year' => 1952

));

public static Phalcon\Mvc\Model\ResultsetInterface find ([array $parameters])

Allows to query a set of records that match the specified conditions

684 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//How many robots are there?
$robots = Robots::find();
echo "There are ", count($robots), "\n";

//How many mechanical robots are there?
$robots = Robots::find("type='mechanical'");
echo "There are ", count($robots), "\n";

//Get and print virtual robots ordered by name
$robots = Robots::find(array("type='virtual'", "order" => "name"));
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

//Get first 100 virtual robots ordered by name
$robots = Robots::find(array("type='virtual'", "order" => "name", "limit" => 100));
foreach ($robots as $robot) {

echo $robot->name, "\n";
}

public static Phalcon\Mvc\Model findFirst ([array $parameters])

Allows to query the first record that match the specified conditions

<?php

//What's the first robot in robots table?
$robot = Robots::findFirst();
echo "The robot name is ", $robot->name;

//What's the first mechanical robot in robots table?
$robot = Robots::findFirst("type='mechanical'");
echo "The first mechanical robot name is ", $robot->name;

//Get first virtual robot ordered by name
$robot = Robots::findFirst(array("type='virtual'", "order" => "name"));
echo "The first virtual robot name is ", $robot->name;

public static Phalcon\Mvc\Model\Criteria query ([Phalcon\DiInterface $dependencyInjector])

Create a criteria for a specific model

protected boolean _exists ()

Checks if the current record already exists or not

protected static Phalcon\Mvc\Model\ResultsetInterface _groupResult ()

Generate a PHQL SELECT statement for an aggregate

public static int count ([array $parameters])

Allows to count how many records match the specified conditions

<?php

//How many robots are there?
$number = Robots::count();
echo "There are ", $number, "\n";

2.54. API Indice 685



Phalcon PHP Framework Documentation, Release 1.3.0

//How many mechanical robots are there?
$number = Robots::count("type='mechanical'");
echo "There are ", $number, " mechanical robots\n";

public static double sum ([array $parameters])

Allows to calculate a summatory on a column that match the specified conditions

<?php

//How much are all robots?
$sum = Robots::sum(array('column' => 'price'));
echo "The total price of robots is ", $sum, "\n";

//How much are mechanical robots?
$sum = Robots::sum(array("type='mechanical'", 'column' => 'price'));
echo "The total price of mechanical robots is ", $sum, "\n";

public static mixed maximum ([array $parameters])

Allows to get the maximum value of a column that match the specified conditions

<?php

//What is the maximum robot id?
$id = Robots::maximum(array('column' => 'id'));
echo "The maximum robot id is: ", $id, "\n";

//What is the maximum id of mechanical robots?
$sum = Robots::maximum(array("type='mechanical'", 'column' => 'id'));
echo "The maximum robot id of mechanical robots is ", $id, "\n";

public static mixed minimum ([array $parameters])

Allows to get the minimum value of a column that match the specified conditions

<?php

//What is the minimum robot id?
$id = Robots::minimum(array('column' => 'id'));
echo "The minimum robot id is: ", $id;

//What is the minimum id of mechanical robots?
$sum = Robots::minimum(array("type='mechanical'", 'column' => 'id'));
echo "The minimum robot id of mechanical robots is ", $id;

public static double average ([array $parameters])

Allows to calculate the average value on a column matching the specified conditions

<?php

//What's the average price of robots?
$average = Robots::average(array('column' => 'price'));
echo "The average price is ", $average, "\n";

//What's the average price of mechanical robots?
$average = Robots::average(array("type='mechanical'", 'column' => 'price'));
echo "The average price of mechanical robots is ", $average, "\n";

public boolean fireEvent (string $eventName)

686 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Fires an event, implicitly calls behaviors and listeners in the events manager are notified

public boolean fireEventCancel (string $eventName)

Fires an event, implicitly calls behaviors and listeners in the events manager are notified This method stops if one of
the callbacks/listeners returns boolean false

protected boolean _cancelOperation ()

Cancel the current operation

public Phalcon\Mvc\Model appendMessage (Phalcon\Mvc\Model\MessageInterface $message)

Appends a customized message on the validation process

<?php

use \Phalcon\Mvc\Model\Message as Message;

class Robots extends Phalcon\Mvc\Model
{

public function beforeSave()
{

if ($this->name == 'Peter') {
$message = new Message("Sorry, but a robot cannot be named Peter");
$this->appendMessage($message);

}
}

}

protected Phalcon\Mvc\Model validate ()

Executes validators on every validation call

<?php

use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionIn;

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new ExclusionIn(array(
'field' => 'status',
'domain' => array('A', 'I')

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

public boolean validationHasFailed ()

Check whether validation process has generated any messages

<?php

use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionIn;

2.54. API Indice 687



Phalcon PHP Framework Documentation, Release 1.3.0

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new ExclusionIn(array(
'field' => 'status',
'domain' => array('A', 'I')

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

public Phalcon\Mvc\Model\MessageInterface [] getMessages ([unknown $filter])

Returns all the validation messages

<?php

$robot = new Robots();
$robot->type = 'mechanical';
$robot->name = 'Astro Boy';
$robot->year = 1952;
if ($robot->save() == false) {

echo "Umh, We can't store robots right now ";
foreach ($robot->getMessages() as $message) {

echo $message;
}

} else {
echo "Great, a new robot was saved successfully!";

}

protected boolean _checkForeignKeysRestrict ()

Reads “belongs to” relations and check the virtual foreign keys when inserting or updating records to verify that
inserted/updated values are present in the related entity

protected boolean _checkForeignKeysReverseRestrict ()

Reads both “hasMany” and “hasOne” relations and checks the virtual foreign keys (restrict) when deleting records

protected boolean _checkForeignKeysReverseCascade ()

Reads both “hasMany” and “hasOne” relations and checks the virtual foreign keys (cascade) when deleting records

protected boolean _preSave ()

Executes internal hooks before save a record

protected boolean _postSave ()

Executes internal events after save a record

protected boolean _doLowInsert ()

Sends a pre-build INSERT SQL statement to the relational database system

protected boolean _doLowUpdate ()

Sends a pre-build UPDATE SQL statement to the relational database system

688 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

protected boolean _preSaveRelatedRecords ()

Saves related records that must be stored prior to save the master record

protected boolean _postSaveRelatedRecords ()

Save the related records assigned in the has-one/has-many relations

public boolean save ([array $data], [array $whiteList])

Inserts or updates a model instance. Returning true on success or false otherwise.

<?php

//Creating a new robot
$robot = new Robots();
$robot->type = 'mechanical';
$robot->name = 'Astro Boy';
$robot->year = 1952;
$robot->save();

//Updating a robot name
$robot = Robots::findFirst("id=100");
$robot->name = "Biomass";
$robot->save();

public boolean create ([array $data], [array $whiteList])

Inserts a model instance. If the instance already exists in the persistance it will throw an exception Returning true on
success or false otherwise.

<?php

//Creating a new robot
$robot = new Robots();
$robot->type = 'mechanical';
$robot->name = 'Astro Boy';
$robot->year = 1952;
$robot->create();

//Passing an array to create
$robot = new Robots();
$robot->create(array(

'type' => 'mechanical',
'name' => 'Astroy Boy',
'year' => 1952

));

public boolean update ([array $data], [array $whiteList])

Updates a model instance. If the instance doesn’t exist in the persistance it will throw an exception Returning true on
success or false otherwise.

<?php

//Updating a robot name
$robot = Robots::findFirst("id=100");
$robot->name = "Biomass";
$robot->update();

public boolean delete ()

Deletes a model instance. Returning true on success or false otherwise.

2.54. API Indice 689



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$robot = Robots::findFirst("id=100");
$robot->delete();

foreach (Robots::find("type = 'mechanical'") as $robot) {
$robot->delete();

}

public int getOperationMade ()

Returns the type of the latest operation performed by the ORM Returns one of the OP_* class constants

public refresh ()

Refreshes the model attributes re-querying the record from the database

public skipOperation (boolean $skip)

Skips the current operation forcing a success state

public mixed readAttribute (string $attribute)

Reads an attribute value by its name

<?php

echo $robot->readAttribute('name');

public writeAttribute (string $attribute, mixed $value)

Writes an attribute value by its name

<?php

$robot->writeAttribute('name', 'Rosey');

protected skipAttributes ()

Sets a list of attributes that must be skipped from the generated INSERT/UPDATE statement

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->skipAttributes(array('price'));
}

}

protected skipAttributesOnCreate ()

Sets a list of attributes that must be skipped from the generated INSERT statement

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()

690 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

{
$this->skipAttributesOnCreate(array('created_at'));

}

}

protected skipAttributesOnUpdate ()

Sets a list of attributes that must be skipped from the generated UPDATE statement

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->skipAttributesOnUpdate(array('modified_in'));
}

}

public Phalcon\Mvc\Model\Relation hasOne ()

Setup a 1-1 relation between two models

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->hasOne('id', 'RobotsDescription', 'robots_id');
}

}

public Phalcon\Mvc\Model\Relation belongsTo ()

Setup a relation reverse 1-1 between two models

<?php

class RobotsParts extends \Phalcon\Mvc\Model
{

public function initialize()
{

$this->belongsTo('robots_id', 'Robots', 'id');
}

}

public Phalcon\Mvc\Model\Relation hasMany ()

Setup a relation 1-n between two models

<?php

class Robots extends \Phalcon\Mvc\Model

2.54. API Indice 691



Phalcon PHP Framework Documentation, Release 1.3.0

{

public function initialize()
{

$this->hasMany('id', 'RobotsParts', 'robots_id');
}

}

public Phalcon\Mvc\Model\Relation hasManyToMany ()

Setup a relation n-n between two models through an intermediate relation

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{

//Setup a many-to-many relation to Parts through RobotsParts
$this->hasManyToMany(

'id',
'RobotsParts',
'robots_id',
'parts_id',
'Parts',
'id'

);
}

}

public addBehavior ()

Setups a behavior in a model

<?php

use Phalcon\Mvc\Model\Behavior\Timestampable;

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{
$this->addBehavior(new Timestampable(array(

'onCreate' => array(
'field' => 'created_at',
'format' => 'Y-m-d'

)
)));

}

}

protected keepSnapshots ()

Sets if the model must keep the original record snapshot in memory

692 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{
$this->keepSnapshots(true);

}

}

public setSnapshotData (array $data, [array $columnMap])

Sets the record’s snapshot data. This method is used internally to set snapshot data when the model was set up to keep
snapshot data

public boolean hasSnapshotData ()

Checks if the object has internal snapshot data

public array getSnapshotData ()

Returns the internal snapshot data

public hasChanged ([boolean $fieldName])

Check if a specific attribute has changed This only works if the model is keeping data snapshots

public array getChangedFields ()

Returns a list of changed values

protected useDynamicUpdate ()

Sets if a model must use dynamic update instead of the all-field update

<?php

class Robots extends \Phalcon\Mvc\Model
{

public function initialize()
{
$this->useDynamicUpdate(true);

}

}

public Phalcon\Mvc\Model\ResultsetInterface getRelated (string $alias, [array $arguments])

Returns related records based on defined relations

protected mixed _getRelatedRecords ()

Returns related records defined relations depending on the method name

public mixed __call (string $method, [array $arguments])

Handles method calls when a method is not implemented

public static mixed __callStatic (string $method, [array $arguments])

Handles method calls when a static method is not implemented

public __set (string $property, mixed $value)

2.54. API Indice 693



Phalcon PHP Framework Documentation, Release 1.3.0

Magic method to assign values to the the model

public Phalcon\Mvc\Model\Resultset __get (string $property)

Magic method to get related records using the relation alias as a property

public __isset (string $property)

Magic method to check if a property is a valid relation

public string serialize ()

Serializes the object ignoring connections, services, related objects or static properties

public unserialize (string $data)

Unserializes the object from a serialized string

public array dump ()

Returns a simple representation of the object that can be used with var_dump

<?php

var_dump($robot->dump());

public array toArray ([array $columns])

Returns the instance as an array representation

<?php

print_r($robot->toArray());

public static setup (array $options)

Enables/disables options in the ORM Available options: events — Enables/Disables globally the internal events vir-
tualForeignKeys — Enables/Disables virtual foreign keys columnRenaming — Enables/Disables column renaming
notNullValidations — Enables/Disables automatic not null validation exceptionOnFailedSave — Enables/Disables
throws an exception if the saving process fails phqlLiterals — Enables/Disables literals in PHQL this improves the
security of applications

2.54.158 Abstract class Phalcon\Mvc\Model\Behavior

implements Phalcon\Mvc\Model\BehaviorInterface

This is an optional base class for ORM behaviors

Methods

public __construct ([array $options])

protected mustTakeAction ()

Checks whether the behavior must take action on certain event

protected array getOptions ()

Returns the behavior options related to an event

public notify (string $type, Phalcon\Mvc\ModelInterface $model)

This method receives the notifications from the EventsManager

694 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public missingMethod (Phalcon\Mvc\ModelInterface $model, string $method, [array $arguments])

Acts as fallbacks when a missing method is called on the model

2.54.159 Class Phalcon\Mvc\Model\Behavior\SoftDelete

extends abstract class Phalcon\Mvc\Model\Behavior

implements Phalcon\Mvc\Model\BehaviorInterface

Instead of permanently delete a record it marks the record as deleted changing the value of a flag column

Methods

public notify (string $type, Phalcon\Mvc\ModelInterface $model)

Listens for notifications from the models manager

public __construct ([array $options]) inherited from Phalcon\Mvc\Model\Behavior

Phalcon\Mvc\Model\Behavior

protected mustTakeAction () inherited from Phalcon\Mvc\Model\Behavior

Checks whether the behavior must take action on certain event

protected array getOptions () inherited from Phalcon\Mvc\Model\Behavior

Returns the behavior options related to an event

public missingMethod (Phalcon\Mvc\ModelInterface $model, string $method, [array $arguments]) inherited from
Phalcon\Mvc\Model\Behavior

Acts as fallbacks when a missing method is called on the model

2.54.160 Class Phalcon\Mvc\Model\Behavior\Timestampable

extends abstract class Phalcon\Mvc\Model\Behavior

implements Phalcon\Mvc\Model\BehaviorInterface

Allows to automatically update a model’s attribute saving the datetime when a record is created or updated

Methods

public notify (string $type, Phalcon\Mvc\ModelInterface $model)

Listens for notifications from the models manager

public __construct ([array $options]) inherited from Phalcon\Mvc\Model\Behavior

Phalcon\Mvc\Model\Behavior

protected mustTakeAction () inherited from Phalcon\Mvc\Model\Behavior

Checks whether the behavior must take action on certain event

protected array getOptions () inherited from Phalcon\Mvc\Model\Behavior

Returns the behavior options related to an event

2.54. API Indice 695



Phalcon PHP Framework Documentation, Release 1.3.0

public missingMethod (Phalcon\Mvc\ModelInterface $model, string $method, [array $arguments]) inherited from
Phalcon\Mvc\Model\Behavior

Acts as fallbacks when a missing method is called on the model

2.54.161 Class Phalcon\Mvc\Model\Criteria

implements Phalcon\Mvc\Model\CriteriaInterface, Phalcon\DI\InjectionAwareInterface

This class allows to build the array parameter required by Phalcon\Mvc\Model::find and Phalcon\Mvc\Model::findFirst
using an object-oriented interface

<?php

$robots = Robots::query()
->where("type = :type:")
->andWhere("year < 2000")
->bind(array("type" => "mechanical"))
->order("name")
->execute();

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\DiInterface getDI ()

Returns the DependencyInjector container

public Phalcon\Mvc\Model\CriteriaInterface setModelName (string $modelName)

Set a model on which the query will be executed

public string getModelName ()

Returns an internal model name on which the criteria will be applied

public Phalcon\Mvc\Model\CriteriaInterface bind (string $bindParams)

Sets the bound parameters in the criteria This method replaces all previously set bound parameters

public Phalcon\Mvc\Model\CriteriaInterface bindTypes (string $bindTypes)

Sets the bind types in the criteria This method replaces all previously set bound parameters

public Phalcon\Mvc\Model\CriteriaInterface columns (string|array $columns)

Sets the columns to be queried

<?php

$criteria->columns(array('id', 'name'));

public Phalcon\Mvc\Model\CriteriaInterface join (string $model, [string $conditions], [string $alias], [string $type])

Adds a join to the query

696 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$criteria->join('Robots');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id', 'r');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id', 'r', 'LEFT');

public Phalcon\Mvc\Model\CriteriaInterface innerJoin (string $model, [string $conditions], [string $alias])

Adds a INNER join to the query

<?php

$criteria->innerJoin('Robots');
$criteria->innerJoin('Robots', 'r.id = RobotsParts.robots_id');
$criteria->innerJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');
$criteria->innerJoin('Robots', 'r.id = RobotsParts.robots_id', 'r', 'LEFT');

public Phalcon\Mvc\Model\CriteriaInterface leftJoin (string $model, [string $conditions], [string $alias])

Adds a LEFT join to the query

<?php

$criteria->leftJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public Phalcon\Mvc\Model\CriteriaInterface rightJoin (string $model, [string $conditions], [string $alias])

Adds a RIGHT join to the query

<?php

$criteria->rightJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public Phalcon\Mvc\Model\CriteriaInterface where (string $conditions)

Sets the conditions parameter in the criteria

public Phalcon\Mvc\Model\CriteriaInterface addWhere (string $conditions, [array $bindParams], [array $bind-
Types])

Appends a condition to the current conditions using an AND operator (deprecated)

public Phalcon\Mvc\Model\CriteriaInterface andWhere (string $conditions, [array $bindParams], [array $bind-
Types])

Appends a condition to the current conditions using an AND operator

public Phalcon\Mvc\Model\CriteriaInterface orWhere (string $conditions, [array $bindParams], [array $bindTypes])

Appends a condition to the current conditions using an OR operator

public Phalcon\Mvc\Model\CriteriaInterface betweenWhere (string $expr, mixed $minimum, mixed $maximum)

Appends a BETWEEN condition to the current conditions

<?php

$criteria->betweenWhere('price', 100.25, 200.50);

public Phalcon\Mvc\Model\CriteriaInterface notBetweenWhere (string $expr, mixed $minimum, mixed $maximum)

Appends a NOT BETWEEN condition to the current conditions

2.54. API Indice 697



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$criteria->notBetweenWhere('price', 100.25, 200.50);

public Phalcon\Mvc\Model\CriteriaInterface inWhere (string $expr, array $values)

Appends an IN condition to the current conditions

<?php

$criteria->inWhere('id', [1, 2, 3]);

public Phalcon\Mvc\Model\CriteriaInterface notInWhere (string $expr, array $values)

Appends a NOT IN condition to the current conditions

<?php

$criteria->notInWhere('id', [1, 2, 3]);

public Phalcon\Mvc\Model\CriteriaIntreface conditions (string $conditions)

Adds the conditions parameter to the criteria

public Phalcon\Mvc\Model\CriteriaInterface order (string $orderColumns)

Adds the order-by parameter to the criteria (deprecated)

public Phalcon\Mvc\Model\CriteriaInterface orderBy (string $orderColumns)

Adds the order-by parameter to the criteria

public Phalcon\Mvc\Model\CriteriaInterface limit (int $limit, [int $offset])

Adds the limit parameter to the criteria

public Phalcon\Mvc\Model\CriteriaInterface forUpdate ([boolean $forUpdate])

Adds the “for_update” parameter to the criteria

public Phalcon\Mvc\Model\CriteriaInterface sharedLock ([boolean $sharedLock])

Adds the “shared_lock” parameter to the criteria

public string getWhere ()

Returns the conditions parameter in the criteria

public string|array getColumns ()

Return the columns to be queried

public string getConditions ()

Returns the conditions parameter in the criteria

public string getLimit ()

Returns the limit parameter in the criteria

public string getOrder ()

Returns the order parameter in the criteria

public array getParams ()

Returns all the parameters defined in the criteria

698 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public static Phalcon\Mvc\Model\Criteria fromInput (Phalcon\DiInterface $dependencyInjector, string $modelName,
array $data)

Builds a Phalcon\Mvc\Model\Criteria based on an input array like $_POST

public Phalcon\Mvc\Model\ResultsetInterface execute ()

Executes a find using the parameters built with the criteria

public Phalcon\Mvc\Model\CriteriaInterface cache (unknown $option)

Sets the cache options in the criteria This method replaces all previously set cache options

2.54.162 Class Phalcon\Mvc\Model\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Mvc\Model\* classes will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54. API Indice 699



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.163 Class Phalcon\Mvc\Model\Manager

implements Phalcon\Mvc\Model\ManagerInterface, Phalcon\DI\InjectionAwareInterface, Phal-
con\Events\EventsAwareInterface

This components controls the initialization of models, keeping record of relations between the different models of
the application. A ModelsManager is injected to a model via a Dependency Injector/Services Container such as
Phalcon\DI.

<?php

$di = new Phalcon\DI();

$di->set('modelsManager', function() {
return new Phalcon\Mvc\Model\Manager();

});

$robot = new Robots($di);

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\DiInterface getDI ()

Returns the DependencyInjector container

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets a global events manager

public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

public setCustomEventsManager (Phalcon\Mvc\ModelInterface $model, Phalcon\Events\ManagerInterface
$eventsManager)

Sets a custom events manager for a specific model

public Phalcon\Events\ManagerInterface getCustomEventsManager (Phalcon\Mvc\ModelInterface $model)

Returns a custom events manager related to a model

public boolean initialize (Phalcon\Mvc\ModelInterface $model)

Initializes a model in the model manager

public bool isInitialized (string $modelName)

Check whether a model is already initialized

public Phalcon\Mvc\ModelInterface getLastInitialized ()

Get last initialized model

public Phalcon\Mvc\ModelInterface load (string $modelName, boolean $newInstance)

Loads a model throwing an exception if it doesn’t exist

public string setModelSource (Phalcon\Mvc\Model $model, string $source)

Sets the mapped source for a model

700 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string getModelSource (Phalcon\Mvc\Model $model)

Returns the mapped source for a model

public string setModelSchema (Phalcon\Mvc\Model $model, string $schema)

Sets the mapped schema for a model

public string getModelSchema (Phalcon\Mvc\Model $model)

Returns the mapped schema for a model

public setConnectionService (Phalcon\Mvc\ModelInterface $model, string $connectionService)

Sets both write and read connection service for a model

public setWriteConnectionService (Phalcon\Mvc\ModelInterface $model, string $connectionService)

Sets write connection service for a model

public setReadConnectionService (Phalcon\Mvc\ModelInterface $model, string $connectionService)

Sets read connection service for a model

public Phalcon\Db\AdapterInterface getWriteConnection (Phalcon\Mvc\ModelInterface $model)

Returns the connection to write data related to a model

public Phalcon\Db\AdapterInterface getReadConnection (Phalcon\Mvc\ModelInterface $model)

Returns the connection to read data related to a model

public getReadConnectionService (Phalcon\Mvc\ModelInterface $model)

Returns the connection service name used to read data related to a model

public getWriteConnectionService (Phalcon\Mvc\ModelInterface $model)

Returns the connection service name used to write data related to a model

public notifyEvent (string $eventName, Phalcon\Mvc\ModelInterface $model)

Receives events generated in the models and dispatches them to a events-manager if available Notify the behaviors
that are listening in the model

public boolean missingMethod (Phalcon\Mvc\ModelInterface $model, string $eventName, array $data)

Dispatch a event to the listeners and behaviors This method expects that the endpoint listeners/behaviors returns true
meaning that a least one is implemented

public addBehavior (Phalcon\Mvc\ModelInterface $model, Phalcon\Mvc\Model\BehaviorInterface $behavior)

Binds a behavior to a model

public keepSnapshots (Phalcon\Mvc\Model $model, boolean $keepSnapshots)

Sets if a model must keep snapshots

public boolean isKeepingSnapshots (unknown $model)

Checks if a model is keeping snapshots for the queried records

public useDynamicUpdate (Phalcon\Mvc\Model $model, boolean $dynamicUpdate)

Sets if a model must use dynamic update instead of the all-field update

public boolean isUsingDynamicUpdate (unknown $model)

Checks if a model is using dynamic update instead of all-field update

2.54. API Indice 701



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Mvc\Model\Relation addHasOne (Phalcon\Mvc\Model $model, mixed $fields, string $referenced-
Model, mixed $referencedFields, [array $options])

Setup a 1-1 relation between two models

public Phalcon\Mvc\Model\Relation addBelongsTo (Phalcon\Mvc\Model $model, mixed $fields, string $referenced-
Model, mixed $referencedFields, [array $options])

Setup a relation reverse many to one between two models

public addHasMany (Phalcon\Mvc\ModelInterface $model, mixed $fields, string $referencedModel, mixed $refer-
encedFields, [array $options])

Setup a relation 1-n between two models

public Phalcon\Mvc\Model\Relation addHasManyToMany (unknown $model, string $fields, string $intermediate-
Model, string $intermediateFields, string $intermediateReferencedFields, string $referencedModel, string $refer-
encedFields, [array $options])

Setups a relation n-m between two models

public boolean existsBelongsTo (string $modelName, string $modelRelation)

Checks whether a model has a belongsTo relation with another model

public boolean existsHasMany (string $modelName, string $modelRelation)

Checks whether a model has a hasMany relation with another model

public boolean existsHasOne (string $modelName, string $modelRelation)

Checks whether a model has a hasOne relation with another model

public boolean existsHasManyToMany (string $modelName, string $modelRelation)

Checks whether a model has a hasManyToMany relation with another model

public Phalcon\Mvc\Model\Relation getRelationByAlias (string $modelName, string $alias)

Returns a relation by its alias

public Phalcon\Mvc\Model\Resultset\Simple getRelationRecords (Phalcon\Mvc\Model\Relation $relation, string
$method, Phalcon\Mvc\ModelInterface $record, [array $parameters])

Helper method to query records based on a relation definition

public object getReusableRecords (string $modelName, string $key)

Returns a reusable object from the internal list

public setReusableRecords (string $modelName, string $key, mixed $records)

Stores a reusable record in the internal list

public clearReusableObjects ()

Clears the internal reusable list

public Phalcon\Mvc\Model\ResultsetInterface getBelongsToRecords (string $method, string $modelName, string
$modelRelation, Phalcon\Mvc\Model $record, [array $parameters])

Gets belongsTo related records from a model

public Phalcon\Mvc\Model\ResultsetInterface getHasManyRecords (string $method, string $modelName, string
$modelRelation, Phalcon\Mvc\Model $record, [array $parameters])

Gets hasMany related records from a model

702 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Mvc\Model\ResultsetInterface getHasOneRecords (string $method, string $modelName, string
$modelRelation, Phalcon\Mvc\Model $record, [array $parameters])

Gets belongsTo related records from a model

public Phalcon\Mvc\Model\RelationInterface [] getBelongsTo (Phalcon\Mvc\ModelInterface $model)

Gets all the belongsTo relations defined in a model

<?php

$relations = $modelsManager->getBelongsTo(new Robots());

public Phalcon\Mvc\Model\RelationInterface [] getHasMany (Phalcon\Mvc\ModelInterface $model)

Gets hasMany relations defined on a model

public array getHasOne (Phalcon\Mvc\ModelInterface $model)

Gets hasOne relations defined on a model

public Phalcon\Mvc\Model\RelationInterface [] getHasManyToMany (Phalcon\Mvc\ModelInterface $model)

Gets hasManyToMany relations defined on a model

public array getHasOneAndHasMany (Phalcon\Mvc\ModelInterface $model)

Gets hasOne relations defined on a model

public Phalcon\Mvc\Model\RelationInterface [] getRelations (string $modelName)

Query all the relationships defined on a model

public Phalcon\Mvc\Model\RelationInterface getRelationsBetween (string $first, string $second)

Query the first relationship defined between two models

public Phalcon\Mvc\Model\QueryInterface createQuery (string $phql)

Creates a Phalcon\Mvc\Model\Query without execute it

public Phalcon\Mvc\Model\QueryInterface executeQuery (string $phql, [array $placeholders])

Creates a Phalcon\Mvc\Model\Query and execute it

public Phalcon\Mvc\Model\Query\BuilderInterface createBuilder ([string $params])

Creates a Phalcon\Mvc\Model\Query\Builder

public Phalcon\Mvc\Model\QueryInterface getLastQuery ()

Returns the lastest query created or executed in the models manager

public registerNamespaceAlias (string $alias, string $namespace)

Registers shorter aliases for namespaces in PHQL statements

public string getNamespaceAlias (string $alias)

Returns a real namespace from its alias

public array getNamespaceAliases ()

Returns all the registered namespace aliases

public __destruct ()

Destroys the PHQL cache

2.54. API Indice 703



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.164 Class Phalcon\Mvc\Model\Message

implements Phalcon\Mvc\Model\MessageInterface

Encapsulates validation info generated before save/delete records fails

<?php

use Phalcon\Mvc\Model\Message as Message;

class Robots extends Phalcon\Mvc\Model
{

public function beforeSave()
{

if ($this->name == 'Peter') {
$text = "A robot cannot be named Peter";
$field = "name";
$type = "InvalidValue";
$code = 103;
$message = new Message($text, $field, $type, $code);
$this->appendMessage($message);

}
}

}

Methods

public __construct (string $message, [string $field], [string $type])

Phalcon\Mvc\Model\Message constructor

public Phalcon\Mvc\Model\Message setType (string $type)

Sets message type

public string getType ()

Returns message type

public Phalcon\Mvc\Model\Message setCode (string $code)

Sets message code

public string getCode ()

Returns message code

public Phalcon\Mvc\Model\Message setMessage (string $message)

Sets verbose message

public string getMessage ()

Returns verbose message

public Phalcon\Mvc\Model\Message setField (string $field)

Sets field name related to message

public string getField ()

Returns field name related to message

704 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Mvc\Model\Message setModel (Phalcon\Mvc\ModelInterface $model)

Set the model who generates the message

public Phalcon\Mvc\ModelInterface getModel ()

Returns the model that produced the message

public string __toString ()

Magic __toString method returns verbose message

public static Phalcon\Mvc\Model\Message __set_state ([unknown $properties])

Magic __set_state helps to re-build messages variable exporting

2.54.165 Abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\DI\InjectionAwareInterface, Phalcon\Mvc\Model\MetaDataInterface

Because Phalcon\Mvc\Model requires meta-data like field names, data types, primary keys, etc. this component collect
them and store for further querying by Phalcon\Mvc\Model. Phalcon\Mvc\Model\MetaData can also use adapters to
store temporarily or permanently the meta-data. A standard Phalcon\Mvc\Model\MetaData can be used to query model
attributes:

<?php

$metaData = new Phalcon\Mvc\Model\MetaData\Memory();
$attributes = $metaData->getAttributes(new Robots());
print_r($attributes);

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

2.54. API Indice 705



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

protected _initialize ()

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\DiInterface getDI ()

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\Strategy\Introspection $strategy)

Set the meta-data extraction strategy

public Phalcon\Mvc\Model\MetaData\Strategy\Introspection getStrategy ()

Return the strategy to obtain the meta-data

public array readMetaData (Phalcon\Mvc\ModelInterface $model)

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots()));

public array readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index)

Reads meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index, mixed $data, unknown $replace)

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public array readColumnMap (Phalcon\Mvc\ModelInterface $model)

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, int $index)

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public array getAttributes (Phalcon\Mvc\ModelInterface $model)

Returns table attributes names (fields)

706 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

print_r($metaData->getAttributes(new Robots()));

public array getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public array getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an arrau of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public array getNotNullAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public array getDataTypes (Phalcon\Mvc\ModelInterface $model)

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public array getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model)

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model)

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public array getBindTypes (Phalcon\Mvc\ModelInterface $model)

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public array getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model)

Returns attributes that must be ignored from the INSERT SQL generation

2.54. API Indice 707



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public array getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model)

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public array getColumnMap (Phalcon\Mvc\ModelInterface $model)

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public array getReverseColumnMap (Phalcon\Mvc\ModelInterface $model)

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public boolean hasAttribute (Phalcon\Mvc\ModelInterface $model, string $attribute)

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public boolean isEmpty ()

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

public reset ()

Resets internal meta-data in order to regenerate it

708 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$metaData->reset();

abstract public array read (string $key) inherited from Phalcon\Mvc\Model\MetaDataInterface

Reads meta-data from the adapter

abstract public write (string $key, array $data) inherited from Phalcon\Mvc\Model\MetaDataInterface

Writes meta-data to the adapter

2.54.166 Class Phalcon\Mvc\Model\MetaData\Apc

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\DI\InjectionAwareInterface

Stores model meta-data in the APC cache. Data will erased if the web server is restarted By default meta-
data is stored for 48 hours (172800 seconds) You can query the meta-data by printing apc_fetch(‘$PMM$’) or
apc_fetch(‘$PMM$my-app-id’)

<?php

$metaData = new Phalcon\Mvc\Model\Metadata\Apc(array(
'prefix' => 'my-app-id',
'lifetime' => 86400

));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

2.54. API Indice 709



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Apc constructor

public array read (string $key)

Reads meta-data from APC

public write (string $key, array $data)

Writes the meta-data to APC

public reset ()

...

protected _initialize () inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public Phalcon\DiInterface getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\Strategy\Introspection $strategy) inherited from Phal-
con\Mvc\Model\MetaData

Set the meta-data extraction strategy

public Phalcon\Mvc\Model\MetaData\Strategy\Introspection getStrategy () inherited from Phal-
con\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

public array readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots()));

public array readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index, mixed $data, unknown $replace) in-
herited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

710 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public array readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public array getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public array getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public array getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an arrau of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public array getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public array getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public array getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

2.54. API Indice 711



Phalcon PHP Framework Documentation, Release 1.3.0

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public array getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public array getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public array getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public array getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

712 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

print_r($metaData->getColumnMap(new Robots()));

public array getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public boolean hasAttribute (Phalcon\Mvc\ModelInterface $model, string $attribute) inherited from Phal-
con\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public boolean isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

2.54.167 Class Phalcon\Mvc\Model\MetaData\Files

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\DI\InjectionAwareInterface

Stores model meta-data in PHP files.

<?php

$metaData = new \Phalcon\Mvc\Model\Metadata\Files(array(
'metaDataDir' => 'app/cache/metadata/'

));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

2.54. API Indice 713



Phalcon PHP Framework Documentation, Release 1.3.0

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Files constructor

public array read (string $key)

Reads meta-data from files

public write (string $key, array $data)

Writes the meta-data to files

public reset ()

...

protected _initialize () inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public Phalcon\DiInterface getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\Strategy\Introspection $strategy) inherited from Phal-
con\Mvc\Model\MetaData

Set the meta-data extraction strategy

public Phalcon\Mvc\Model\MetaData\Strategy\Introspection getStrategy () inherited from Phal-
con\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

public array readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots()));

public array readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads meta-data for certain model using a MODEL_* constant

714 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index, mixed $data, unknown $replace) in-
herited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public array readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public array getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public array getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public array getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an arrau of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public array getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of not null attributes

2.54. API Indice 715



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public array getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public array getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public array getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public array getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public array getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

716 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public array getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public array getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public boolean hasAttribute (Phalcon\Mvc\ModelInterface $model, string $attribute) inherited from Phal-
con\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public boolean isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

2.54.168 Class Phalcon\Mvc\Model\MetaData\Memory

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\DI\InjectionAwareInterface

Stores model meta-data in memory. Data will be erased when the request finishes

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

2.54. API Indice 717



Phalcon PHP Framework Documentation, Release 1.3.0

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Memory constructor

public array read (string $key)

Reads the meta-data from temporal memory

public write (string $key, unknown $data)

Writes the meta-data to temporal memory

protected _initialize () inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public Phalcon\DiInterface getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\Strategy\Introspection $strategy) inherited from Phal-
con\Mvc\Model\MetaData

Set the meta-data extraction strategy

public Phalcon\Mvc\Model\MetaData\Strategy\Introspection getStrategy () inherited from Phal-
con\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

public array readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots()));

718 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public array readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index, mixed $data, unknown $replace) in-
herited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public array readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public array getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public array getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public array getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an arrau of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public array getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

2.54. API Indice 719



Phalcon PHP Framework Documentation, Release 1.3.0

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public array getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public array getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public array getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public array getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public array getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

720 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public array getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public array getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public boolean hasAttribute (Phalcon\Mvc\ModelInterface $model, string $attribute) inherited from Phal-
con\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public boolean isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

public reset () inherited from Phalcon\Mvc\Model\MetaData

Resets internal meta-data in order to regenerate it

<?php

$metaData->reset();

2.54.169 Class Phalcon\Mvc\Model\MetaData\Session

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\DI\InjectionAwareInterface

2.54. API Indice 721



Phalcon PHP Framework Documentation, Release 1.3.0

Stores model meta-data in session. Data will erased when the session finishes. Meta-data are permanent while the
session is active. You can query the meta-data by printing $_SESSION[’$PMM$’]

<?php

$metaData = new Phalcon\Mvc\Model\Metadata\Session(array(
'prefix' => 'my-app-id'

));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Session constructor

public array read (string $key)

Reads meta-data from $_SESSION

public write (string $key, array $data)

Writes the meta-data to $_SESSION

public reset ()

...

protected _initialize () inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

722 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\DiInterface getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\Strategy\Introspection $strategy) inherited from Phal-
con\Mvc\Model\MetaData

Set the meta-data extraction strategy

public Phalcon\Mvc\Model\MetaData\Strategy\Introspection getStrategy () inherited from Phal-
con\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

public array readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots()));

public array readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index, mixed $data, unknown $replace) in-
herited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public array readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public array getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

2.54. API Indice 723



Phalcon PHP Framework Documentation, Release 1.3.0

public array getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public array getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an arrau of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public array getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public array getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public array getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public array getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public array getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

724 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public array getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public array getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public array getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public boolean hasAttribute (Phalcon\Mvc\ModelInterface $model, string $attribute) inherited from Phal-
con\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public boolean isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

2.54. API Indice 725



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

var_dump($metaData->isEmpty());

2.54.170 Class Phalcon\Mvc\Model\MetaData\Strategy\Annotations

Queries the table meta-data in order to instrospect the model’s metadata

Methods

public array getMetaData (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

The meta-data is obtained by reading the column descriptions from the database information schema

public array getColumnMaps ()

Read the model’s column map, this can’t be inferred

2.54.171 Class Phalcon\Mvc\Model\MetaData\Strategy\Introspection

Phalcon\Mvc\Model\MetaData\Strategy\Instrospection Queries the table meta-data in order to instrospect the model’s
metadata

Methods

public array getMetaData (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

The meta-data is obtained by reading the column descriptions from the database information schema

public array getColumnMaps (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

Read the model’s column map, this can’t be infered

2.54.172 Class Phalcon\Mvc\Model\MetaData\Xcache

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\DI\InjectionAwareInterface

Stores model meta-data in the XCache cache. Data will erased if the web server is restarted By default meta-
data is stored for 48 hours (172800 seconds) You can query the meta-data by printing xcache_get(‘$PMM$’) or
xcache_get(‘$PMM$my-app-id’)

<?php

$metaData = new Phalcon\Mvc\Model\Metadata\Xcache(array(
'prefix' => 'my-app-id',
'lifetime' => 86400

));

726 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Xcache constructor

public array read (string $key)

Reads metadata from XCache

public write (string $key, array $data)

Writes the metadata to XCache

public reset ()

...

protected _initialize () inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public Phalcon\DiInterface getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\Strategy\Introspection $strategy) inherited from Phal-
con\Mvc\Model\MetaData

Set the meta-data extraction strategy

public Phalcon\Mvc\Model\MetaData\Strategy\Introspection getStrategy () inherited from Phal-
con\Mvc\Model\MetaData

2.54. API Indice 727



Phalcon PHP Framework Documentation, Release 1.3.0

Return the strategy to obtain the meta-data

public array readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots()));

public array readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index, mixed $data, unknown $replace) in-
herited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

public array readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, int $index) inherited from Phal-
con\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public array getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public array getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

728 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public array getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an arrau of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public array getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public array getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public array getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public array getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public array getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public array getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

2.54. API Indice 729



Phalcon PHP Framework Documentation, Release 1.3.0

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown $replace)
inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public array getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public array getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phal-
con\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public boolean hasAttribute (Phalcon\Mvc\ModelInterface $model, string $attribute) inherited from Phal-
con\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public boolean isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

2.54.173 Class Phalcon\Mvc\Model\Query

implements Phalcon\Mvc\Model\QueryInterface, Phalcon\DI\InjectionAwareInterface

730 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

This class takes a PHQL intermediate representation and executes it.

<?php

$phql = "SELECT c.price*0.16 AS taxes, c.* FROM Cars AS c JOIN Brands AS b
WHERE b.name = :name: ORDER BY c.name";

$result = $manager->executeQuery($phql, array(
'name' => 'Lamborghini'

));

foreach ($result as $row) {
echo "Name: ", $row->cars->name, "\n";
echo "Price: ", $row->cars->price, "\n";
echo "Taxes: ", $row->taxes, "\n";

}

Constants

integer TYPE_SELECT

integer TYPE_INSERT

integer TYPE_UPDATE

integer TYPE_DELETE

Methods

public __construct (string $phql)

Phalcon\Mvc\Model\Query constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injection container

public Phalcon\DiInterface getDI ()

Returns the dependency injection container

public Phalcon\Mvc\Model\Query setUniqueRow (boolean $uniqueRow)

Tells to the query if only the first row in the resultset must be returned

public boolean getUniqueRow ()

Check if the query is programmed to get only the first row in the resultset

protected string _getQualified ()

Replaces the model’s name to its source name in a qualifed-name expression

protected string _getCallArgument ()

Resolves a expression in a single call argument

protected string _getFunctionCall ()

Resolves a expression in a single call argument

protected string _getExpression ()

Resolves an expression from its intermediate code into a string

2.54. API Indice 731



Phalcon PHP Framework Documentation, Release 1.3.0

protected array _getSelectColumn ()

Resolves a column from its intermediate representation into an array used to determine if the resulset produced is
simple or complex

protected string _getTable ()

Resolves a table in a SELECT statement checking if the model exists

protected array _getJoin ()

Resolves a JOIN clause checking if the associated models exist

protected string _getJoinType ()

Resolves a JOIN type

protected array _getSingleJoin ()

Resolves joins involving has-one/belongs-to/has-many relations

protected array _getMultiJoin ()

Resolves joins involving many-to-many relations

protected array _getJoins ()

Processes the JOINs in the query returning an internal representation for the database dialect

protected string _getOrderClause ()

Returns a processed order clause for a SELECT statement

protected string _getGroupClause ()

Returns a processed group clause for a SELECT statement

protected _getLimitClause ()

...

protected array _prepareSelect ()

Analyzes a SELECT intermediate code and produces an array to be executed later

protected array _prepareInsert ()

Analyzes an INSERT intermediate code and produces an array to be executed later

protected array _prepareUpdate ()

Analyzes an UPDATE intermediate code and produces an array to be executed later

protected array _prepareDelete ()

Analyzes a DELETE intermediate code and produces an array to be executed later

public array parse ()

Parses the intermediate code produced by Phalcon\Mvc\Model\Query\Lang generating another intermediate represen-
tation that could be executed by Phalcon\Mvc\Model\Query

public Phalcon\Mvc\Model\Query cache (array $cacheOptions)

Sets the cache parameters of the query

public getCacheOptions ()

Returns the current cache options

public Phalcon\Cache\BackendInterface getCache ()

732 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the current cache backend instance

protected Phalcon\Mvc\Model\ResultsetInterface _executeSelect ()

Executes the SELECT intermediate representation producing a Phalcon\Mvc\Model\Resultset

protected Phalcon\Mvc\Model\Query\StatusInterface _executeInsert ()

Executes the INSERT intermediate representation producing a Phalcon\Mvc\Model\Query\Status

protected Phalcon\Mvc\Model\ResultsetInterface _getRelatedRecords ()

Query the records on which the UPDATE/DELETE operation well be done

protected Phalcon\Mvc\Model\Query\StatusInterface _executeUpdate ()

Executes the UPDATE intermediate representation producing a Phalcon\Mvc\Model\Query\Status

protected Phalcon\Mvc\Model\Query\StatusInterface _executeDelete ()

Executes the DELETE intermediate representation producing a Phalcon\Mvc\Model\Query\Status

public mixed execute ([array $bindParams], [array $bindTypes])

Executes a parsed PHQL statement

public halconMvcModelInterface getSingleResult ([array $bindParams], [array $bindTypes])

Executes the query returning the first result

public Phalcon\Mvc\Model\Query setType (int $type)

Sets the type of PHQL statement to be executed

public int getType ()

Gets the type of PHQL statement executed

public Phalcon\Mvc\Model\Query setBindParams (array $bindParams)

Set default bind parameters

public array getBindParams ()

Returns default bind params

public Phalcon\Mvc\Model\Query setBindTypes (array $bindTypes)

Set default bind parameters

public array getBindTypes ()

Returns default bind types

public Phalcon\Mvc\Model\Query setIntermediate (array $intermediate)

Allows to set the IR to be executed

public array getIntermediate ()

Returns the intermediate representation of the PHQL statement

2.54.174 Class Phalcon\Mvc\Model\Query\Builder

implements Phalcon\Mvc\Model\Query\BuilderInterface, Phalcon\DI\InjectionAwareInterface

Helps to create PHQL queries using an OO interface

2.54. API Indice 733



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$resultset = $this->modelsManager->createBuilder()
->from('Robots')
->join('RobotsParts')
->limit(20)
->orderBy('Robots.name')
->getQuery()
->execute();

Methods

public __construct ([array $params])

Phalcon\Mvc\Model\Query\Builder constructor

<?php

$params = array(
'models' => array('Users'),
'columns' => array('id', 'name', 'status'),
'conditions' => array(

array(
"created > :min: AND created < :max:",
array("min" => '2013-01-01', 'max' => '2014-01-01'),
array("min" => PDO::PARAM_STR, 'max' => PDO::PARAM_STR),

),
),
// or 'conditions' => "created > '2013-01-01' AND created < '2014-01-01'",
'group' => array('id', 'name'),
'having' => "name = 'Kamil'",
'order' => array('name', 'id'),
'limit' => 20,
'offset' => 20,
// or 'limit' => array(20, 20),

);
$queryBuilder = new Phalcon\Mvc\Model\Query\Builder($params);

public Phalcon\Mvc\Model\Query\BuilderInterface distinct (unknown $distinct)

Sets SELECT DISTINCT / SELECT ALL flag

public bool getDistinct ()

Returns SELECT DISTINCT / SELECT ALL flag

public Phalcon\Mvc\Model\Query\Builder setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\DiInterface getDI ()

Returns the DependencyInjector container

public Phalcon\Mvc\Model\Query\Builder columns (string|array $columns)

Sets the columns to be queried

<?php

$builder->columns(array('id', 'name'));

734 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string|array getColumns ()

Return the columns to be queried

public Phalcon\Mvc\Model\Query\Builder from (string|array $models)

Sets the models who makes part of the query

<?php

$builder->from('Robots');
$builder->from(array('Robots', 'RobotsParts'));

public Phalcon\Mvc\Model\Query\Builder addFrom (string $model, [string $alias])

Add a model to take part of the query

<?php

$builder->addFrom('Robots', 'r');

public string|array getFrom ()

Return the models who makes part of the query

public Phalcon\Mvc\Model\Query\Builder join (string $model, [string $conditions], [string $alias])

Adds a INNER join to the query

<?php

$builder->join('Robots');
$builder->join('Robots', 'r.id = RobotsParts.robots_id');
$builder->join('Robots', 'r.id = RobotsParts.robots_id', 'r');
$builder->join('Robots', 'r.id = RobotsParts.robots_id', 'r', 'LEFT');

public Phalcon\Mvc\Model\Query\Builder innerJoin (string $model, [string $conditions], [string $alias])

Adds a INNER join to the query

<?php

$builder->innerJoin('Robots');
$builder->innerJoin('Robots', 'r.id = RobotsParts.robots_id');
$builder->innerJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');
$builder->innerJoin('Robots', 'r.id = RobotsParts.robots_id', 'r', 'LEFT');

public Phalcon\Mvc\Model\Query\Builder leftJoin (string $model, [string $conditions], [string $alias])

Adds a LEFT join to the query

<?php

$builder->leftJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public Phalcon\Mvc\Model\Query\Builder rightJoin (string $model, [string $conditions], [string $alias])

Adds a RIGHT join to the query

<?php

$builder->rightJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

2.54. API Indice 735



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Mvc\Model\Query\Builder where (string $conditions, [array $bindParams], [array $bindTypes])

Sets the query conditions

<?php

$builder->where('name = "Peter"');
$builder->where('name = :name: AND id > :id:', array('name' => 'Peter', 'id' => 100));

public Phalcon\Mvc\Model\Query\Builder andWhere (string $conditions, [array $bindParams], [array $bindTypes])

Appends a condition to the current conditions using a AND operator

<?php

$builder->andWhere('name = "Peter"');
$builder->andWhere('name = :name: AND id > :id:', array('name' => 'Peter', 'id' => 100));

public Phalcon\Mvc\Model\Query\Builder orWhere (string $conditions, [array $bindParams], [array $bindTypes])

Appends a condition to the current conditions using a OR operator

<?php

$builder->orWhere('name = "Peter"');
$builder->orWhere('name = :name: AND id > :id:', array('name' => 'Peter', 'id' => 100));

public Phalcon\Mvc\Model\Query\Builder betweenWhere (string $expr, mixed $minimum, mixed $maximum)

Appends a BETWEEN condition to the current conditions

<?php

$builder->betweenWhere('price', 100.25, 200.50);

public Phalcon\Mvc\Model\Query\Builder notBetweenWhere (string $expr, mixed $minimum, mixed $maximum)

Appends a NOT BETWEEN condition to the current conditions

<?php

$builder->notBetweenWhere('price', 100.25, 200.50);

public Phalcon\Mvc\Model\Query\Builder inWhere (string $expr, array $values)

Appends an IN condition to the current conditions

<?php

$builder->inWhere('id', [1, 2, 3]);

public Phalcon\Mvc\Model\Query\Builder notInWhere (string $expr, array $values)

Appends a NOT IN condition to the current conditions

<?php

$builder->notInWhere('id', [1, 2, 3]);

public string|array getWhere ()

Return the conditions for the query

public Phalcon\Mvc\Model\Query\Builder orderBy (string $orderBy)

736 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets a ORDER BY condition clause

<?php

$builder->orderBy('Robots.name');
$builder->orderBy(array('1', 'Robots.name'));

public string|array getOrderBy ()

Returns the set ORDER BY clause

public Phalcon\Mvc\Model\Query\Builder having (string $having)

Sets a HAVING condition clause. You need to escape PHQL reserved words using [ and ] delimiters

<?php

$builder->having('SUM(Robots.price) > 0');

public string|array getHaving ()

Return the current having clause

public Phalcon\Mvc\Model\Query\Builder limit (int $limit, [int $offset])

Sets a LIMIT clause, optionally a offset clause

<?php

$builder->limit(100);
$builder->limit(100, 20);

public string|array getLimit ()

Returns the current LIMIT clause

public Phalcon\Mvc\Model\Query\Builder offset (int $offset)

Sets an OFFSET clause

<?php

$builder->offset(30);

public string|array getOffset ()

Returns the current OFFSET clause

public Phalcon\Mvc\Model\Query\Builder groupBy (string $group)

Sets a GROUP BY clause

<?php

$builder->groupBy(array('Robots.name'));

public string getGroupBy ()

Returns the GROUP BY clause

public string getPhql ()

Returns a PHQL statement built based on the builder parameters

public Phalcon\Mvc\Model\Query getQuery ()

Returns the query built

2.54. API Indice 737



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.175 Abstract class Phalcon\Mvc\Model\Query\Lang

PHQL is implemented as a parser (written in C) that translates syntax in that of the target RDBMS. It allows Phalcon
to offer a unified SQL language to the developer, while internally doing all the work of translating PHQL instructions
to the most optimal SQL instructions depending on the RDBMS type associated with a model. To achieve the highest
performance possible, we wrote a parser that uses the same technology as SQLite. This technology provides a small
in-memory parser with a very low memory footprint that is also thread-safe.

<?php

$intermediate = Phalcon\Mvc\Model\Query\Lang::parsePHQL("SELECT r.* FROM Robots r LIMIT 10");

Methods

public static string parsePHQL (string $phql)

Parses a PHQL statement returning an intermediate representation (IR)

2.54.176 Class Phalcon\Mvc\Model\Query\Status

implements Phalcon\Mvc\Model\Query\StatusInterface

This class represents the status returned by a PHQL statement like INSERT, UPDATE or DELETE. It offers context
information and the related messages produced by the model which finally executes the operations when it fails

<?php

$phql = "UPDATE Robots SET name = :name:, type = :type:, year = :year: WHERE id = :id:";
$status = $app->modelsManager->executeQuery($phql, array(

'id' => 100,
'name' => 'Astroy Boy',
'type' => 'mechanical',
'year' => 1959

));

//Check if the update was successful
if ($status->success() == true) {
echo 'OK';

}

Methods

public __construct (boolean $success, Phalcon\Mvc\ModelInterface $model)

public Phalcon\Mvc\ModelInterface getModel ()

Returns the model that executed the action

public Phalcon\Mvc\Model\MessageInterface [] getMessages ()

Returns the messages produced by a failed operation

public boolean success ()

Allows to check if the executed operation was successful

738 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.177 Class Phalcon\Mvc\Model\Relation

implements Phalcon\Mvc\Model\RelationInterface

This class represents a relationship between two models

Constants

integer BELONGS_TO

integer HAS_ONE

integer HAS_MANY

integer HAS_ONE_THROUGH

integer HAS_MANY_THROUGH

integer NO_ACTION

integer ACTION_RESTRICT

integer ACTION_CASCADE

Methods

public __construct (int $type, string $referencedModel, string|array $fields, string|array $referencedFields, [array
$options])

Phalcon\Mvc\Model\Relation constructor

public setIntermediateRelation (string|array $intermediateFields, string $intermediateModel, string $intermedi-
ateReferencedFields)

Sets the intermediate model data for has-*-through relations

public int getType ()

Returns the relation type

public string getReferencedModel ()

Returns the referenced model

public string|array getFields ()

Returns the fields

public string|array getReferencedFields ()

Returns the referenced fields

public string|array getOptions ()

Returns the options

public string|array isForeignKey ()

Check whether the relation act as a foreign key

public string|array getForeignKey ()

Returns the foreign key configuration

public boolean isThrough ()

2.54. API Indice 739



Phalcon PHP Framework Documentation, Release 1.3.0

Check whether the relation is a ‘many-to-many’ relation or not

public boolean isReusable ()

Check if records returned by getting belongs-to/has-many are implicitly cached during the current request

public string|array getIntermediateFields ()

Gets the intermediate fields for has-*-through relations

public string getIntermediateModel ()

Gets the intermediate model for has-*-through relations

public string|array getIntermediateReferencedFields ()

Gets the intermediate referenced fields for has-*-through relations

2.54.178 Abstract class Phalcon\Mvc\Model\Resultset

implements Phalcon\Mvc\Model\ResultsetInterface, Iterator, Traversable, SeekableIterator, Countable, ArrayAccess,
Serializable

This component allows to Phalcon\Mvc\Model returns large resulsets with the minimum memory consumption Re-
sulsets can be traversed using a standard foreach or a while statement. If a resultset is serialized it will dump all the
rows into a big array. Then unserialize will retrieve the rows as they were before serializing.

<?php

//Using a standard foreach
$robots = Robots::find(array("type='virtual'", "order" => "name"));
foreach ($robots as $robot) {
echo $robot->name, "\n";

}

//Using a while
$robots = Robots::find(array("type='virtual'", "order" => "name"));
$robots->rewind();
while ($robots->valid()) {
$robot = $robots->current();
echo $robot->name, "\n";
$robots->next();

}

Constants

integer TYPE_RESULT_FULL

integer TYPE_RESULT_PARTIAL

integer HYDRATE_RECORDS

integer HYDRATE_OBJECTS

integer HYDRATE_ARRAYS

Methods

public next ()

740 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Moves cursor to next row in the resultset

public int key ()

Gets pointer number of active row in the resultset

public rewind ()

Rewinds resultset to its beginning

public seek (int $position)

Changes internal pointer to a specific position in the resultset

public int count ()

Counts how many rows are in the resultset

public boolean offsetExists (unknown $property)

Checks whether offset exists in the resultset

public Phalcon\Mvc\ModelInterface offsetGet (unknown $property)

Gets row in a specific position of the resultset

public offsetSet (unknown $property, Phalcon\Mvc\ModelInterface $value)

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public offsetUnset (unknown $property)

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public int getType ()

Returns the internal type of data retrieval that the resultset is using

public Phalcon\Mvc\ModelInterface getFirst ()

Get first row in the resultset

public Phalcon\Mvc\ModelInterface getLast ()

Get last row in the resultset

public Phalcon\Mvc\Model\Resultset setIsFresh (boolean $isFresh)

Set if the resultset is fresh or an old one cached

public boolean isFresh ()

Tell if the resultset if fresh or an old one cached

public Phalcon\Mvc\Model\Resultset setHydrateMode (int $hydrateMode)

Sets the hydration mode in the resultset

public int getHydrateMode ()

Returns the current hydration mode

public Phalcon\Cache\BackendInterface getCache ()

Returns the associated cache for the resultset

public Phalcon\Mvc\ModelInterface current ()

Returns current row in the resultset

public Phalcon\Mvc\Model\MessageInterface [] getMessages ()

2.54. API Indice 741



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the error messages produced by a batch operation

public boolean delete ([Closure $conditionCallback])

Deletes every record in the resultset

public Phalcon\Mvc\Model [] filter (callback $filter)

Filters a resultset returning only those the developer requires

<?php

$filtered = $robots->filter(function($robot){
if ($robot->id < 3) {

return $robot;
}

});

abstract public array toArray () inherited from Phalcon\Mvc\Model\ResultsetInterface

Returns a complete resultset as an array, if the resultset has a big number of rows it could consume more memory than
currently it does.

abstract public valid () inherited from Iterator

...

abstract public serialize () inherited from Serializable

...

abstract public unserialize (unknown $serialized) inherited from Serializable

...

2.54.179 Class Phalcon\Mvc\Model\Resultset\Complex

extends abstract class Phalcon\Mvc\Model\Resultset

implements Serializable, ArrayAccess, Countable, SeekableIterator, Traversable, Iterator, Phal-
con\Mvc\Model\ResultsetInterface

Complex resultsets may include complete objects and scalar values. This class builds every complex row as it is
required

Constants

integer TYPE_RESULT_FULL

integer TYPE_RESULT_PARTIAL

integer HYDRATE_RECORDS

integer HYDRATE_OBJECTS

integer HYDRATE_ARRAYS

742 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct (array $columnsTypes, Phalcon\Db\ResultInterface $result, [Phalcon\Cache\BackendInterface
$cache])

Phalcon\Mvc\Model\Resultset\Complex constructor

public boolean valid ()

Check whether internal resource has rows to fetch

public array toArray ()

Returns a complete resultset as an array, if the resultset has a big number of rows it could consume more memory than
currently it does.

public string serialize ()

Serializing a resultset will dump all related rows into a big array

public unserialize ([unknown $serialized])

Unserializing a resultset will allow to only works on the rows present in the saved state

public next () inherited from Phalcon\Mvc\Model\Resultset

Moves cursor to next row in the resultset

public int key () inherited from Phalcon\Mvc\Model\Resultset

Gets pointer number of active row in the resultset

public rewind () inherited from Phalcon\Mvc\Model\Resultset

Rewinds resultset to its beginning

public seek (int $position) inherited from Phalcon\Mvc\Model\Resultset

Changes internal pointer to a specific position in the resultset

public int count () inherited from Phalcon\Mvc\Model\Resultset

Counts how many rows are in the resultset

public boolean offsetExists (unknown $property) inherited from Phalcon\Mvc\Model\Resultset

Checks whether offset exists in the resultset

public Phalcon\Mvc\ModelInterface offsetGet (unknown $property) inherited from Phalcon\Mvc\Model\Resultset

Gets row in a specific position of the resultset

public offsetSet (unknown $property, Phalcon\Mvc\ModelInterface $value) inherited from Phal-
con\Mvc\Model\Resultset

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public offsetUnset (unknown $property) inherited from Phalcon\Mvc\Model\Resultset

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public int getType () inherited from Phalcon\Mvc\Model\Resultset

Returns the internal type of data retrieval that the resultset is using

public Phalcon\Mvc\ModelInterface getFirst () inherited from Phalcon\Mvc\Model\Resultset

Get first row in the resultset

public Phalcon\Mvc\ModelInterface getLast () inherited from Phalcon\Mvc\Model\Resultset

2.54. API Indice 743



Phalcon PHP Framework Documentation, Release 1.3.0

Get last row in the resultset

public Phalcon\Mvc\Model\Resultset setIsFresh (boolean $isFresh) inherited from Phalcon\Mvc\Model\Resultset

Set if the resultset is fresh or an old one cached

public boolean isFresh () inherited from Phalcon\Mvc\Model\Resultset

Tell if the resultset if fresh or an old one cached

public Phalcon\Mvc\Model\Resultset setHydrateMode (int $hydrateMode) inherited from Phal-
con\Mvc\Model\Resultset

Sets the hydration mode in the resultset

public int getHydrateMode () inherited from Phalcon\Mvc\Model\Resultset

Returns the current hydration mode

public Phalcon\Cache\BackendInterface getCache () inherited from Phalcon\Mvc\Model\Resultset

Returns the associated cache for the resultset

public Phalcon\Mvc\ModelInterface current () inherited from Phalcon\Mvc\Model\Resultset

Returns current row in the resultset

public Phalcon\Mvc\Model\MessageInterface [] getMessages () inherited from Phalcon\Mvc\Model\Resultset

Returns the error messages produced by a batch operation

public boolean delete ([Closure $conditionCallback]) inherited from Phalcon\Mvc\Model\Resultset

Deletes every record in the resultset

public Phalcon\Mvc\Model [] filter (callback $filter) inherited from Phalcon\Mvc\Model\Resultset

Filters a resultset returning only those the developer requires

<?php

$filtered = $robots->filter(function($robot){
if ($robot->id < 3) {

return $robot;
}

});

2.54.180 Class Phalcon\Mvc\Model\Resultset\Simple

extends abstract class Phalcon\Mvc\Model\Resultset

implements Serializable, ArrayAccess, Countable, SeekableIterator, Traversable, Iterator, Phal-
con\Mvc\Model\ResultsetInterface

Simple resultsets only contains complete objects. This class builds every complete object as it is required

Constants

integer TYPE_RESULT_FULL

integer TYPE_RESULT_PARTIAL

integer HYDRATE_RECORDS

744 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

integer HYDRATE_OBJECTS

integer HYDRATE_ARRAYS

Methods

public __construct (array $columnMap, Phalcon\Mvc\ModelInterface $model, Phalcon\Db\Result\Pdo $result,
[Phalcon\Cache\BackendInterface $cache], [boolean $keepSnapshots])

Phalcon\Mvc\Model\Resultset\Simple constructor

public boolean valid ()

Check whether the internal resource has rows to fetch

public array toArray ([boolean $renameColumns])

Returns a complete resultset as an array, if the resultset has a big number of rows it could consume more memory than
it currently does. Exporting the resultset to an array couldn’t be faster with a large number of records

public string serialize ()

Serializing a resultset will dump all related rows into a big array

public unserialize ([unknown $serialized])

Unserializing a resultset only works on the rows present in the saved state

public next () inherited from Phalcon\Mvc\Model\Resultset

Moves cursor to next row in the resultset

public int key () inherited from Phalcon\Mvc\Model\Resultset

Gets pointer number of active row in the resultset

public rewind () inherited from Phalcon\Mvc\Model\Resultset

Rewinds resultset to its beginning

public seek (int $position) inherited from Phalcon\Mvc\Model\Resultset

Changes internal pointer to a specific position in the resultset

public int count () inherited from Phalcon\Mvc\Model\Resultset

Counts how many rows are in the resultset

public boolean offsetExists (unknown $property) inherited from Phalcon\Mvc\Model\Resultset

Checks whether offset exists in the resultset

public Phalcon\Mvc\ModelInterface offsetGet (unknown $property) inherited from Phalcon\Mvc\Model\Resultset

Gets row in a specific position of the resultset

public offsetSet (unknown $property, Phalcon\Mvc\ModelInterface $value) inherited from Phal-
con\Mvc\Model\Resultset

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public offsetUnset (unknown $property) inherited from Phalcon\Mvc\Model\Resultset

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public int getType () inherited from Phalcon\Mvc\Model\Resultset

Returns the internal type of data retrieval that the resultset is using

2.54. API Indice 745



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Mvc\ModelInterface getFirst () inherited from Phalcon\Mvc\Model\Resultset

Get first row in the resultset

public Phalcon\Mvc\ModelInterface getLast () inherited from Phalcon\Mvc\Model\Resultset

Get last row in the resultset

public Phalcon\Mvc\Model\Resultset setIsFresh (boolean $isFresh) inherited from Phalcon\Mvc\Model\Resultset

Set if the resultset is fresh or an old one cached

public boolean isFresh () inherited from Phalcon\Mvc\Model\Resultset

Tell if the resultset if fresh or an old one cached

public Phalcon\Mvc\Model\Resultset setHydrateMode (int $hydrateMode) inherited from Phal-
con\Mvc\Model\Resultset

Sets the hydration mode in the resultset

public int getHydrateMode () inherited from Phalcon\Mvc\Model\Resultset

Returns the current hydration mode

public Phalcon\Cache\BackendInterface getCache () inherited from Phalcon\Mvc\Model\Resultset

Returns the associated cache for the resultset

public Phalcon\Mvc\ModelInterface current () inherited from Phalcon\Mvc\Model\Resultset

Returns current row in the resultset

public Phalcon\Mvc\Model\MessageInterface [] getMessages () inherited from Phalcon\Mvc\Model\Resultset

Returns the error messages produced by a batch operation

public boolean delete ([Closure $conditionCallback]) inherited from Phalcon\Mvc\Model\Resultset

Deletes every record in the resultset

public Phalcon\Mvc\Model [] filter (callback $filter) inherited from Phalcon\Mvc\Model\Resultset

Filters a resultset returning only those the developer requires

<?php

$filtered = $robots->filter(function($robot){
if ($robot->id < 3) {

return $robot;
}

});

2.54.181 Class Phalcon\Mvc\Model\Row

implements ArrayAccess, Countable, Phalcon\Mvc\Model\ResultInterface

This component allows Phalcon\Mvc\Model to return rows without an associated entity. This objects implements the
ArrayAccess interface to allow access the object as object->x or array[x].

746 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public setDirtyState (int $dirtyState)

Set the current object’s state

public boolean offsetExists (int $index)

Checks whether offset exists in the row

public string|PhalconMvcModelInterface offsetGet (int $index)

Gets a record in a specific position of the row

public offsetSet (int $index, Phalcon\Mvc\ModelInterface $value)

Rows cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public offsetUnset (int $offset)

Rows cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public array toArray ()

Returns the instance as an array representation

public int count ()

Counts how many properties were added to the row

2.54.182 Class Phalcon\Mvc\Model\Transaction

implements Phalcon\Mvc\Model\TransactionInterface

Transactions are protective blocks where SQL statements are only permanent if they can all succeed as one atomic
action. Phalcon\Transaction is intended to be used with Phalcon_Model_Base. Phalcon Transactions should be created
using Phalcon\Transaction\Manager.

<?php

try {

$manager = new Phalcon\Mvc\Model\Transaction\Manager();

$transaction = $manager->get();

$robot = new Robots();
$robot->setTransaction($transaction);
$robot->name = 'WALL·E';
$robot->created_at = date('Y-m-d');
if ($robot->save() == false) {
$transaction->rollback("Can't save robot");

}

$robotPart = new RobotParts();
$robotPart->setTransaction($transaction);
$robotPart->type = 'head';
if ($robotPart->save() == false) {
$transaction->rollback("Can't save robot part");

}

$transaction->commit();

2.54. API Indice 747



Phalcon PHP Framework Documentation, Release 1.3.0

} catch(Phalcon\Mvc\Model\Transaction\Failed $e) {
echo 'Failed, reason: ', $e->getMessage();

}

Methods

public __construct (Phalcon\DiInterface $dependencyInjector, [boolean $autoBegin], [string $service])

Phalcon\Mvc\Model\Transaction constructor

public setTransactionManager (Phalcon\Mvc\Model\Transaction\ManagerInterface $manager)

Sets transaction manager related to the transaction

public boolean begin ()

Starts the transaction

public boolean commit ()

Commits the transaction

public boolean rollback ([string $rollbackMessage], [Phalcon\Mvc\ModelInterface $rollbackRecord])

Rolls back the transaction

public Phalcon\Db\AdapterInterface getConnection ()

Returns the connection related to transaction

public setIsNewTransaction (boolean $isNew)

Sets if is a reused transaction or new once

public setRollbackOnAbort (boolean $rollbackOnAbort)

Sets flag to rollback on abort the HTTP connection

public boolean isManaged ()

Checks whether transaction is managed by a transaction manager

public array getMessages ()

Returns validations messages from last save try

public boolean isValid ()

Checks whether internal connection is under an active transaction

public setRollbackedRecord (Phalcon\Mvc\ModelInterface $record)

Sets object which generates rollback action

2.54.183 Class Phalcon\Mvc\Model\Transaction\Exception

extends class Phalcon\Mvc\Model\Exception

Exceptions thrown in Phalcon\Mvc\Model\Transaction will use this class

748 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.184 Class Phalcon\Mvc\Model\Transaction\Failed

extends class Phalcon\Mvc\Model\Transaction\Exception

This class will be thrown to exit a try/catch block for isolated transactions

Methods

public __construct (string $message, Phalcon\Mvc\ModelInterface $record)

Phalcon\Mvc\Model\Transaction\Failed constructor

public Phalcon\Mvc\Model\MessageInterface [] getRecordMessages ()

Returns validation record messages which stop the transaction

public Phalcon\Mvc\ModelInterface getRecord ()

Returns validation record messages which stop the transaction

final private Exception __clone () inherited from Exception

Clone the exception

2.54. API Indice 749



Phalcon PHP Framework Documentation, Release 1.3.0

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.185 Class Phalcon\Mvc\Model\Transaction\Manager

implements Phalcon\Mvc\Model\Transaction\ManagerInterface, Phalcon\DI\InjectionAwareInterface

A transaction acts on a single database connection. If you have multiple class-specific databases, the transaction will
not protect interaction among them. This class manages the objects that compose a transaction. A trasaction produces
a unique connection that is passed to every object part of the transaction.

<?php

try {

use Phalcon\Mvc\Model\Transaction\Manager as TransactionManager;

$transactionManager = new TransactionManager();

$transaction = $transactionManager->get();

$robot = new Robots();
$robot->setTransaction($transaction);
$robot->name = 'WALL·E';
$robot->created_at = date('Y-m-d');
if($robot->save()==false){
$transaction->rollback("Can't save robot");

}

$robotPart = new RobotParts();
$robotPart->setTransaction($transaction);
$robotPart->type = 'head';
if($robotPart->save()==false){
$transaction->rollback("Can't save robot part");

750 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

}

$transaction->commit();

}
catch(Phalcon\Mvc\Model\Transaction\Failed $e){

echo 'Failed, reason: ', $e->getMessage();
}

Methods

public __construct ([Phalcon\DiInterface $dependencyInjector])

Phalcon\Mvc\Model\Transaction\Manager constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injection container

public Phalcon\DiInterface getDI ()

Returns the dependency injection container

public Phalcon\Mvc\Model\Transaction\Manager setDbService (string $service)

Sets the database service used to run the isolated transactions

public string getDbService ()

Returns the database service used to isolate the transaction

public Phalcon\Mvc\Model\Transaction\Manager setRollbackPendent (boolean $rollbackPendent)

Set if the transaction manager must register a shutdown function to clean up pendent transactions

public boolean getRollbackPendent ()

Check if the transaction manager is registering a shutdown function to clean up pendent transactions

public boolean has ()

Checks whether the manager has an active transaction

public Phalcon\Mvc\Model\TransactionInterface get ([boolean $autoBegin])

Returns a new Phalcon\Mvc\Model\Transaction or an already created once This method registers a shutdown function
to rollback active connections

public Phalcon\Mvc\Model\TransactionInterface getOrCreateTransaction ([boolean $autoBegin])

Create/Returns a new transaction or an existing one

public rollbackPendent ()

Rollbacks active transactions within the manager

public commit ()

Commmits active transactions within the manager

public rollback ([boolean $collect])

Rollbacks active transactions within the manager Collect will remove transaction from the manager

public notifyRollback (Phalcon\Mvc\Model\TransactionInterface $transaction)

Notifies the manager about a rollbacked transaction

2.54. API Indice 751



Phalcon PHP Framework Documentation, Release 1.3.0

public notifyCommit (Phalcon\Mvc\Model\TransactionInterface $transaction)

Notifies the manager about a commited transaction

protected _collectTransaction ()

Removes transactions from the TransactionManager

public collectTransactions ()

Remove all the transactions from the manager

2.54.186 Class Phalcon\Mvc\Model\ValidationFailed

extends class Phalcon\Mvc\Model\Exception

This exception is generated when a model fails to save a record Phalcon\Mvc\Model must be set up to have this
behavior

Methods

public __construct (Phalcon\Mvc\Model $model, Phalcon\Mvc\Model\Message[] $validationMessages)

Phalcon\Mvc\Model\ValidationFailed constructor

public Phalcon\Mvc\Model\Message [] getMessages ()

Returns the complete group of messages produced in the validation

public Phalcon\Mvc\Model getModel ()

Returns the model that generated the messages

final private Exception __clone () inherited from Exception

Clone the exception

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

752 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

String representation of the exception

2.54.187 Abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

This is a base class for Phalcon\Mvc\Model validators

Methods

public __construct (array $options)

Phalcon\Mvc\Model\Validator constructor

protected appendMessage ()

Appends a message to the validator

public array getMessages ()

Returns messages generated by the validator

public array getOptions ()

Returns all the options from the validator

public mixed getOption ()

Returns an option

public boolean isSetOption ()

Check whether a option has been defined in the validator options

abstract public boolean validate (Phalcon\Mvc\ModelInterface $record) inherited from Phal-
con\Mvc\Model\ValidatorInterface

Executes the validator

2.54.188 Class Phalcon\Mvc\Model\Validator\Email

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Allows to validate if email fields has correct values

<?php

use Phalcon\Mvc\Model\Validator\Email as EmailValidator;

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new EmailValidator(array(
'field' => 'electronic_mail'

)));
if ($this->validationHasFailed() == true) {

return false;

2.54. API Indice 753



Phalcon PHP Framework Documentation, Release 1.3.0

}
}

}

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.189 Class Phalcon\Mvc\Model\Validator\Exclusionin

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Phalcon\Mvc\Model\Validator\ExclusionIn Check if a value is not included into a list of values

<?php

use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionInValidator;

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new ExclusionInValidator(array(
'field' => 'status',
'domain' => array('A', 'I')

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

754 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

}

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.190 Class Phalcon\Mvc\Model\Validator\Inclusionin

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Phalcon\Mvc\Model\Validator\InclusionIn Check if a value is included into a list of values

<?php

use Phalcon\Mvc\Model\Validator\InclusionIn as InclusionInValidator;

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new InclusionInValidator(array(
'field' => 'status',
'domain' => array('A', 'I')

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

2.54. API Indice 755



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.191 Class Phalcon\Mvc\Model\Validator\Numericality

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Allows to validate if a field has a valid numeric format

<?php

use Phalcon\Mvc\Model\Validator\Numericality as NumericalityValidator;

class Products extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new NumericalityValidator(array(
'field' => 'price'

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

756 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.192 Class Phalcon\Mvc\Model\Validator\PresenceOf

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Allows to validate if a filed have a value different of null and empty string (“”)

<?php

use Phalcon\Mvc\Model\Validator\PresenceOf;

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new PresenceOf(array(
'field' => 'name',
'message' => 'The name is required'

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

2.54. API Indice 757



Phalcon PHP Framework Documentation, Release 1.3.0

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.193 Class Phalcon\Mvc\Model\Validator\Regex

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Allows validate if the value of a field matches a regular expression

<?php

use Phalcon\Mvc\Model\Validator\Regex as RegexValidator;

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new RegexValidator(array(
'field' => 'created_at',
'pattern' => '/^[0-9]{4}[-\/](0[1-9]|1[12])[-\/](0[1-9]|[12][0-9]|3[01])$/'

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

758 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.194 Class Phalcon\Mvc\Model\Validator\StringLength

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Simply validates specified string length constraints

<?php

use Phalcon\Mvc\Model\Validator\StringLength as StringLengthValidator;

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new StringLengthValidator(array(
'field' => 'name_last',
'max' => 50,
'min' => 2,
'messageMaximum' => 'We don\'t like really long names',
'messageMinimum' => 'We want more than just their initials'

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

2.54. API Indice 759



Phalcon PHP Framework Documentation, Release 1.3.0

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.195 Class Phalcon\Mvc\Model\Validator\Uniqueness

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Validates that a field or a combination of a set of fields are not present more than once in the existing records of the
related table

<?php

use Phalcon\Mvc\Model\Validator\Uniqueness as Uniqueness;

class Subscriptors extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new Uniqueness(array(
'field' => 'email'

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

760 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.196 Class Phalcon\Mvc\Model\Validator\Url

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Allows to validate if a field has a url format

<?php

use Phalcon\Mvc\Model\Validator\Url as UrlValidator;

class Posts extends Phalcon\Mvc\Model
{

public function validation()
{

$this->validate(new UrlValidator(array(
'field' => 'source_url'

)));
if ($this->validationHasFailed() == true) {

return false;
}

}

}

Methods

public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage () inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public array getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public mixed getOption () inherited from Phalcon\Mvc\Model\Validator

Returns an option

2.54. API Indice 761



Phalcon PHP Framework Documentation, Release 1.3.0

public boolean isSetOption () inherited from Phalcon\Mvc\Model\Validator

Check whether a option has been defined in the validator options

2.54.197 Class Phalcon\Mvc\Router

implements Phalcon\Mvc\RouterInterface, Phalcon\DI\InjectionAwareInterface

Phalcon\Mvc\Router is the standard framework router. Routing is the process of taking a URI endpoint (that part of
the URI which comes after the base URL) and decomposing it into parameters to determine which module, controller,
and action of that controller should receive the request

<?php

$router = new Phalcon\Mvc\Router();

$router->add(
"/documentation/{chapter}/{name}.{type:[a-z]+}",
array(

"controller" => "documentation",
"action" => "show"

)
);

$router->handle();

echo $router->getControllerName();

Constants

integer URI_SOURCE_GET_URL

integer URI_SOURCE_SERVER_REQUEST_URI

Methods

public __construct ([boolean $defaultRoutes])

Phalcon\Mvc\Router constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public string getRewriteUri ()

Get rewrite info. This info is read from $_GET[’_url’]. This returns ‘/’ if the rewrite information cannot be read

public Phalcon\Mvc\Router setUriSource (int $uriSource)

Sets the URI source. One of the URI_SOURCE_* constants

<?php

$router->setUriSource(Router::URI_SOURCE_SERVER_REQUEST_URI);

762 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public Phalcon\Mvc\Router removeExtraSlashes (boolean $remove)

Set whether router must remove the extra slashes in the handled routes

public Phalcon\Mvc\Router setDefaultNamespace (string $namespaceName)

Sets the name of the default namespace

public string getDefaultNamespace ()

Returns the name of the default namespace

public Phalcon\Mvc\Router setDefaultModule (string $moduleName)

Sets the name of the default module

public string getDefaultModule ()

Returns the name of the default module

public Phalcon\Mvc\Router setDefaultController (string $controllerName)

Sets the default controller name

public string getDefaultController ()

Returns the default controller name

public Phalcon\Mvc\Router setDefaultAction (string $actionName)

Sets the default action name

public string getDefaultAction ()

Returns the default action name

public Phalcon\Mvc\Router setDefaults (array $defaults)

Sets an array of default paths. If a route is missing a path the router will use the defined here This method must not be
used to set a 404 route

<?php

$router->setDefaults(array(
'module' => 'common',
'action' => 'index'

));

public array getDefaults ()

Returns an array of default parameters

public handle ([string $uri])

Handles routing information received from the rewrite engine

<?php

//Read the info from the rewrite engine
$router->handle();

//Manually passing an URL
$router->handle('/posts/edit/1');

public Phalcon\Mvc\Router\Route add (string $pattern, [string/array $paths], [string $httpMethods])

Adds a route to the router without any HTTP constraint

2.54. API Indice 763



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$router->add('/about', 'About::index');

public Phalcon\Mvc\Router\Route addGet (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is GET

public Phalcon\Mvc\Router\Route addPost (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is POST

public Phalcon\Mvc\Router\Route addPut (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is PUT

public Phalcon\Mvc\Router\Route addPatch (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is PATCH

public Phalcon\Mvc\Router\Route addDelete (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is DELETE

public Phalcon\Mvc\Router\Route addOptions (string $pattern, [string/array $paths])

Add a route to the router that only match if the HTTP method is OPTIONS

public Phalcon\Mvc\Router\Route addHead (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is HEAD

public Phalcon\Mvc\Router mount (unknown $group)

Mounts a group of routes in the router

public Phalcon\Mvc\Router notFound (array|string $paths)

Set a group of paths to be returned when none of the defined routes are matched

public clear ()

Removes all the pre-defined routes

public string getNamespaceName ()

Returns the processed namespace name

public string getModuleName ()

Returns the processed module name

public string getControllerName ()

Returns the processed controller name

public string getActionName ()

Returns the processed action name

public array getParams ()

Returns the processed parameters

public Phalcon\Mvc\Router\Route getMatchedRoute ()

Returns the route that matchs the handled URI

public array getMatches ()

764 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the sub expressions in the regular expression matched

public bool wasMatched ()

Checks if the router macthes any of the defined routes

public Phalcon\Mvc\Router\Route [] getRoutes ()

Returns all the routes defined in the router

public Phalcon\Mvc\Router\Route | false getRouteById (string $id)

Returns a route object by its id

public Phalcon\Mvc\Router\Route getRouteByName (string $name)

Returns a route object by its name

public isExactControllerName ()

Returns whether controller name should not be mangled

2.54.198 Class Phalcon\Mvc\Router\Annotations

extends class Phalcon\Mvc\Router

implements Phalcon\DI\InjectionAwareInterface, Phalcon\Mvc\RouterInterface

A router that reads routes annotations from classes/resources

<?php

$di['router'] = function() {

//Use the annotations router
$router = new \Phalcon\Mvc\Router\Annotations(false);

//This will do the same as above but only if the handled uri starts with /robots
$router->addResource('Robots', '/robots');

return $router;
};

Constants

integer URI_SOURCE_GET_URL

integer URI_SOURCE_SERVER_REQUEST_URI

Methods

public Phalcon\Mvc\Router\Annotations addResource (string $handler, [string $prefix])

Adds a resource to the annotations handler A resource is a class that contains routing annotations

public Phalcon\Mvc\Router\Annotations addModuleResource (string $module, string $handler, [string $prefix])

Adds a resource to the annotations handler A resource is a class that contains routing annotations The class is located
in a module

public handle ([string $uri])

2.54. API Indice 765



Phalcon PHP Framework Documentation, Release 1.3.0

Produce the routing parameters from the rewrite information

public processControllerAnnotation (string $handler, unknown $annotation)

Checks for annotations in the controller docblock

public processActionAnnotation (string $module, string $namespace, string $controller, string $action, Phal-
con\Annotations\Annotation $annotation)

Checks for annotations in the public methods of the controller

public setControllerSuffix (string $controllerSuffix)

Changes the controller class suffix

public setActionSuffix (string $actionSuffix)

Changes the action method suffix

public array getResources ()

Return the registered resources

public __construct ([boolean $defaultRoutes]) inherited from Phalcon\Mvc\Router

Phalcon\Mvc\Router constructor

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Router

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\Mvc\Router

Returns the internal dependency injector

public string getRewriteUri () inherited from Phalcon\Mvc\Router

Get rewrite info. This info is read from $_GET[’_url’]. This returns ‘/’ if the rewrite information cannot be read

public Phalcon\Mvc\Router setUriSource (int $uriSource) inherited from Phalcon\Mvc\Router

Sets the URI source. One of the URI_SOURCE_* constants

<?php

$router->setUriSource(Router::URI_SOURCE_SERVER_REQUEST_URI);

public Phalcon\Mvc\Router removeExtraSlashes (boolean $remove) inherited from Phalcon\Mvc\Router

Set whether router must remove the extra slashes in the handled routes

public Phalcon\Mvc\Router setDefaultNamespace (string $namespaceName) inherited from Phalcon\Mvc\Router

Sets the name of the default namespace

public string getDefaultNamespace () inherited from Phalcon\Mvc\Router

Returns the name of the default namespace

public Phalcon\Mvc\Router setDefaultModule (string $moduleName) inherited from Phalcon\Mvc\Router

Sets the name of the default module

public string getDefaultModule () inherited from Phalcon\Mvc\Router

Returns the name of the default module

public Phalcon\Mvc\Router setDefaultController (string $controllerName) inherited from Phalcon\Mvc\Router

Sets the default controller name

766 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string getDefaultController () inherited from Phalcon\Mvc\Router

Returns the default controller name

public Phalcon\Mvc\Router setDefaultAction (string $actionName) inherited from Phalcon\Mvc\Router

Sets the default action name

public string getDefaultAction () inherited from Phalcon\Mvc\Router

Returns the default action name

public Phalcon\Mvc\Router setDefaults (array $defaults) inherited from Phalcon\Mvc\Router

Sets an array of default paths. If a route is missing a path the router will use the defined here This method must not be
used to set a 404 route

<?php

$router->setDefaults(array(
'module' => 'common',
'action' => 'index'

));

public array getDefaults () inherited from Phalcon\Mvc\Router

Returns an array of default parameters

public Phalcon\Mvc\Router\Route add (string $pattern, [string/array $paths], [string $httpMethods]) inherited from
Phalcon\Mvc\Router

Adds a route to the router without any HTTP constraint

<?php

$router->add('/about', 'About::index');

public Phalcon\Mvc\Router\Route addGet (string $pattern, [string/array $paths]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is GET

public Phalcon\Mvc\Router\Route addPost (string $pattern, [string/array $paths]) inherited from Phal-
con\Mvc\Router

Adds a route to the router that only match if the HTTP method is POST

public Phalcon\Mvc\Router\Route addPut (string $pattern, [string/array $paths]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is PUT

public Phalcon\Mvc\Router\Route addPatch (string $pattern, [string/array $paths]) inherited from Phal-
con\Mvc\Router

Adds a route to the router that only match if the HTTP method is PATCH

public Phalcon\Mvc\Router\Route addDelete (string $pattern, [string/array $paths]) inherited from Phal-
con\Mvc\Router

Adds a route to the router that only match if the HTTP method is DELETE

public Phalcon\Mvc\Router\Route addOptions (string $pattern, [string/array $paths]) inherited from Phal-
con\Mvc\Router

Add a route to the router that only match if the HTTP method is OPTIONS

public Phalcon\Mvc\Router\Route addHead (string $pattern, [string/array $paths]) inherited from Phal-
con\Mvc\Router

2.54. API Indice 767



Phalcon PHP Framework Documentation, Release 1.3.0

Adds a route to the router that only match if the HTTP method is HEAD

public Phalcon\Mvc\Router mount (unknown $group) inherited from Phalcon\Mvc\Router

Mounts a group of routes in the router

public Phalcon\Mvc\Router notFound (array|string $paths) inherited from Phalcon\Mvc\Router

Set a group of paths to be returned when none of the defined routes are matched

public clear () inherited from Phalcon\Mvc\Router

Removes all the pre-defined routes

public string getNamespaceName () inherited from Phalcon\Mvc\Router

Returns the processed namespace name

public string getModuleName () inherited from Phalcon\Mvc\Router

Returns the processed module name

public string getControllerName () inherited from Phalcon\Mvc\Router

Returns the processed controller name

public string getActionName () inherited from Phalcon\Mvc\Router

Returns the processed action name

public array getParams () inherited from Phalcon\Mvc\Router

Returns the processed parameters

public Phalcon\Mvc\Router\Route getMatchedRoute () inherited from Phalcon\Mvc\Router

Returns the route that matchs the handled URI

public array getMatches () inherited from Phalcon\Mvc\Router

Returns the sub expressions in the regular expression matched

public bool wasMatched () inherited from Phalcon\Mvc\Router

Checks if the router macthes any of the defined routes

public Phalcon\Mvc\Router\Route [] getRoutes () inherited from Phalcon\Mvc\Router

Returns all the routes defined in the router

public Phalcon\Mvc\Router\Route | false getRouteById (string $id) inherited from Phalcon\Mvc\Router

Returns a route object by its id

public Phalcon\Mvc\Router\Route getRouteByName (string $name) inherited from Phalcon\Mvc\Router

Returns a route object by its name

public isExactControllerName () inherited from Phalcon\Mvc\Router

Returns whether controller name should not be mangled

2.54.199 Class Phalcon\Mvc\Router\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Mvc\Router will use this class

768 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.200 Class Phalcon\Mvc\Router\Group

Helper class to create a group of routes with common attributes

<?php

$router = new Phalcon\Mvc\Router();

//Create a group with a common module and controller
$blog = new Phalcon\Mvc\Router\Group(array(

'module' => 'blog',
'controller' => 'index'

));

//All the routes start with /blog
$blog->setPrefix('/blog');

//Add a route to the group
$blog->add('/save', array(

'action' => 'save'
));

2.54. API Indice 769



Phalcon PHP Framework Documentation, Release 1.3.0

//Add another route to the group
$blog->add('/edit/{id}', array(

'action' => 'edit'
));

//This route maps to a controller different than the default
$blog->add('/blog', array(

'controller' => 'about',
'action' => 'index'

));

//Add the group to the router
$router->mount($blog);

Methods

public __construct ([array $paths])

Phalcon\Mvc\Router\Group constructor

public Phalcon\Mvc\Router\Group setHostname (string $hostname)

Set a hostname restriction for all the routes in the group

public string getHostname ()

Returns the hostname restriction

public Phalcon\Mvc\Router\Group setPrefix (string $prefix)

Set a common uri prefix for all the routes in this group

public string getPrefix ()

Returns the common prefix for all the routes

public Phalcon\Mvc\Router\Group beforeMatch (unknown $beforeMatch)

Set a before-match condition for the whole group

public string getBeforeMatch ()

Returns the before-match condition if any

public Phalcon\Mvc\Router\Group setPaths (array $paths)

Set common paths for all the routes in the group

public array|string getPaths ()

Returns the common paths defined for this group

public Phalcon\Mvc\Router\Route [] getRoutes ()

Returns the routes added to the group

protected Phalcon\Mvc\Router\Route _addRoute ()

Adds a route applying the common attributes

public Phalcon\Mvc\Router\Route add (string $pattern, [string/array $paths], [string $httpMethods])

Adds a route to the router on any HTTP method

770 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$router->add('/about', 'About::index');

public Phalcon\Mvc\Router\Route addGet (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is GET

public Phalcon\Mvc\Router\Route addPost (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is POST

public Phalcon\Mvc\Router\Route addPut (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is PUT

public Phalcon\Mvc\Router\Route addPatch (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is PATCH

public Phalcon\Mvc\Router\Route addDelete (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is DELETE

public Phalcon\Mvc\Router\Route addOptions (string $pattern, [string/array $paths])

Add a route to the router that only match if the HTTP method is OPTIONS

public Phalcon\Mvc\Router\Route addHead (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is HEAD

public clear ()

Removes all the pre-defined routes

public Phalcon\Mvc\Router\Group convert (string $name, callable $converter)

Adds a converter to perform an additional transformation for certain parameter

public array|null getConverters ()

Returns the router converter

public Phalcon\Mvc\Router\Group setName (unknown $name)

Set the name of the group

public string getName ()

Returns the name of this group

2.54.201 Class Phalcon\Mvc\Router\Route

implements Phalcon\Mvc\Router\RouteInterface

This class represents every route added to the router

Methods

public __construct (string $pattern, [array $paths], [array|string $httpMethods])

Phalcon\Mvc\Router\Route constructor

public string compilePattern (string $pattern)

2.54. API Indice 771



Phalcon PHP Framework Documentation, Release 1.3.0

Replaces placeholders from pattern returning a valid PCRE regular expression

public Phalcon\Mvc\Router\Route via (string|array $httpMethods)

Set one or more HTTP methods that constraint the matching of the route

<?php

$route->via('GET');
$route->via(array('GET', 'POST'));

public reConfigure (string $pattern, [array $paths])

Reconfigure the route adding a new pattern and a set of paths

public string getName ()

Returns the route’s name

public Phalcon\Mvc\Router\Route setName (string $name)

Sets the route’s name

<?php

$router->add('/about', array(
'controller' => 'about'

))->setName('about');

public Phalcon\Mvc\Router\Route beforeMatch (callback $callback)

Sets a callback that is called if the route is matched. The developer can implement any arbitrary conditions here If the
callback returns false the route is treaded as not matched

public mixed getBeforeMatch ()

Returns the ‘before match’ callback if any

public string getRouteId ()

Returns the route’s id

public string getPattern ()

Returns the route’s pattern

public string getCompiledPattern ()

Returns the route’s compiled pattern

public array getPaths ()

Returns the paths

public array getReversedPaths ()

Returns the paths using positions as keys and names as values

public Phalcon\Mvc\Router\Route setHttpMethods (string|array $httpMethods)

Sets a set of HTTP methods that constraint the matching of the route (alias of via)

<?php

$route->setHttpMethods('GET');
$route->setHttpMethods(array('GET', 'POST'));

772 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string|array getHttpMethods ()

Returns the HTTP methods that constraint matching the route

public Phalcon\Mvc\Router\Route setHostname (unknown $hostname)

Sets a hostname restriction to the route

<?php

$route->setHostname('localhost');

public string getHostname ()

Returns the hostname restriction if any

public Phalcon\Mvc\RouteInterface setGroup (Phalcon\Mvc\Router\Group $group)

Sets the group associated with the route

public Phalcon\Mvc\Router\Group |null getGroup ()

Returns the group associated with the route

public Phalcon\Mvc\Router\Route convert (string $name, callable $converter)

Adds a converter to perform an additional transformation for certain parameter

public array getConverters ()

Returns the router converter

public static reset ()

Resets the internal route id generator

2.54.202 Class Phalcon\Mvc\Url

implements Phalcon\Mvc\UrlInterface, Phalcon\DI\InjectionAwareInterface

This components aids in the generation of: URIs, URLs and Paths

<?php

//Generate a URL appending the URI to the base URI
echo $url->get('products/edit/1');

//Generate a URL for a predefined route
echo $url->get(array('for' => 'blog-post', 'title' => 'some-cool-stuff', 'year' => '2012'));

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\DiInterface getDI ()

Returns the DependencyInjector container

public Phalcon\Mvc\Url setBaseUri (string $baseUri)

Sets a prefix for all the URIs to be generated

2.54. API Indice 773



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$url->setBaseUri('/invo/');
$url->setBaseUri('/invo/index.php/');

public Phalcon\Mvc\Url setStaticBaseUri (string $staticBaseUri)

Sets a prefix for all static URLs generated

<?php

$url->setStaticBaseUri('/invo/');

public string getBaseUri ()

Returns the prefix for all the generated urls. By default /

public string getStaticBaseUri ()

Returns the prefix for all the generated static urls. By default /

public Phalcon\Mvc\Url setBasePath (string $basePath)

Sets a base path for all the generated paths

<?php

$url->setBasePath('/var/www/htdocs/');

public string getBasePath ()

Returns the base path

public string get ([string|array $uri], [unknown $args])

Generates a URL

<?php

//Generate a URL appending the URI to the base URI
echo $url->get('products/edit/1');

//Generate a URL for a predefined route
echo $url->get(array('for' => 'blog-post', 'title' => 'some-cool-stuff', 'year' => '2012'));

public string getStatic ([string|array $uri])

Generates a URL for a static resource

public string path ([string $path])

Generates a local path

2.54.203 Class Phalcon\Mvc\Url\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Mvc\Url will use this class

774 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.204 Class Phalcon\Mvc\User\Component

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface

This class can be used to provide user components easy access to services in the application

Methods

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

2.54. API Indice 775



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.205 Class Phalcon\Mvc\User\Module

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface

This class can be used to provide user modules easy access to services in the application

Methods

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.206 Class Phalcon\Mvc\User\Plugin

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface

This class can be used to provide user plugins an easy access to services in the application

Methods

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

776 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.207 Class Phalcon\Mvc\View

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface, Phalcon\Mvc\ViewInterface

Phalcon\Mvc\View is a class for working with the “view” portion of the model-view-controller pattern. That is, it
exists to help keep the view script separate from the model and controller scripts. It provides a system of helpers,
output filters, and variable escaping.

<?php

//Setting views directory
$view = new Phalcon\Mvc\View();
$view->setViewsDir('app/views/');

$view->start();
//Shows recent posts view (app/views/posts/recent.phtml)
$view->render('posts', 'recent');
$view->finish();

//Printing views output
echo $view->getContent();

Constants

integer LEVEL_MAIN_LAYOUT

integer LEVEL_AFTER_TEMPLATE

integer LEVEL_LAYOUT

integer LEVEL_BEFORE_TEMPLATE

integer LEVEL_ACTION_VIEW

integer LEVEL_NO_RENDER

Methods

public __construct ([array $options])

Phalcon\Mvc\View constructor

public Phalcon\Mvc\View setViewsDir (string $viewsDir)

Sets views directory. Depending of your platform, always add a trailing slash or backslash

public string getViewsDir ()

Gets views directory

public Phalcon\Mvc\View setLayoutsDir (string $layoutsDir)

Sets the layouts sub-directory. Must be a directory under the views directory. Depending of your platform, always add
a trailing slash or backslash

2.54. API Indice 777



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$view->setLayoutsDir('../common/layouts/');

public string getLayoutsDir ()

Gets the current layouts sub-directory

public Phalcon\Mvc\View setPartialsDir (string $partialsDir)

Sets a partials sub-directory. Must be a directory under the views directory. Depending of your platform, always add
a trailing slash or backslash

<?php

$view->setPartialsDir('../common/partials/');

public string getPartialsDir ()

Gets the current partials sub-directory

public Phalcon\Mvc\View setBasePath (string $basePath)

Sets base path. Depending of your platform, always add a trailing slash or backslash

<?php

$view->setBasePath(__DIR__ . '/');

public int getCurrentRenderLevel ()

Returns the render level for the view

public int getRenderLevel ()

Returns the render level for the view

public Phalcon\Mvc\View setRenderLevel (string $level)

Sets the render level for the view

<?php

//Render the view related to the controller only
$this->view->setRenderLevel(View::LEVEL_LAYOUT);

public Phalcon\Mvc\View disableLevel (int|array $level)

Disables a specific level of rendering

<?php

//Render all levels except ACTION level
$this->view->disableLevel(View::LEVEL_ACTION_VIEW);

public array getDisabledLevels ()

Returns an array with disabled render levels

public Phalcon\Mvc\View setMainView (string $viewPath)

Sets default view name. Must be a file without extension in the views directory

778 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

//Renders as main view views-dir/base.phtml
$this->view->setMainView('base');

public string getMainView ()

Returns the name of the main view

public Phalcon\Mvc\View setLayout (string $layout)

Change the layout to be used instead of using the name of the latest controller name

<?php

$this->view->setLayout('main');

public string getLayout ()

Returns the name of the main view

public Phalcon\Mvc\View setTemplateBefore (string|array $templateBefore)

Appends template before controller layout

public Phalcon\Mvc\View cleanTemplateBefore ()

Resets any template before layouts

public Phalcon\Mvc\View setTemplateAfter (string|array $templateAfter)

Appends template after controller layout

public Phalcon\Mvc\View cleanTemplateAfter ()

Resets any template after layouts

public Phalcon\Mvc\View setParamToView (string $key, mixed $value)

Adds parameters to views (alias of setVar)

<?php

$this->view->setParamToView('products', $products);

public Phalcon\Mvc\View setVars (array $params, [boolean $merge])

Set all the render params

<?php

$this->view->setVars(array('products' => $products));

public Phalcon\Mvc\View setVar (string $key, mixed $value)

Set a single view parameter

<?php

$this->view->setVar('products', $products);

public mixed getVar (string $key)

Returns a parameter previously set in the view

public array getParamsToView ()

2.54. API Indice 779



Phalcon PHP Framework Documentation, Release 1.3.0

Returns parameters to views

public string getControllerName ()

Gets the name of the controller rendered

public string getActionName ()

Gets the name of the action rendered

public array getParams ()

Gets extra parameters of the action rendered

public Phalcon\Mvc\View start ()

Starts rendering process enabling the output buffering

protected array _loadTemplateEngines ()

Loads registered template engines, if none is registered it will use Phalcon\Mvc\View\Engine\Php

protected _engineRender ()

Checks whether view exists on registered extensions and render it

public Phalcon\Mvc\View registerEngines (array $engines)

Register templating engines

<?php

$this->view->registerEngines(array(
".phtml" => "Phalcon\Mvc\View\Engine\Php",
".volt" => "Phalcon\Mvc\View\Engine\Volt",
".mhtml" => "MyCustomEngine"

));

public getRegisteredEngines ()

Returns the registered templating engines

public exists (unknown $view)

...

public Phalcon\Mvc\View render (string $controllerName, string $actionName, [array $params])

Executes render process from dispatching data

<?php

//Shows recent posts view (app/views/posts/recent.phtml)
$view->start()->render('posts', 'recent')->finish();

public Phalcon\Mvc\View pick (string|array $renderView)

Choose a different view to render instead of last-controller/last-action

<?php

class ProductsController extends Phalcon\Mvc\Controller
{

public function saveAction()
{

780 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

//Do some save stuff...

//Then show the list view
$this->view->pick("products/list");

}
}

public partial (string $partialPath)

Renders a partial view

<?php

//Show a partial inside another view
$this->partial('shared/footer');

<?php

//Show a partial inside another view with parameters
$this->partial('shared/footer', array('content' => $html));

public string getRender (string $controllerName, string $actionName, [array $params], [mixed $configCallback])

Perform the automatic rendering returning the output as a string

<?php

$template = $this->view->getRender('products', 'show', array('products' => $products));

public Phalcon\Mvc\View finish ()

Finishes the render process by stopping the output buffering

protected Phalcon\Cache\BackendInterface _createCache ()

Create a Phalcon\Cache based on the internal cache options

public boolean isCaching ()

Check if the component is currently caching the output content

public Phalcon\Cache\BackendInterface getCache ()

Returns the cache instance used to cache

public Phalcon\Mvc\View cache ([boolean|array $options])

Cache the actual view render to certain level

<?php

$this->view->cache(array('key' => 'my-key', 'lifetime' => 86400));

public Phalcon\Mvc\View setContent (string $content)

Externally sets the view content

<?php

$this->view->setContent("<h1>hello</h1>");

public string getContent ()

Returns cached output from another view stage

2.54. API Indice 781



Phalcon PHP Framework Documentation, Release 1.3.0

public string getActiveRenderPath ()

Returns the path of the view that is currently rendered

public Phalcon\Mvc\View disable ()

Disables the auto-rendering process

public Phalcon\Mvc\View enable ()

Enables the auto-rendering process

public bool isDisabled ()

Whether automatic rendering is enabled

public Phalcon\Mvc\View reset ()

Resets the view component to its factory default values

public __set (unknown $property, mixed $value)

Magic method to pass variables to the views

<?php

$this->view->products = $products;

public mixed __get (unknown $property)

Magic method to retrieve a variable passed to the view

<?php

echo $this->view->products;

public mixed __isset (unknown $property)

Magic method to inaccessible a variable passed to the view

<?php

isset($this->view->products)

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

2.54.208 Abstract class Phalcon\Mvc\View\Engine

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface, Phal-
con\Mvc\View\EngineInterface

782 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

All the template engine adapters must inherit this class. This provides basic interfacing between the engine and the
Phalcon\Mvc\View component.

Methods

public __construct (Phalcon\Mvc\ViewInterface $view, [Phalcon\DiInterface $dependencyInjector])

Phalcon\Mvc\View\Engine constructor

public array getContent ()

Returns cached ouput on another view stage

public string partial (string $partialPath)

Renders a partial inside another view

public Phalcon\Mvc\ViewInterface getView ()

Returns the view component related to the adapter

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

abstract public render (string $path, array $params, [boolean $mustClean]) inherited from Phal-
con\Mvc\View\EngineInterface

Renders a view using the template engine

2.54.209 Class Phalcon\Mvc\View\Engine\Php

extends abstract class Phalcon\Mvc\View\Engine

implements Phalcon\Mvc\View\EngineInterface, Phalcon\DI\InjectionAwareInterface, Phal-
con\Events\EventsAwareInterface

Adapter to use PHP itself as templating engine

Methods

public render (string $path, array $params, [boolean $mustClean])

Renders a view using the template engine

public __construct (Phalcon\Mvc\ViewInterface $view, [Phalcon\DiInterface $dependencyInjector]) inherited from
Phalcon\Mvc\View\Engine

2.54. API Indice 783



Phalcon PHP Framework Documentation, Release 1.3.0

Phalcon\Mvc\View\Engine constructor

public array getContent () inherited from Phalcon\Mvc\View\Engine

Returns cached ouput on another view stage

public string partial (string $partialPath) inherited from Phalcon\Mvc\View\Engine

Renders a partial inside another view

public Phalcon\Mvc\ViewInterface getView () inherited from Phalcon\Mvc\View\Engine

Returns the view component related to the adapter

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.210 Class Phalcon\Mvc\View\Engine\Volt

extends abstract class Phalcon\Mvc\View\Engine

implements Phalcon\Mvc\View\EngineInterface, Phalcon\DI\InjectionAwareInterface, Phal-
con\Events\EventsAwareInterface

Designer friendly and fast template engine for PHP written in C

Methods

public setOptions (array $options)

Set Volt’s options

public array getOptions ()

Return Volt’s options

public Phalcon\Mvc\View\Engine\Volt\Compiler getCompiler ()

Returns the Volt’s compiler

public render (unknown $path, array $params, [boolean $mustClean])

Renders a view using the template engine

public int length (mixed $item)

Length filter. If an array/object is passed a count is performed otherwise a strlen/mb_strlen

public boolean isIncluded (mixed $needle, mixed $haystack)

784 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Checks if the needle is included in the haystack

public string convertEncoding (string $text, string $from, string $to)

Performs a string conversion

public slice (mixed $value, unknown $start, [unknown $end])

Extracts a slice from a string/array/traversable object value

public array sort (array $value)

Sorts an array

public __construct (Phalcon\Mvc\ViewInterface $view, [Phalcon\DiInterface $dependencyInjector]) inherited from
Phalcon\Mvc\View\Engine

Phalcon\Mvc\View\Engine constructor

public array getContent () inherited from Phalcon\Mvc\View\Engine

Returns cached ouput on another view stage

public string partial (string $partialPath) inherited from Phalcon\Mvc\View\Engine

Renders a partial inside another view

public Phalcon\Mvc\ViewInterface getView () inherited from Phalcon\Mvc\View\Engine

Returns the view component related to the adapter

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54.211 Class Phalcon\Mvc\View\Engine\Volt\Compiler

implements Phalcon\DI\InjectionAwareInterface

This class reads and compiles Volt templates into PHP plain code

<?php

$compiler = new \Phalcon\Mvc\View\Engine\Volt\Compiler();

$compiler->compile('views/partials/header.volt');

require $compiler->getCompiledTemplatePath();

2.54. API Indice 785



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct ([Phalcon\Mvc\ViewInterface $view])

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public setOptions (array $options)

Sets the compiler options

public setOption (string $option, string $value)

Sets a single compiler option

public string getOption (string $option)

Returns a compiler’s option

public array getOptions ()

Returns the compiler options

public mixed fireExtensionEvent (string $name, [array $arguments])

Fires an event to registered extensions

public Phalcon\Mvc\View\Engine\Volt\Compiler addExtension (object $extension)

Registers a Volt’s extension

public array getExtensions ()

Returns the list of extensions registered in Volt

public Phalcon\Mvc\View\Engine\Volt\Compiler addFunction (string $name, Closure|string $definition)

Register a new function in the compiler

public array getFunctions ()

Register the user registered functions

public Phalcon\Mvc\View\Engine\Volt\Compiler addFilter (string $name, Closure|string $definition)

Register a new filter in the compiler

public array getFilters ()

Register the user registered filters

public Phalcon\Mvc\View\Engine\Volt\Compiler setUniquePrefix (string $prefix)

Set a unique prefix to be used as prefix for compiled variables

public string getUniquePrefix ()

Return a unique prefix to be used as prefix for compiled variables and contexts

public string attributeReader (array $expr)

Resolves attribute reading

public string functionCall (array $expr)

Resolves function intermediate code into PHP function calls

786 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string resolveTest (array $test, string $left)

Resolves filter intermediate code into a valid PHP expression

protected string resolveFilter ()

Resolves filter intermediate code into PHP function calls

public string expression (array $expr)

Resolves an expression node in an AST volt tree

protected string|array _statementListOrExtends ()

Compiles a block of statements

public string compileForeach (array $statement, [boolean $extendsMode])

Compiles a ‘foreach’ intermediate code representation into plain PHP code

public string compileForElse ()

Generates a ‘forelse’ PHP code

public string compileIf (array $statement, [boolean $extendsMode])

Compiles a ‘if’ statement returning PHP code

public string compileElseIf (array $statement)

Compiles a ‘elseif’ statement returning PHP code

public string compileCache (array $statement, [boolean $extendsMode])

Compiles a ‘cache’ statement returning PHP code

public string compileEcho (array $statement)

Compiles a ‘{{‘ ‘}}’ statement returning PHP code

public string compileInclude (array $statement)

Compiles a ‘include’ statement returning PHP code

public string compileSet (array $statement)

Compiles a ‘set’ statement returning PHP code

public string compileDo (array $statement)

Compiles a ‘do’ statement returning PHP code

public string compileReturn (array $statement)

Compiles a ‘return’ statement returning PHP code

public string compileAutoEscape (array $statement, boolean $extendsMode)

Compiles a ‘autoescape’ statement returning PHP code

public string compileMacro (array $statement, boolean $extendsMode)

Compiles macros

public string compileCall ()

Compiles calls to macros

protected string _statementList ()

Traverses a statement list compiling each of its nodes

2.54. API Indice 787



Phalcon PHP Framework Documentation, Release 1.3.0

protected string _compileSource ()

Compiles a Volt source code returning a PHP plain version

public string compileString (string $viewCode, [boolean $extendsMode])

Compiles a template into a string

<?php

echo $compiler->compileString('{{ "hello world" }}');

public string|array compileFile (string $path, string $compiledPath, [boolean $extendsMode])

Compiles a template into a file forcing the destination path

<?php

$compiler->compile('views/layouts/main.volt', 'views/layouts/main.volt.php');

public string|array compile (string $templatePath, [boolean $extendsMode])

Compiles a template into a file applying the compiler options This method does not return the compiled path if the
template was not compiled

<?php

$compiler->compile('views/layouts/main.volt');
require $compiler->getCompiledTemplatePath();

public string getTemplatePath ()

Returns the path that is currently being compiled

public string getCompiledTemplatePath ()

Returns the path to the last compiled template

public array parse (string $viewCode)

Parses a Volt template returning its intermediate representation

<?php

print_r($compiler->parse('{{ 3 + 2 }}'));

2.54.212 Class Phalcon\Mvc\View\Exception

extends class Phalcon\Exception

Class for exceptions thrown by Phalcon\Mvc\View

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

788 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.213 Class Phalcon\Mvc\View\Simple

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface

This component allows to render views without hicherquical levels

<?php

$view = new Phalcon\Mvc\View\Simple();
echo $view->render('templates/my-view', array('content' => $html));

Methods

public __construct ([array $options])

Phalcon\Mvc\View constructor

public setViewsDir (string $viewsDir)

Sets views directory. Depending of your platform, always add a trailing slash or backslash

public string getViewsDir ()

Gets views directory

public registerEngines (array $engines)

Register templating engines

2.54. API Indice 789



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$this->view->registerEngines(array(
".phtml" => "Phalcon\Mvc\View\Engine\Php",
".volt" => "Phalcon\Mvc\View\Engine\Volt",
".mhtml" => "MyCustomEngine"

));

public getRegisteredEngines ()

Returns the registered templating engines

protected array _loadTemplateEngines ()

Loads registered template engines, if none is registered it will use Phalcon\Mvc\View\Engine\Php

protected _internalRender ()

Tries to render the view with every engine registered in the component

public string render (string $path, [array $params])

Renders a view

public partial (string $partialPath, [array $params])

Renders a partial view

<?php

//Show a partial inside another view
$this->partial('shared/footer');

<?php

//Show a partial inside another view with parameters
$this->partial('shared/footer', array('content' => $html));

public Phalcon\Mvc\View\Simple setCacheOptions (array $options)

Sets the cache options

public array getCacheOptions ()

Returns the cache options

protected Phalcon\Cache\BackendInterface _createCache ()

Create a Phalcon\Cache based on the internal cache options

public Phalcon\Cache\BackendInterface getCache ()

Returns the cache instance used to cache

public Phalcon\Mvc\View\Simple cache ([boolean|array $options])

Cache the actual view render to certain level

<?php

$this->view->cache(array('key' => 'my-key', 'lifetime' => 86400));

public Phalcon\Mvc\View\Simple setParamToView (string $key, mixed $value)

Adds parameters to views (alias of setVar)

790 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

$this->view->setParamToView('products', $products);

public Phalcon\Mvc\View\Simple setVars (array $params, [boolean $merge])

Set all the render params

<?php

$this->view->setVars(array('products' => $products));

public Phalcon\Mvc\View\Simple setVar (string $key, mixed $value)

Set a single view parameter

<?php

$this->view->setVar('products', $products);

public mixed getVar (string $key)

Returns a parameter previously set in the view

public array getParamsToView ()

Returns parameters to views

public Phalcon\Mvc\View\Simple setContent (string $content)

Externally sets the view content

<?php

$this->view->setContent("<h1>hello</h1>");

public string getContent ()

Returns cached ouput from another view stage

public string getActiveRenderPath ()

Returns the path of the view that is currently rendered

public __set (string $key, mixed $value)

Magic method to pass variables to the views

<?php

$this->view->products = $products;

public mixed __get (string $key)

Magic method to retrieve a variable passed to the view

<?php

echo $this->view->products;

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

2.54. API Indice 791



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

2.54.214 Class Phalcon\Paginator\Adapter\Model

implements Phalcon\Paginator\AdapterInterface

This adapter allows to paginate data using a Phalcon\Mvc\Model resultset as base

Methods

public __construct (array $config)

Phalcon\Paginator\Adapter\Model constructor

public setCurrentPage (int $page)

Set the current page number

public stdClass getPaginate ()

Returns a slice of the resultset to show in the pagination

2.54.215 Class Phalcon\Paginator\Adapter\NativeArray

implements Phalcon\Paginator\AdapterInterface

Pagination using a PHP array as source of data

<?php

$paginator = new \Phalcon\Paginator\Adapter\Model(
array(

"data" => array(
array('id' => 1, 'name' => 'Artichoke'),
array('id' => 2, 'name' => 'Carrots'),
array('id' => 3, 'name' => 'Beet'),
array('id' => 4, 'name' => 'Lettuce'),
array('id' => 5, 'name' => '')

),
"limit" => 2,
"page" => $currentPage

)
);

Methods

public __construct (array $config)

Phalcon\Paginator\Adapter\NativeArray constructor

public setCurrentPage (int $page)

792 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Set the current page number

public stdClass getPaginate ()

Returns a slice of the resultset to show in the pagination

2.54.216 Class Phalcon\Paginator\Adapter\QueryBuilder

implements Phalcon\Paginator\AdapterInterface

Pagination using a PHQL query builder as source of data

<?php

$builder = $this->modelsManager->createBuilder()
->columns('id, name')
->from('Robots')
->orderBy('name');

$paginator = new Phalcon\Paginator\Adapter\QueryBuilder(array(
"builder" => $builder,
"limit"=> 20,
"page" => 1

));

Methods

public __construct (array $config)

public stdClass getPaginate ()

Returns a slice of the resultset to show in the pagination

public Phalcon\Paginator\Adapter\QueryBuilder $this Fluent interface setLimit (int $limit)

Set current rows limit

public int $limit getLimit ()

Get current rows limit

public setCurrentPage (int $page)

Set current page number

public getCurrentPage ()

Get current page number

public Phalcon\Paginator\Adapter\QueryBuilder $this Fluent interface setQueryBuilder (unknown $queryBuilder)

Set query builder object

public Phalcon\Mvc\Model\Query\BuilderInterface $builder getQueryBuilder ()

Get query builder object

2.54.217 Class Phalcon\Paginator\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Paginator will use this class

2.54. API Indice 793



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.218 Class Phalcon\Queue\Beanstalk

Class to access the beanstalk queue service. Partially implements the protocol version 1.2

Methods

public __construct ([array $options])

public connect ()

...

public string|boolean put (string $data, [array $options])

Inserts jobs into the queue

public boolean|PhalconQueueBeanstalkJob reserve ([unknown $timeout])

Reserves a job in the queue

public string|boolean choose (string $tube)

Change the active tube. By default the tube is ‘default’

794 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string|boolean watch (string $tube)

Change the active tube. By default the tube is ‘default’

public boolean|PhalconQueueBeanstalkJob peekReady ()

Inspect the next ready job.

public boolean|PhalconQueueBeanstalkJob peekDelayed ()

Return the delayed job with the shortest delay left

public boolean|PhalconQueueBeanstalkJob peekBuried ()

Return the next job in the list of buried jobs

protected array readStatus ()

Reads the latest status from the Beanstalkd server

public string|boolean Data or ‘false‘ on error. read ([unknown $length])

Reads a packet from the socket. Prior to reading from the socket will check for availability of the connection.

protected integer|boolean write ()

Writes data to the socket. Performs a connection if none is available

public boolean disconnect ()

Closes the connection to the beanstalk server.

public __sleep ()

...

public __wakeup ()

...

2.54.219 Class Phalcon\Queue\Beanstalk\Job

Represents a job in a beanstalk queue

Methods

public __construct (Phalcon\Queue\Beanstalk $queue, string $id, mixed $body)

public string getId ()

Returns the job id

public mixed getBody ()

Returns the job body

public boolean delete ()

Removes a job from the server entirely

public boolean release ()

The release command puts a reserved job back into the ready queue (and marks its state as “ready”) to be run by any
client. It is normally used when the job fails because of a transitory error.

public boolean bury ()

2.54. API Indice 795



Phalcon PHP Framework Documentation, Release 1.3.0

The bury command puts a job into the “buried” state. Buried jobs are put into a FIFO linked list and will not be
touched by the server again until a client kicks them with the “kick” command.

public boolean touch ()

The bury command puts a job into the “buried” state. Buried jobs are put into a FIFO linked list and will not be
touched by the server again until a client kicks them with the “kick” command.

public boolean kick ()

Move the job to the ready queue if it is delayed or buried.

public __wakeup ()

...

2.54.220 Final class Phalcon\Registry

implements ArrayAccess, Iterator, Traversable, Serializable, Countable, JsonSerializable

A registry is a container for storing objects and values in the application space. By storing the value in a registry, the
same object is always available throughout your application.

<?php

$registry = new \Phalcon\Registry();

// Set value
$registry->something = 'something';
// or
$registry['something'] = 'something';

// Get value
$value = $registry->something;
// or
$value = $registry['something'];

// Check if the key exists
$exists = isset($registry->something);
// or
$exists = isset($registry['something']);

// Unset
unset($registry->something);
// or
unset($registry['something']);

In addition to ArrayAccess, Phalcon\\Registry also implements Countable (count($registry) will return the number of elements in the registry), Serializable and Iterator (you can iterate over the registry using a foreach loop) interfaces. For PHP 5.4 and higher, JsonSerializable interface is implemented. Phalcon\\Registry is very fast (it is typically faster than any userspace implementation of the registry); however, this comes at a price: Phalcon\\Registry is a final class and cannot be inherited from. Though Phalcon\\Registry exposes methods like __get(), offsetGet(), count() etc, it is not recommended to invoke them manually (these methods exist mainly to match the interfaces the registry implements): $registry->__get('property') is several times slower than $registry->property. Internally all the magic methods (and interfaces except JsonSerializable) are implemented using object handlers or similar techniques: this allows to bypass relatively slow method calls.

Methods

public __get (unknown $property)

...

public __set (unknown $property, unknown $value)

...

public __isset (unknown $property)

796 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

...

public __unset (unknown $property)

...

public __call (unknown $method, [unknown $arguments])

...

public count ()

...

public offsetGet (unknown $property)

...

public offsetSet (unknown $property, unknown $value)

...

public offsetUnset (unknown $property)

...

public offsetExists (unknown $property)

...

public current ()

...

public key ()

...

public next ()

...

public rewind ()

...

public valid ()

...

public jsonSerialize ()

...

public serialize ()

...

public unserialize ([unknown $serialized])

...

private __wakeup ()

...

2.54. API Indice 797



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.221 Class Phalcon\Security

implements Phalcon\DI\InjectionAwareInterface

This component provides a set of functions to improve the security in Phalcon applications

<?php

$login = $this->request->getPost('login');
$password = $this->request->getPost('password');

$user = Users::findFirstByLogin($login);
if ($user) {

if ($this->security->checkHash($password, $user->password)) {
//The password is valid

}
}

Constants

integer CRYPT_DEFAULT

integer CRYPT_STD_DES

integer CRYPT_EXT_DES

integer CRYPT_MD5

integer CRYPT_BLOWFISH

integer CRYPT_BLOWFISH_X

integer CRYPT_BLOWFISH_Y

integer CRYPT_SHA256

integer CRYPT_SHA512

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

public setRandomBytes (string $randomBytes)

Sets a number of bytes to be generated by the openssl pseudo random generator

public string getRandomBytes ()

Returns a number of bytes to be generated by the openssl pseudo random generator

public setWorkFactor (int $workFactor)

Sets the default working factor for bcrypts password’s salts

public int getWorkFactor ()

Returns the default working factor for bcrypts password’s salts

798 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public string getSaltBytes ()

Generate a >22-length pseudo random string to be used as salt for passwords

public string hash (string $password, [int $workFactor])

Creates a password hash using bcrypt with a pseudo random salt

public boolean checkHash (string $password, string $passwordHash, [int $maxPasswordLength])

Checks a plain text password and its hash version to check if the password matches

public boolean isLegacyHash (string $passwordHash)

Checks if a password hash is a valid bcrypt’s hash

public string getTokenKey ([int $numberBytes])

Generates a pseudo random token key to be used as input’s name in a CSRF check

public string getToken ([int $numberBytes])

Generates a pseudo random token value to be used as input’s value in a CSRF check

public boolean checkToken ([string $tokenKey], [string $tokenValue])

Check if the CSRF token sent in the request is the same that the current in session

public string getSessionToken ()

Returns the value of the CSRF token in session

public static computeHmac (unknown $data, unknown $key, unknown $algo, [unknown $raw])

string \Phalcon\Security::computeHmac(string $data, string $key, string $algo, bool $raw = false)

public static string The derived key deriveKey (unknown $password, unknown $salt, [unknown $hash], [unknown
$iterations], [unknown $size])

Derives a key from the given password (PBKDF2).

public static pbkdf2 (unknown $password, unknown $salt, [unknown $hash], [unknown $iterations], [unknown $size])

public getDefaultHash ()

Returns the default hash

public setDefaultHash (unknown $hash)

Sets the default hash

2.54.222 Class Phalcon\Security\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Security will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

2.54. API Indice 799



Phalcon PHP Framework Documentation, Release 1.3.0

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.223 Abstract class Phalcon\Session\Adapter

implements Phalcon\Session\AdapterInterface, Countable, IteratorAggregate, Traversable, ArrayAccess

Base class for Phalcon\Session adapters

Methods

public __construct ([array $options])

Phalcon\Session\Adapter constructor

public __destruct ()

...

public boolean start ()

Starts the session (if headers are already sent the session will not be started)

public setOptions (array $options)

Sets session’s options

<?php

$session->setOptions(array(
'uniqueId' => 'my-private-app'

));

800 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public array getOptions ()

Get internal options

public mixed get (string $index, [mixed $defaultValue])

Gets a session variable from an application context

public set (string $index, string $value)

Sets a session variable in an application context

<?php

$session->set('auth', 'yes');

public boolean has (string $index)

Check whether a session variable is set in an application context

<?php

var_dump($session->has('auth'));

public remove (string $index)

Removes a session variable from an application context

<?php

$session->remove('auth');

public string getId ()

Returns active session id

<?php

echo $session->getId();

public boolean isStarted ()

Check whether the session has been started

<?php

var_dump($session->isStarted());

public boolean destroy ([unknown $session_id])

Destroys the active session

<?php

var_dump($session->destroy());

public __get (unknown $property)

...

public __set (unknown $property, unknown $value)

...

public __isset (unknown $property)

2.54. API Indice 801



Phalcon PHP Framework Documentation, Release 1.3.0

...

public __unset (unknown $property)

...

public offsetGet (unknown $property)

...

public offsetSet (unknown $property, unknown $value)

...

public offsetExists (unknown $property)

...

public offsetUnset (unknown $property)

...

public count ()

...

public getIterator ()

...

2.54.224 Class Phalcon\Session\Adapter\Files

extends abstract class Phalcon\Session\Adapter

implements ArrayAccess, Traversable, IteratorAggregate, Countable, Phalcon\Session\AdapterInterface

This adapter store sessions in plain files

<?php

$session = new Phalcon\Session\Adapter\Files(array(
'uniqueId' => 'my-private-app'

));

$session->start();

$session->set('var', 'some-value');

echo $session->get('var');

Methods

public __construct ([array $options]) inherited from Phalcon\Session\Adapter

Phalcon\Session\Adapter constructor

public __destruct () inherited from Phalcon\Session\Adapter

...

public boolean start () inherited from Phalcon\Session\Adapter

Starts the session (if headers are already sent the session will not be started)

802 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public setOptions (array $options) inherited from Phalcon\Session\Adapter

Sets session’s options

<?php

$session->setOptions(array(
'uniqueId' => 'my-private-app'

));

public array getOptions () inherited from Phalcon\Session\Adapter

Get internal options

public mixed get (string $index, [mixed $defaultValue]) inherited from Phalcon\Session\Adapter

Gets a session variable from an application context

public set (string $index, string $value) inherited from Phalcon\Session\Adapter

Sets a session variable in an application context

<?php

$session->set('auth', 'yes');

public boolean has (string $index) inherited from Phalcon\Session\Adapter

Check whether a session variable is set in an application context

<?php

var_dump($session->has('auth'));

public remove (string $index) inherited from Phalcon\Session\Adapter

Removes a session variable from an application context

<?php

$session->remove('auth');

public string getId () inherited from Phalcon\Session\Adapter

Returns active session id

<?php

echo $session->getId();

public boolean isStarted () inherited from Phalcon\Session\Adapter

Check whether the session has been started

<?php

var_dump($session->isStarted());

public boolean destroy ([unknown $session_id]) inherited from Phalcon\Session\Adapter

Destroys the active session

<?php

var_dump($session->destroy());

2.54. API Indice 803



Phalcon PHP Framework Documentation, Release 1.3.0

public __get (unknown $property) inherited from Phalcon\Session\Adapter

...

public __set (unknown $property, unknown $value) inherited from Phalcon\Session\Adapter

...

public __isset (unknown $property) inherited from Phalcon\Session\Adapter

...

public __unset (unknown $property) inherited from Phalcon\Session\Adapter

...

public offsetGet (unknown $property) inherited from Phalcon\Session\Adapter

...

public offsetSet (unknown $property, unknown $value) inherited from Phalcon\Session\Adapter

...

public offsetExists (unknown $property) inherited from Phalcon\Session\Adapter

...

public offsetUnset (unknown $property) inherited from Phalcon\Session\Adapter

...

public count () inherited from Phalcon\Session\Adapter

...

public getIterator () inherited from Phalcon\Session\Adapter

...

2.54.225 Class Phalcon\Session\Bag

implements Phalcon\DI\InjectionAwareInterface, Phalcon\Session\BagInterface, IteratorAggregate, Traversable, Ar-
rayAccess, Countable

This component helps to separate session data into “namespaces”. Working by this way you can easily create groups
of session variables into the application

<?php

$user = new \Phalcon\Session\Bag('user');
$user->name = "Kimbra Johnson";
$user->age = 22;

Methods

public __construct (string $name)

Phalcon\Session\Bag constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\DiInterface getDI ()

804 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the DependencyInjector container

public initialize ()

Initializes the session bag. This method must not be called directly, the class calls it when its internal data is accesed

public destroy ()

Destroys the session bag

<?php

$user->destroy();

public set (string $property, string $value)

Sets a value in the session bag

<?php

$user->set('name', 'Kimbra');

public mixed get (string $property, [string $defaultValue])

Obtains a value from the session bag optionally setting a default value

<?php

echo $user->get('name', 'Kimbra');

public boolean has (string $property)

Check whether a property is defined in the internal bag

<?php

var_dump($user->has('name'));

public boolean remove (string $property)

Removes a property from the internal bag

<?php

$user->remove('name');

public getIterator ()

...

public string __get (string $property)

Magic getter to obtain values from the session bag.

<?php

echo $user->name;

public __set (string $property, string $value)

Magic setter to assign values to the session bag. Alias for Phalcon\Session\Bag::set()

<?php

$user->name = "Kimbra";

2.54. API Indice 805



Phalcon PHP Framework Documentation, Release 1.3.0

public boolean __isset (string $property)

Magic isset to check whether a property is defined in the bag. Alias for Phalcon\Session\Bag::has()

<?php

var_dump(isset($user['name']));

public boolean __unset (string $property)

Magic unset to remove items using the property syntax. Alias for Phalcon\Session\Bag::remove()

<?php

unset($user['name']);

public offsetGet (unknown $property)

...

public offsetSet (unknown $property, unknown $value)

...

public offsetExists (unknown $property)

...

public offsetUnset (unknown $property)

...

public count ()

...

2.54.226 Class Phalcon\Session\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Session will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

806 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.227 Class Phalcon\Tag

Phalcon\Tag is designed to simplify building of HTML tags. It provides a set of helpers to generate HTML in a
dynamic way. This component is an abstract class that you can extend to add more helpers.

Constants

integer HTML32

integer HTML401_STRICT

integer HTML401_TRANSITIONAL

integer HTML401_FRAMESET

integer HTML5

integer XHTML10_STRICT

integer XHTML10_TRANSITIONAL

integer XHTML10_FRAMESET

integer XHTML11

integer XHTML20

integer XHTML5

Methods

public static setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector container.

public static Phalcon\DiInterface getDI ()

Internally gets the dependency injector

public static Phalcon\Mvc\UrlInterface getUrlService ()

Return a URL service from the default DI

public static Phalcon\EscaperInterface getEscaperService ()

Returns an Escaper service from the default DI

2.54. API Indice 807



Phalcon PHP Framework Documentation, Release 1.3.0

public static bool getAutoescape ()

Get current autoescape mode

public static setAutoescape (boolean $autoescape)

Set autoescape mode in generated html

public static setDefault (string $id, string $value)

Assigns default values to generated tags by helpers

<?php

//Assigning "peter" to "name" component
Phalcon\Tag::setDefault("name", "peter");

//Later in the view
echo Phalcon\Tag::textField("name"); //Will have the value "peter" by default

public static setDefaults (array $values)

Assigns default values to generated tags by helpers

<?php

//Assigning "peter" to "name" component
Phalcon\Tag::setDefaults(array("name" => "peter"));

//Later in the view
echo Phalcon\Tag::textField("name"); //Will have the value "peter" by default

public static displayTo (string $id, string $value)

Alias of Phalcon\Tag::setDefault

public static boolean hasValue (string $name)

Check if a helper has a default value set using Phalcon\Tag::setDefault or value from $_POST

public static mixed getValue (string $name, [array $params])

Every helper calls this function to check whether a component has a predefined value using Phalcon\Tag::setDefault
or value from $_POST

public static resetInput ()

Resets the request and internal values to avoid those fields will have any default value

public static string linkTo (array|string $parameters, [string $text])

Builds a HTML A tag using framework conventions

<?php

echo Phalcon\Tag::linkTo('signup/register', 'Register Here!');
echo Phalcon\Tag::linkTo(array('signup/register', 'Register Here!'));
echo Phalcon\Tag::linkTo(array('signup/register', 'Register Here!', 'class' => 'btn-primary'));
echo Phalcon\Tag::linkTo('http://phalconphp.com/', 'Google', FALSE);
echo Phalcon\Tag::linkTo(array('http://phalconphp.com/', 'Phalcon Home', FALSE));
echo Phalcon\Tag::linkTo(array('http://phalconphp.com/', 'Phalcon Home', 'local' =>FALSE));

protected static string _inputField ()

Builds generic INPUT tags

808 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

protected static string _inputFieldChecked ()

Builds INPUT tags that implements the checked attribute

public static string colorField (array $parameters)

Builds a HTML input[type=”color”] tag

public static string textField (array $parameters)

Builds a HTML input[type=”text”] tag

<?php

echo Phalcon\Tag::textField(array("name", "size" => 30));

public static string numericField (array $parameters)

Builds a HTML input[type=”number”] tag

<?php

echo Phalcon\Tag::numericField(array("price", "min" => "1", "max" => "5"));

public static string rangeField (array $parameters)

Builds a HTML input[type=”range”] tag

public static string emailField (array $parameters)

Builds a HTML input[type=”email”] tag

<?php

echo Phalcon\Tag::emailField("email");

public static string dateField (array $parameters)

Builds a HTML input[type=”date”] tag

<?php

echo Phalcon\Tag::dateField(array("born", "value" => "14-12-1980"))

public static string dateTimeField (array $parameters)

Builds a HTML input[type=”datetime”] tag

public static string dateTimeLocalField (array $parameters)

Builds a HTML input[type=”datetime-local”] tag

public static string monthField (array $parameters)

Builds a HTML input[type=”month”] tag

public static string timeField (array $parameters)

Builds a HTML input[type=”time”] tag

public static string weekField (array $parameters)

Builds a HTML input[type=”week”] tag

public static string passwordField (array $parameters)

Builds a HTML input[type=”password”] tag

2.54. API Indice 809



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

echo Phalcon\Tag::passwordField(array("name", "size" => 30));

public static string hiddenField (array $parameters)

Builds a HTML input[type=”hidden”] tag

<?php

echo Phalcon\Tag::hiddenField(array("name", "value" => "mike"));

public static string searchField (array $parameters)

Builds a HTML input[type=”search”] tag

public static string telField (array $parameters)

Builds a HTML input[type=”tel”] tag

public static string urlField (array $parameters)

Builds a HTML input[type=”url”] tag

public static string fileField (array $parameters)

Builds a HTML input[type=”file”] tag

<?php

echo Phalcon\Tag::fileField("file");

public static string checkField (array $parameters)

Builds a HTML input[type=”check”] tag

<?php

echo Phalcon\Tag::checkField(array("terms", "value" => "Y"));

public static string radioField (array $parameters)

Builds a HTML input[type=”radio”] tag

<?php

echo Phalcon\Tag::radioField(array("wheather", "value" => "hot"))

Volt syntax:

<?php

{{ radio_field('Save') }}

public static string imageInput (array $parameters)

Builds a HTML input[type=”image”] tag

<?php

echo Phalcon\Tag::imageInput(array("src" => "/img/button.png"));

Volt syntax:

810 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

{{ image_input('src': '/img/button.png') }}

public static string submitButton (array $parameters)

Builds a HTML input[type=”submit”] tag

<?php

echo Phalcon\Tag::submitButton("Save")

Volt syntax:

<?php

{{ submit_button('Save') }}

public static string selectStatic (array $parameters, [array $data])

Builds a HTML SELECT tag using a PHP array for options

<?php

echo Phalcon\Tag::selectStatic("status", array("A" => "Active", "I" => "Inactive"))

public static string select (array $parameters, [array $data])

Builds a HTML SELECT tag using a Phalcon\Mvc\Model resultset as options

<?php

echo Phalcon\Tag::select(array(
"robotId",
Robots::find("type = 'mechanical'"),
"using" => array("id", "name")
));

Volt syntax:

<?php

{{ select("robotId", robots, "using": ["id", "name"]) }}

public static string textArea (array $parameters)

Builds a HTML TEXTAREA tag

<?php

echo Phalcon\Tag::textArea(array("comments", "cols" => 10, "rows" => 4))

Volt syntax:

<?php

{{ text_area("comments", "cols": 10, "rows": 4) }}

public static string form ([array $parameters])

Builds a HTML FORM tag

2.54. API Indice 811



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

echo Phalcon\Tag::form("posts/save");
echo Phalcon\Tag::form(array("posts/save", "method" => "post"));

Volt syntax:

<?php

{{ form("posts/save") }}
{{ form("posts/save", "method": "post") }}

public static string endForm ()

Builds a HTML close FORM tag

public static setTitle (string $title)

Set the title of view content

<?php

Phalcon\Tag::setTitle('Welcome to my Page');

public static setTitleSeparator (unknown $separator)

Set the title separator of view content

<?php

Phalcon\Tag::setTitleSeparator('-');

public static appendTitle (string $title)

Appends a text to current document title

public static prependTitle (string $title)

Prepends a text to current document title

public static string getTitle ([unknown $tags])

Gets the current document title

<?php

echo Phalcon\Tag::getTitle();

<?php

{{ get_title() }}

public static string getTitleSeparator ()

Gets the current document title separator

<?php

echo Phalcon\Tag::getTitleSeparator();

<?php

{{ get_title_separator() }}

812 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public static string stylesheetLink ([array $parameters], [boolean $local])

Builds a LINK[rel=”stylesheet”] tag

<?php

echo Phalcon\Tag::stylesheetLink("http://fonts.googleapis.com/css?family=Rosario", false);
echo Phalcon\Tag::stylesheetLink("css/style.css");

Volt Syntax:

<?php

{{ stylesheet_link("http://fonts.googleapis.com/css?family=Rosario", false) }}
{{ stylesheet_link("css/style.css") }}

public static string javascriptInclude ([array $parameters], [boolean $local])

Builds a SCRIPT[type=”javascript”] tag

<?php

echo Phalcon\Tag::javascriptInclude("http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js", false);
echo Phalcon\Tag::javascriptInclude("javascript/jquery.js");

Volt syntax:

<?php

{{ javascript_include("http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js", false) }}
{{ javascript_include("javascript/jquery.js") }}

public static string image ([array $parameters], [boolean $local])

Builds HTML IMG tags

<?php

echo Phalcon\Tag::image("img/bg.png");
echo Phalcon\Tag::image(array("img/photo.jpg", "alt" => "Some Photo"));

Volt Syntax:

<?php

{{ image("img/bg.png") }}
{{ image("img/photo.jpg", "alt": "Some Photo") }}
{{ image("http://static.mywebsite.com/img/bg.png", false) }}

public static text friendlyTitle (string $text, [string $separator], [boolean $lowercase])

Converts texts into URL-friendly titles

<?php

echo Phalcon\Tag::friendlyTitle('These are big important news', '-')

public static setDocType (string $doctype)

Set the document type of content

public static string getDocType ()

Get the document type declaration of content

2.54. API Indice 813



Phalcon PHP Framework Documentation, Release 1.3.0

public static string tagHtml (string $tagName, [array $parameters], [boolean $selfClose], [boolean $onlyStart],
[boolean $useEol])

Builds a HTML tag

<?php

echo Phalcon\Tag::tagHtml($name, $parameters, $selfClose, $onlyStart, $eol);

public static string tagHtmlClose (string $tagName, [boolean $useEol])

Builds a HTML tag closing tag

<?php

echo Phalcon\Tag::tagHtmlClose('script', true)

2.54.228 Class Phalcon\Tag\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Tag will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

814 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.229 Abstract class Phalcon\Tag\Select

Generates a SELECT html tag using a static array of values or a Phalcon\Mvc\Model resultset

Methods

public static selectField (array $parameters, [array $data])

Generates a SELECT tag

protected static _optionsFromResultset ()

Generate the OPTION tags based on a resulset

protected static _optionsFromArray ()

Generate the OPTION tags based on an array

2.54.230 Abstract class Phalcon\Text

Provides utilities to work with texts

Constants

integer RANDOM_ALNUM

integer RANDOM_ALPHA

integer RANDOM_HEXDEC

integer RANDOM_NUMERIC

integer RANDOM_NOZERO

Methods

public static string camelize (string $str)

Converts strings to camelize style

<?php

echo Phalcon\Text::camelize('coco_bongo'); //CocoBongo

public static string uncamelize (string $str)

Uncamelize strings which are camelized

<?php

echo Phalcon\Text::uncamelize('CocoBongo'); //coco_bongo

public static string increment (string $str, [string $separator])

Adds a number to a string or increment that number if it already is defined

2.54. API Indice 815



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

echo Phalcon\Text::increment("a"); // "a_1"
echo Phalcon\Text::increment("a_1"); // "a_2"

public static string random (int $type, [int $length])

Generates a random string based on the given type. Type is one of the RANDOM_* constants

<?php

echo Phalcon\Text::random(Phalcon\Text::RANDOM_ALNUM); //"aloiwkqz"

public static boolean startsWith (string $str, string $start, [boolean $ignoreCase])

Check if a string starts with a given string

<?php

echo Phalcon\Text::startsWith("Hello", "He"); // true
echo Phalcon\Text::startsWith("Hello", "he"); // false
echo Phalcon\Text::startsWith("Hello", "he", false); // true

public static boolean endsWith (string $str, string $end, [boolean $ignoreCase])

Check if a string ends with a given string

<?php

echo Phalcon\Text::endsWith("Hello", "llo"); // true
echo Phalcon\Text::endsWith("Hello", "LLO"); // false
echo Phalcon\Text::endsWith("Hello", "LLO", false); // true

public static string lower (string $str)

Lowercases a string, this function makes use of the mbstring extension if available

public static string upper (string $str)

Uppercases a string, this function makes use of the mbstring extension if available

2.54.231 Abstract class Phalcon\Translate\Adapter

implements ArrayAccess, Phalcon\Translate\AdapterInterface

Base class for Phalcon\Translate adapters

Methods

public __construct ()

Class constructore

public string _ (string $translateKey, [array $placeholders])

Returns the translation string of the given key

public offsetSet (unknown $property, string $value)

Sets a translation value

public boolean offsetExists (unknown $property)

816 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Check whether a translation key exists

public offsetUnset (unknown $property)

Unsets a translation from the dictionary

public string offsetGet (unknown $property)

Returns the translation related to the given key

abstract public string query (string $index, [array $placeholders]) inherited from Phalcon\Translate\AdapterInterface

Returns the translation related to the given key

abstract public bool exists (string $index) inherited from Phalcon\Translate\AdapterInterface

Check whether is defined a translation key in the internal array

2.54.232 Class Phalcon\Translate\Adapter\NativeArray

extends abstract class Phalcon\Translate\Adapter

implements Phalcon\Translate\AdapterInterface, ArrayAccess

Allows to define translation lists using PHP arrays

Methods

public __construct (array $options)

Phalcon\Translate\Adapter\NativeArray constructor

public string query (string $index, [array $placeholders])

Returns the translation related to the given key

public bool exists (string $index)

Check whether is defined a translation key in the internal array

public string _ (string $translateKey, [array $placeholders]) inherited from Phalcon\Translate\Adapter

Returns the translation string of the given key

public offsetSet (unknown $property, string $value) inherited from Phalcon\Translate\Adapter

Sets a translation value

public boolean offsetExists (unknown $property) inherited from Phalcon\Translate\Adapter

Check whether a translation key exists

public offsetUnset (unknown $property) inherited from Phalcon\Translate\Adapter

Unsets a translation from the dictionary

public string offsetGet (unknown $property) inherited from Phalcon\Translate\Adapter

Returns the translation related to the given key

2.54.233 Class Phalcon\Translate\Exception

extends class Phalcon\Exception

Class for exceptions thrown by Phalcon\Translate

2.54. API Indice 817



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.234 Class Phalcon\Validation

extends abstract class Phalcon\DI\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\DI\InjectionAwareInterface

Allows to validate data using validators

Methods

public __construct ([array $validators])

Phalcon\Validation constructor

public Phalcon\Validation\Message\Group validate ([array|object $data], [object $entity])

Validate a set of data according to a set of rules

public Phalcon\Validation add (string $attribute, unknown $validator)

Adds a validator to a field

public Phalcon\Validation setFilters (array|string $attribute, unknown $filters)

818 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Adds filters to the field

public mixed getFilters ([string $attribute])

Returns all the filters or a specific one

public array getValidators ()

Returns the validators added to the validation

public object getEntity ()

Returns the bound entity

public Phalcon\Validation\Message\Group getMessages ()

Returns the registered validators

public Phalcon\Validation appendMessage (Phalcon\Validation\MessageInterface $message)

Appends a message to the messages list

public Phalcon\Validation bind (object $entity, object|array $data)

Assigns the data to an entity The entity is used to obtain the validation values

public mixed getValue (string $attribute)

Gets the a value to validate in the array/object data source

public setDefaultMessages ([unknown $messages])

...

public getDefaultMessage (unknown $type)

...

public setLabels (unknown $labels)

Adds labels for fields

public mixed getLabel (unknown $field)

Get label for field

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\DI\Injectable

Sets the dependency injector

public Phalcon\DiInterface getDI () inherited from Phalcon\DI\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\DI\Injectable

Sets the event manager

public Phalcon\Events\ManagerInterface getEventsManager () inherited from Phalcon\DI\Injectable

Returns the internal event manager

public __get (unknown $property) inherited from Phalcon\DI\Injectable

Magic method __get

2.54. API Indice 819



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.235 Class Phalcon\Validation\Exception

extends class Phalcon\Exception

Exceptions thrown in Phalcon\Validation\* classes will use this class

Methods

final private Exception __clone () inherited from Exception

Clone the exception

public __construct ([string $message], [int $code], [Exception $previous]) inherited from Exception

Exception constructor

final public string getMessage () inherited from Exception

Gets the Exception message

final public int getCode () inherited from Exception

Gets the Exception code

final public string getFile () inherited from Exception

Gets the file in which the exception occurred

final public int getLine () inherited from Exception

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception

Gets the stack trace

final public Exception getPrevious () inherited from Exception

Returns previous Exception

final public Exception getTraceAsString () inherited from Exception

Gets the stack trace as a string

public string __toString () inherited from Exception

String representation of the exception

2.54.236 Class Phalcon\Validation\Message

Encapsulates validation info generated in the validation process

Methods

public __construct (string $message, [string $field], [string $type], [int $code])

Phalcon\Validation\Message constructor

public Phalcon\Validation\Message setType (string $type)

Sets message type

public string getType ()

820 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns message type

public Phalcon\Validation\Message setCode (string $code)

Sets message code

public string getCode ()

Returns message code

public Phalcon\Validation\Message setMessage (string $message)

Sets verbose message

public string getMessage ()

Returns verbose message

public Phalcon\Validation\Message setField (string $field)

Sets field name related to message

public string getField ()

Returns field name related to message

public string __toString ()

Magic __toString method returns verbose message

public static Phalcon\Validation\Message __set_state (array $message)

Magic __set_state helps to recover messsages from serialization

2.54.237 Class Phalcon\Validation\Message\Group

implements Countable, ArrayAccess, Iterator, Traversable

Represents a group of validation messages

Methods

public __construct ([array $messages])

Phalcon\Validation\Message\Group constructor

public Phalcon\Validation\Message offsetGet (string $index)

Gets an attribute a message using the array syntax

<?php

print_r($messages[0]);

public offsetSet (string $index, Phalcon\Validation\Message $message)

Sets an attribute using the array-syntax

<?php

$messages[0] = new Phalcon\Validation\Message('This is a message');

public boolean offsetExists (string $index)

Checks if an index exists

2.54. API Indice 821



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

var_dump(isset($message['database']));

public offsetUnset (string $index)

Removes a message from the list

<?php

unset($message['database']);

public appendMessage (Phalcon\Validation\Message $message)

Appends a message to the group

<?php

$messages->appendMessage(new Phalcon\Validation\Message('This is a message'));

public appendMessages (Phalcon\Validation\MessageInterface[] $messages)

Appends an array of messages to the group

<?php

$messages->appendMessages($messagesArray);

public array filter (string $fieldName)

Filters the message group by field name

public int count ()

Returns the number of messages in the list

public rewind ()

Rewinds the internal iterator

public Phalcon\Validation\Message current ()

Returns the current message in the iterator

public int key ()

Returns the current position/key in the iterator

public next ()

Moves the internal iteration pointer to the next position

public boolean valid ()

Check if the current message in the iterator is valid

public static Phalcon\Mvc\Model\Message\Group __set_state (array $group)

Magic __set_state helps to re-build messages variable when exporting

2.54.238 Abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

This is a base class for validators

822 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

public __construct ([array $options])

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key)

Checks if an option is defined

public mixed getOption (string $key)

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value)

Sets an option in the validator

abstract public Phalcon\Validation\Message\Group validate (Phalcon\Validator $validator, string $attribute) inherited
from Phalcon\Validation\ValidatorInterface

Executes the validation

2.54.239 Class Phalcon\Validation\Validator\Between

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Validates that a value is between a range of two values

<?php

use Phalcon\Validation\Validator\Between;

$validator->add('name', new Between(array(
'minimum' => 0,
'maximum' => 100,
'message' => 'The price must be between 0 and 100'

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54. API Indice 823



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.240 Class Phalcon\Validation\Validator\Confirmation

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Checks that two values have the same value

<?php

use Phalcon\Validation\Validator\Confirmation;

$validator->add('password', new Confirmation(array(
'message' => 'Password doesn\'t match confirmation',
'with' => 'confirmPassword'

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.241 Class Phalcon\Validation\Validator\Email

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Checks if a value has a correct e-mail format

<?php

use Phalcon\Validation\Validator\Email as EmailValidator;

$validator->add('email', new EmailValidator(array(
'message' => 'The e-mail is not valid'

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

824 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.242 Class Phalcon\Validation\Validator\ExclusionIn

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Check if a value is not included into a list of values

<?php

use Phalcon\Validation\Validator\ExclusionIn;

$validator->add('status', new ExclusionIn(array(
'message' => 'The status must not be A or B',
'domain' => array('A', 'B')

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.243 Class Phalcon\Validation\Validator\Identical

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Checks if a value is identical to other

2.54. API Indice 825



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

use Phalcon\Validation\Validator\Identical;

$validator->add('terms', new Identical(array(
'value' => 'yes',
'message' => 'Terms and conditions must be accepted'

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.244 Class Phalcon\Validation\Validator\InclusionIn

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Check if a value is included into a list of values

<?php

use Phalcon\Validation\Validator\InclusionIn;

$validator->add('status', new InclusionIn(array(
'message' => 'The status must be A or B',
'domain' => array('A', 'B')

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

826 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.245 Class Phalcon\Validation\Validator\PresenceOf

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Validates that a value is not null or empty string

<?php

use Phalcon\Validation\Validator\PresenceOf;

$validator->add('name', new PresenceOf(array(
'message' => 'The name is required'

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.246 Class Phalcon\Validation\Validator\Regex

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Allows validate if the value of a field matches a regular expression

<?php

use Phalcon\Validation\Validator\Regex as RegexValidator;

$validator->add('created_at', new RegexValidator(array(

2.54. API Indice 827



Phalcon PHP Framework Documentation, Release 1.3.0

'pattern' => '/^[0-9]{4}[-\/](0[1-9]|1[12])[-\/](0[1-9]|[12][0-9]|3[01])$/',
'message' => 'The creation date is invalid'

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.247 Class Phalcon\Validation\Validator\StringLength

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Validates that a string has the specified maximum and minimum constraints

<?php

use Phalcon\Validation\Validator\StringLength as StringLength;

$validation->add('name_last', new StringLength(array(
'max' => 50,
'min' => 2,
'messageMaximum' => 'We don\'t like really long names',
'messageMinimum' => 'We want more than just their initials'

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

828 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.248 Class Phalcon\Validation\Validator\Url

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Checks if a value has a correct URL format

<?php

use Phalcon\Validation\Validator\Url as UrlValidator;

$validator->add('url', new UrlValidator(array(
'message' => 'The url is not valid'

)));

Methods

public boolean validate (Phalcon\Validation $validator, string $attribute)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public mixed isSetOption (string $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public mixed getOption (string $key) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t been set

public setOption (string $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

2.54.249 Class Phalcon\Version

This class allows to get the installed version of the framework

Methods

protected static _getVersion ()

Area where the version number is set. The format is as follows: ABBCCDE A - Major version B - Med version (two
digits) C - Min version (two digits) D - Special release: 1 = Alpha, 2 = Beta, 3 = RC, 4 = Stable E - Special release
version i.e. RC1, Beta2 etc.

public static string get ()

Returns the active version (string)

2.54. API Indice 829



Phalcon PHP Framework Documentation, Release 1.3.0

<?php

echo Phalcon\Version::get();

public static int getId ()

Returns the numeric active version

<?php

echo Phalcon\Version::getId();

2.54.250 Interface Phalcon\Acl\AdapterInterface

Phalcon\Acl\AdapterInterface initializer

Methods

abstract public setDefaultAction (int $defaultAccess)

Sets the default access level (Phalcon\Acl::ALLOW or Phalcon\Acl::DENY)

abstract public int getDefaultAction ()

Returns the default ACL access level

abstract public boolean addRole (Phalcon\Acl\RoleInterface $role, [string $accessInherits])

Adds a role to the ACL list. Second parameter lets to inherit access data from other existing role

abstract public addInherit (string $roleName, string $roleToInherit)

Do a role inherit from another existing role

abstract public boolean isRole (string $roleName)

Check whether role exist in the roles list

abstract public boolean isResource (string $resourceName)

Check whether resource exist in the resources list

abstract public boolean addResource (Phalcon\Acl\ResourceInterface $resource, [array $accessList])

Adds a resource to the ACL list Access names can be a particular action, by example search, update, delete, etc or a
list of them

abstract public addResourceAccess (string $resourceName, mixed $accessList)

Adds access to resources

abstract public dropResourceAccess (string $resourceName, mixed $accessList)

Removes an access from a resource

abstract public allow (string $roleName, string $resourceName, mixed $access)

Allow access to a role on a resource

abstract public boolean deny (string $roleName, string $resourceName, mixed $access)

Deny access to a role on a resource

abstract public boolean isAllowed (string $role, string $resource, string $access)

830 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Check whether a role is allowed to access an action from a resource

abstract public string getActiveRole ()

Returns the role which the list is checking if it’s allowed to certain resource/access

abstract public string getActiveResource ()

Returns the resource which the list is checking if some role can access it

abstract public string getActiveAccess ()

Returns the access which the list is checking if some role can access it

abstract public Phalcon\Acl\RoleInterface [] getRoles ()

Return an array with every role registered in the list

abstract public Phalcon\Acl\ResourceInterface [] getResources ()

Return an array with every resource registered in the list

2.54.251 Interface Phalcon\Acl\ResourceInterface

Phalcon\Acl\ResourceInterface initializer

Methods

abstract public string getName ()

Returns the resource name

abstract public string getDescription ()

Returns resource description

2.54.252 Interface Phalcon\Acl\RoleInterface

Phalcon\Acl\RoleInterface initializer

Methods

abstract public string getName ()

Returns the role name

abstract public string getDescription ()

Returns role description

2.54.253 Interface Phalcon\Annotations\AdapterInterface

Phalcon\Annotations\AdapterInterface initializer

2.54. API Indice 831



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public setReader (Phalcon\Annotations\ReaderInterface $reader)

Sets the annotations parser

abstract public Phalcon\Annotations\ReaderInterface getReader ()

Returns the annotation reader

abstract public Phalcon\Annotations\Reflection get (string|object $className)

Parses or retrieves all the annotations found in a class

abstract public array getMethods (string $className)

Returns the annotations found in all the class’ methods

abstract public Phalcon\Annotations\Collection getMethod (string $className, string $methodName)

Returns the annotations found in a specific method

abstract public array getProperties (string $className)

Returns the annotations found in all the class’ methods

abstract public Phalcon\Annotations\Collection getProperty (string $className, string $propertyName)

Returns the annotations found in a specific property

2.54.254 Interface Phalcon\Annotations\ReaderInterface

Phalcon\Annotations\ReaderInterface initializer

Methods

abstract public array parse (string $className)

Reads annotations from the class dockblocks, its methods and/or properties

abstract public static array parseDocBlock (string $docBlock, [unknown $file], [unknown $line])

Parses a raw doc block returning the annotations found

2.54.255 Interface Phalcon\Assets\FilterInterface

Phalcon\Assets\FilterInterface initializer

Methods

abstract public $content filter (string $content)

Filters the content returning a string with the filtered content

2.54.256 Interface Phalcon\Cache\BackendInterface

Phalcon\Cache\BackendInterface initializer

832 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public mixed start (int|string $keyName, [long $lifetime])

Starts a cache. The $keyname allows to identify the created fragment

abstract public stop ([boolean $stopBuffer])

Stops the frontend without store any cached content

abstract public mixed getFrontend ()

Returns front-end instance adapter related to the back-end

abstract public array getOptions ()

Returns the backend options

abstract public boolean isFresh ()

Checks whether the last cache is fresh or cached

abstract public boolean isStarted ()

Checks whether the cache has starting buffering or not

abstract public setLastKey (string $lastKey)

Sets the last key used in the cache

abstract public string getLastKey ()

Gets the last key stored by the cache

abstract public mixed get (int|string $keyName, [long $lifetime])

Returns a cached content

abstract public save ([int|string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the file backend and stops the frontend

abstract public boolean delete (int|string $keyName)

Deletes a value from the cache by its key

abstract public array queryKeys ([string $prefix])

Query the existing cached keys

abstract public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it hasn’t expired

abstract public boolean flush ()

Immediately invalidates all existing items.

2.54.257 Interface Phalcon\Cache\FrontendInterface

Phalcon\Cache\FrontendInterface initializer

2.54. API Indice 833



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public int getLifetime ()

Returns the cache lifetime

abstract public boolean isBuffering ()

Check whether if frontend is buffering output

abstract public start ()

Starts the frontend

abstract public string getContent ()

Returns output cached content

abstract public stop ()

Stops the frontend

abstract public beforeStore (mixed $data)

Serializes data before storing it

abstract public afterRetrieve (mixed $data)

Unserializes data after retrieving it

2.54.258 Interface Phalcon\CryptInterface

Phalcon\CryptInterface initializer

Methods

abstract public Phalcon\CryptInterface setCipher (string $cipher)

Sets the cipher algorithm

abstract public string getCipher ()

Returns the current cipher

abstract public Phalcon\CryptInterface setMode (unknown $mode)

Sets the encrypt/decrypt mode

abstract public string getMode ()

Returns the current encryption mode

abstract public Phalcon\CryptInterface setKey (string $key)

Sets the encryption key

abstract public string getKey ()

Returns the encryption key

abstract public string encrypt (string $text, [string $key])

Encrypts a text

abstract public string decrypt (string $text, [string $key])

834 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Decrypts a text

abstract public string encryptBase64 (string $text, [string $key], [unknown $safe])

Encrypts a text returning the result as a base64 string

abstract public string decryptBase64 (string $text, [string $key], [unknown $safe])

Decrypt a text that is coded as a base64 string

abstract public array getAvailableCiphers ()

Returns a list of available cyphers

abstract public array getAvailableModes ()

Returns a list of available modes

2.54.259 Interface Phalcon\DI\InjectionAwareInterface

Phalcon\DI\InjectionAwareInterface initializer

Methods

abstract public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

abstract public Phalcon\DiInterface getDI ()

Returns the internal dependency injector

2.54.260 Interface Phalcon\DI\ServiceInterface

Phalcon\DI\ServiceInterface initializer

Methods

abstract public string getName ()

Returns the name of the service

abstract public setShared (boolean $shared)

Sets whether the service is shared or not

abstract public boolean isShared ()

Check whether the service is shared or not

abstract public setDefinition (mixed $definition)

Set the service definition

abstract public mixed getDefinition ()

Returns the service definition

abstract public bool isResolved ()

Checks if the service was resolved

2.54. API Indice 835



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public object resolve ([array $parameters], [Phalcon\DiInterface $dependencyInjector])

Resolves the service

2.54.261 Interface Phalcon\Db\AdapterInterface

Phalcon\Db\AdapterInterface initializer

Methods

abstract public array fetchOne (string $sqlQuery, [int $fetchMode], [int $placeholders])

Returns the first row in a SQL query result

abstract public array fetchAll (string $sqlQuery, [int $fetchMode], [int $placeholders])

Dumps the complete result of a query into an array

abstract public boolean insert (string $table, array $values, [array $fields], [array $dataTypes])

Inserts data into a table using custom RBDM SQL syntax

abstract public boolean update (string $table, array $fields, array $values, [string $whereCondition], [array
$dataTypes])

Updates data on a table using custom RBDM SQL syntax

abstract public boolean delete (string $table, [string $whereCondition], [array $placeholders], [array $dataTypes])

Deletes data from a table using custom RBDM SQL syntax

abstract public string getColumnList (array $columnList)

Gets a list of columns

abstract public string limit (string $sqlQuery, int $number)

Appends a LIMIT clause to $sqlQuery argument

abstract public string tableExists (string $tableName, [string $schemaName])

Generates SQL checking for the existence of a schema.table

abstract public string viewExists (string $viewName, [string $schemaName])

Generates SQL checking for the existence of a schema.view

abstract public string forUpdate (string $sqlQuery)

Returns a SQL modified with a FOR UPDATE clause

abstract public string sharedLock (string $sqlQuery)

Returns a SQL modified with a LOCK IN SHARE MODE clause

abstract public boolean createTable (string $tableName, string $schemaName, array $definition)

Creates a table

abstract public boolean dropTable (string $tableName, [string $schemaName], [boolean $ifExists])

Drops a table from a schema/database

abstract public boolean createView (unknown $viewName, array $definition, [string $schemaName])

Creates a view

836 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public boolean dropView (string $viewName, [string $schemaName], [boolean $ifExists])

Drops a view

abstract public boolean addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $col-
umn)

Adds a column to a table

abstract public boolean modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface
$column)

Modifies a table column based on a definition

abstract public boolean dropColumn (string $tableName, string $schemaName, string $columnName)

Drops a column from a table

abstract public boolean addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Adds an index to a table

abstract public boolean dropIndex (string $tableName, string $schemaName, string $indexName)

Drop an index from a table

abstract public boolean addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $in-
dex)

Adds a primary key to a table

abstract public boolean dropPrimaryKey (string $tableName, string $schemaName)

Drops primary key from a table

abstract public boolean true addForeignKey (string $tableName, string $schemaName, Phal-
con\Db\ReferenceInterface $reference)

Adds a foreign key to a table

abstract public boolean true dropForeignKey (string $tableName, string $schemaName, string $referenceName)

Drops a foreign key from a table

abstract public string getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Returns the SQL column definition from a column

abstract public array listTables ([string $schemaName])

List all tables on a database

abstract public array listViews ([string $schemaName])

List all views on a database

abstract public array getDescriptor ()

Return descriptor used to connect to the active database

abstract public string getConnectionId ()

Gets the active connection unique identifier

abstract public string getSQLStatement ()

Active SQL statement in the object

abstract public string getRealSQLStatement ()

2.54. API Indice 837



Phalcon PHP Framework Documentation, Release 1.3.0

Active SQL statement in the object without replace bound paramters

abstract public array getSQLVariables ()

Active SQL statement in the object

abstract public array getSQLBindTypes ()

Active SQL statement in the object

abstract public string getType ()

Returns type of database system the adapter is used for

abstract public string getDialectType ()

Returns the name of the dialect used

abstract public Phalcon\Db\DialectInterface getDialect ()

Returns internal dialect instance

abstract public boolean connect ([array $descriptor])

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a
database connection

abstract public Phalcon\Db\ResultInterface query (string $sqlStatement, [array $placeholders], [array $dataTypes])

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server return rows

abstract public boolean execute (string $sqlStatement, [array $placeholders], [array $dataTypes])

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement
sent to the server don’t return any row

abstract public int affectedRows ()

Returns the number of affected rows by the last INSERT/UPDATE/DELETE reported by the database system

abstract public boolean close ()

Closes active connection returning success. Phalcon automatically closes and destroys active connections within
Phalcon\Db\Pool

abstract public string escapeIdentifier (string $identifier)

Escapes a column/table/schema name

abstract public string escapeString (string $str)

Escapes a value to avoid SQL injections

abstract public array convertBoundParams (string $sqlStatement, array $params)

Converts bound params like :name: or ?1 into ? bind params

abstract public int lastInsertId ([string $sequenceName])

Returns insert id for the auto_increment column inserted in the last SQL statement

abstract public boolean begin ()

Starts a transaction in the connection

abstract public boolean rollback ()

Rollbacks the active transaction in the connection

838 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public boolean commit ()

Commits the active transaction in the connection

abstract public boolean isUnderTransaction ()

Checks whether connection is under database transaction

abstract public PDO getInternalHandler ()

Return internal PDO handler

abstract public Phalcon\Db\IndexInterface [] describeIndexes (string $table, [string $schema])

Lists table indexes

abstract public Phalcon\Db\ReferenceInterface [] describeReferences (string $table, [string $schema])

Lists table references

abstract public array tableOptions (string $tableName, [string $schemaName])

Gets creation options from a table

abstract public boolean useExplicitIdValue ()

Check whether the database system requires an explicit value for identity columns

abstract public Phalcon\Db\RawValue getDefaultIdValue ()

Return the default identity value to insert in an identity column

abstract public boolean supportSequences ()

Check whether the database system requires a sequence to produce auto-numeric values

abstract public boolean createSavepoint (string $name)

Creates a new savepoint

abstract public boolean releaseSavepoint (string $name)

Releases given savepoint

abstract public boolean rollbackSavepoint (string $name)

Rollbacks given savepoint

abstract public Phalcon\Db\AdapterInterface setNestedTransactionsWithSavepoints (boolean $nestedTransaction-
sWithSavepoints)

Set if nested transactions should use savepoints

abstract public boolean isNestedTransactionsWithSavepoints ()

Returns if nested transactions should use savepoints

abstract public string getNestedTransactionSavepointName ()

Returns the savepoint name to use for nested transactions

abstract public Phalcon\Db\ColumnInterface [] describeColumns (string $table, [string $schema])

Returns an array of Phalcon\Db\Column objects describing a table

2.54.262 Interface Phalcon\Db\ColumnInterface

Phalcon\Db\ColumnInterface initializer

2.54. API Indice 839



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public string getSchemaName ()

Returns schema’s table related to column

abstract public string getName ()

Returns column name

abstract public int getType ()

Returns column type

abstract public int getSize ()

Returns column size

abstract public int getScale ()

Returns column scale

abstract public boolean isUnsigned ()

Returns true if number column is unsigned

abstract public boolean isNotNull ()

Not null

abstract public boolean isPrimary ()

Column is part of the primary key?

abstract public boolean isAutoIncrement ()

Auto-Increment

abstract public boolean isNumeric ()

Check whether column have an numeric type

abstract public boolean isFirst ()

Check whether column have first position in table

abstract public string getAfterPosition ()

Check whether field absolute to position in table

abstract public int getBindType ()

Returns the type of bind handling

2.54.263 Interface Phalcon\Db\DialectInterface

Phalcon\Db\DialectInterface initializer

Methods

abstract public string limit (string $sqlQuery, int $number)

Generates the SQL for LIMIT clause

abstract public string forUpdate (string $sqlQuery)

840 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns a SQL modified with a FOR UPDATE clause

abstract public string sharedLock (string $sqlQuery)

Returns a SQL modified with a LOCK IN SHARE MODE clause

abstract public string select (array $definition)

Builds a SELECT statement

abstract public string getColumnList (array $columnList)

Gets a list of columns

abstract public getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Gets the column name in MySQL

abstract public string addColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to add a column to a table

abstract public string modifyColumn (string $tableName, string $schemaName, Phalcon\Db\ColumnInterface $col-
umn)

Generates SQL to modify a column in a table

abstract public string dropColumn (string $tableName, string $schemaName, string $columnName)

Generates SQL to delete a column from a table

abstract public string addIndex (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add an index to a table

abstract public string dropIndex (string $tableName, string $schemaName, string $indexName)

Generates SQL to delete an index from a table

abstract public string addPrimaryKey (string $tableName, string $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add the primary key to a table

abstract public string dropPrimaryKey (string $tableName, string $schemaName)

Generates SQL to delete primary key from a table

abstract public string addForeignKey (string $tableName, string $schemaName, Phalcon\Db\ReferenceInterface
$reference)

Generates SQL to add an index to a table

abstract public string dropForeignKey (string $tableName, string $schemaName, string $referenceName)

Generates SQL to delete a foreign key from a table

abstract public string createTable (string $tableName, string $schemaName, array $definition)

Generates SQL to create a table

abstract public string dropTable (string $tableName, string $schemaName)

Generates SQL to drop a table

abstract public string createView (string $viewName, array $definition, string $schemaName)

Generates SQL to create a view

abstract public string dropView (string $viewName, string $schemaName, [unknown $ifExists])

Generates SQL to drop a view

2.54. API Indice 841



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public string tableExists (string $tableName, [string $schemaName])

Generates SQL checking for the existence of a schema.table

abstract public string viewExists (string $viewName, [string $schemaName])

Generates SQL checking for the existence of a schema.view

abstract public string describeColumns (string $table, [string $schema])

Generates SQL to describe a table

abstract public array listTables ([string $schemaName])

List all tables on database

abstract public array listViews ([string $schemaName])

List all views on database

abstract public string describeIndexes (string $table, [string $schema])

Generates SQL to query indexes on a table

abstract public string describeReferences (string $table, [string $schema])

Generates SQL to query foreign keys on a table

abstract public string tableOptions (string $table, [string $schema])

Generates the SQL to describe the table creation options

abstract public boolean supportsSavepoints ()

Checks whether the platform supports savepoints

abstract public boolean supportsReleaseSavepoints ()

Checks whether the platform supports releasing savepoints.

abstract public string createSavepoint (string $name)

Generate SQL to create a new savepoint

abstract public string releaseSavepoint (string $name)

Generate SQL to release a savepoint

abstract public string rollbackSavepoint (string $name)

Generate SQL to rollback a savepoint

2.54.264 Interface Phalcon\Db\IndexInterface

Phalcon\Db\IndexInterface initializer

Methods

abstract public string getName ()

Gets the index name

abstract public array getColumns ()

Gets the columns that comprends the index

842 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.265 Interface Phalcon\Db\ReferenceInterface

Phalcon\Db\ReferenceInterface initializer

Methods

abstract public string getName ()

Gets the index name

abstract public string getSchemaName ()

Gets the schema where referenced table is

abstract public string getReferencedSchema ()

Gets the schema where referenced table is

abstract public array getColumns ()

Gets local columns which reference is based

abstract public string getReferencedTable ()

Gets the referenced table

abstract public array getReferencedColumns ()

Gets referenced columns

2.54.266 Interface Phalcon\Db\ResultInterface

Phalcon\Db\ResultInterface initializer

Methods

abstract public boolean execute ()

Allows to executes the statement again. Some database systems don’t support scrollable cursors, So, as cursors are
forward only, we need to execute the cursor again to fetch rows from the begining

abstract public mixed fetch ()

Fetches an array/object of strings that corresponds to the fetched row, or FALSE if there are no more rows. This
method is affected by the active fetch flag set using Phalcon\Db\Result\Pdo::setFetchMode

abstract public mixed fetchArray ()

Returns an array of strings that corresponds to the fetched row, or FALSE if there are no more rows. This method is
affected by the active fetch flag set using Phalcon\Db\Result\Pdo::setFetchMode

abstract public array fetchAll ()

Returns an array of arrays containing all the records in the result This method is affected by the active fetch flag set
using Phalcon\Db\Result\Pdo::setFetchMode

abstract public int numRows ()

Gets number of rows returned by a resulset

abstract public dataSeek (int $number)

Moves internal resulset cursor to another position letting us to fetch a certain row

2.54. API Indice 843



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public setFetchMode (int $fetchMode)

Changes the fetching mode affecting Phalcon\Db\Result\Pdo::fetch()

abstract public PDOStatement getInternalResult ()

Gets the internal PDO result object

2.54.267 Interface Phalcon\DiInterface

extends ArrayAccess

Phalcon\DiInterface initializer

Methods

abstract public Phalcon\DI\ServiceInterface set (string $name, mixed $definition, [boolean $shared])

Registers a service in the service container

abstract public remove (string $name)

Removes a service from the service container

abstract public object get (string $name, [array $parameters])

Resolves the service based on its configuration

abstract public object getShared (string $name, [array $parameters])

Resolves a shared service based on their configuration

abstract public Phalcon\DI\ServiceInterface setService (Phalcon\DI\ServiceInterface $rawDefinition)

Sets a service using a raw Phalcon\DI\Service definition

abstract public Phalcon\DI\ServiceInterface getService (string $name)

Returns the corresponding Phalcon\Di\Service instance for a service

abstract public boolean has (string $name)

Check whether the DI contains a service by a name

abstract public boolean wasFreshInstance ()

Check whether the last service obtained via getShared produced a fresh instance or an existing one

abstract public array getServices ()

Return the services registered in the DI

abstract public static setDefault (Phalcon\DiInterface $dependencyInjector)

Set the default dependency injection container to be obtained into static methods

abstract public static Phalcon\DiInterface getDefault ()

Return the last DI created

abstract public static reset ()

Resets the internal default DI

abstract public offsetExists (unknown $offset) inherited from ArrayAccess

...

844 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public offsetGet (unknown $offset) inherited from ArrayAccess

...

abstract public offsetSet (unknown $offset, unknown $value) inherited from ArrayAccess

...

abstract public offsetUnset (unknown $offset) inherited from ArrayAccess

...

2.54.268 Interface Phalcon\DispatcherInterface

Phalcon\DispatcherInterface initializer

Methods

abstract public setActionSuffix (string $actionSuffix)

Sets the default action suffix

abstract public setDefaultNamespace (string $namespace)

Sets the default namespace

abstract public setDefaultAction (string $actionName)

Sets the default action name

abstract public setActionName (string $actionName)

Sets the action name to be dispatched

abstract public string getActionName ()

Gets last dispatched action name

abstract public setParams (array $params)

Sets action params to be dispatched

abstract public array getParams ()

Gets action params

abstract public setParam (mixed $param, mixed $value)

Set a param by its name or numeric index

abstract public mixed getParam (mixed $param, [string|array $filters])

Gets a param by its name or numeric index

abstract public boolean isFinished ()

Checks if the dispatch loop is finished or has more pendent controllers/tasks to disptach

abstract public mixed getReturnedValue ()

Returns value returned by the lastest dispatched action

abstract public object dispatch ()

Dispatches a handle action taking into account the routing parameters

abstract public forward (array $forward)

2.54. API Indice 845



Phalcon PHP Framework Documentation, Release 1.3.0

Forwards the execution flow to another controller/action

2.54.269 Interface Phalcon\EscaperInterface

Phalcon\EscaperInterface initializer

Methods

abstract public setEncoding (string $encoding)

Sets the encoding to be used by the escaper

abstract public string getEncoding ()

Returns the internal encoding used by the escaper

abstract public setHtmlQuoteType (int $quoteType)

Sets the HTML quoting type for htmlspecialchars

abstract public string escapeHtml (string $text)

Escapes a HTML string

abstract public string escapeHtmlAttr (string $text)

Escapes a HTML attribute string

abstract public string escapeCss (string $css)

Escape CSS strings by replacing non-alphanumeric chars by their hexadecimal representation

abstract public string escapeJs (string $js)

Escape Javascript strings by replacing non-alphanumeric chars by their hexadecimal representation

abstract public string escapeUrl (string $url)

Escapes a URL. Internally uses rawurlencode

2.54.270 Interface Phalcon\Events\EventsAwareInterface

Phalcon\Events\EventsAwareInterface initializer

Methods

abstract public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

abstract public Phalcon\Events\ManagerInterface getEventsManager ()

Returns the internal event manager

2.54.271 Interface Phalcon\Events\ManagerInterface

Phalcon\Events\ManagerInterface initializer

846 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public attach (string $eventType, object $handler)

Attach a listener to the events manager

abstract public detachAll ([string $type])

Removes all events from the EventsManager

abstract public mixed fire (string $eventType, object $source, [mixed $data])

Fires a event in the events manager causing that the acive listeners will be notified about it

abstract public array getListeners (string $type)

Returns all the attached listeners of a certain type

2.54.272 Interface Phalcon\FilterInterface

Phalcon\FilterInterface initializer

Methods

abstract public Phalcon\FilterInterface add (string $name, callable $handler)

Adds a user-defined filter

abstract public mixed sanitize (mixed $value, mixed $filters)

Sanizites a value with a specified single or set of filters

abstract public object[] getFilters ()

Return the user-defined filters in the instance

2.54.273 Interface Phalcon\Filter\UserFilterInterface

Phalcon\Filter\UserFilterInterface initializer

Methods

abstract public mixed filter (mixed $value)

Filters a value

2.54.274 Interface Phalcon\FlashInterface

Phalcon\FlashInterface initializer

2.54. API Indice 847



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public string error (string $message)

Shows a HTML error message

abstract public string notice (string $message)

Shows a HTML notice/information message

abstract public string success (string $message)

Shows a HTML success message

abstract public string warning (string $message)

Shows a HTML warning message

abstract public string message (string $type, string $message)

Outputs a message

2.54.275 Interface Phalcon\Forms\ElementInterface

Phalcon\Forms\ElementInterface initializer

Methods

abstract public Phalcon\Forms\ElementInterface setForm (Phalcon\Forms\Form $form)

Sets the parent form to the element

abstract public Phalcon\Forms\ElementInterface getForm ()

Returns the parent form to the element

abstract public Phalcon\Forms\ElementInterface setName (string $name)

Sets the element’s name

abstract public string getName ()

Returns the element’s name

abstract public Phalcon\Forms\ElementInterface setFilters (array|string $filters)

Sets the element’s filters

abstract public Phalcon\Forms\ElementInterface addFilter (string $filter)

Adds a filter to current list of filters

abstract public mixed getFilters ()

Returns the element’s filters

abstract public Phalcon\Forms\ElementInterface addValidators (unknown $validators, [unknown $merge])

Adds a group of validators

abstract public Phalcon\Forms\ElementInterface addValidator (unknown $validator)

Adds a validator to the element

abstract public Phalcon\Validation\ValidatorInterface [] getValidators ()

848 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns the validators registered for the element

abstract public array prepareAttributes ([array $attributes], [boolean $useChecked])

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element’s parameters

abstract public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value)

Sets a default attribute for the element

abstract public mixed getAttribute (string $attribute, [mixed $defaultValue])

Returns the value of an attribute if present

abstract public Phalcon\Forms\ElementInterface setAttributes (array $attributes)

Sets default attributes for the element

abstract public array getAttributes ()

Returns the default attributes for the element

abstract public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value)

Sets an option for the element

abstract public mixed getUserOption (string $option, [mixed $defaultValue])

Returns the value of an option if present

abstract public Phalcon\Forms\ElementInterface setUserOptions (array $options)

Sets options for the element

abstract public array getUserOptions ()

Returns the options for the element

abstract public Phalcon\Forms\ElementInterface setLabel (string $label)

Sets the element label

abstract public string getLabel ()

Returns the element’s label

abstract public string label ()

Generate the HTML to label the element

abstract public Phalcon\Forms\ElementInterface setDefault (mixed $value)

Sets a default value in case the form does not use an entity or there is no value available for the element in $_POST

abstract public mixed getDefault ()

Returns the default value assigned to the element

abstract public mixed getValue ()

Returns the element’s value

abstract public Phalcon\Validation\Message\Group getMessages ()

Returns the messages that belongs to the element The element needs to be attached to a form

abstract public boolean hasMessages ()

Checks whether there are messages attached to the element

abstract public Phalcon\Forms\ElementInterface setMessages (Phalcon\Validation\Message\Group $group)

2.54. API Indice 849



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the validation messages related to the element

abstract public Phalcon\Forms\ElementInterface appendMessage (Phalcon\Validation\Message $message)

Appends a message to the internal message list

abstract public Phalcon\Forms\Element clear ()

Clears every element in the form to its default value

abstract public string render ([array $attributes])

Renders the element widget

2.54.276 Interface Phalcon\Http\RequestInterface

Phalcon\Http\RequestInterface initializer

Methods

abstract public mixed get ([string $name], [string|array $filters], [mixed $defaultValue])

Gets a variable from the $_REQUEST superglobal applying filters if needed

abstract public mixed getPost ([string $name], [string|array $filters], [mixed $defaultValue])

Gets a variable from the $_POST superglobal applying filters if needed

abstract public getPut ([unknown $name], [unknown $filters], [unknown $defaultValue])

...

abstract public mixed getQuery ([string $name], [string|array $filters], [mixed $defaultValue])

Gets variable from $_GET superglobal applying filters if needed

abstract public mixed getServer (string $name)

Gets variable from $_SERVER superglobal

abstract public boolean has (string $name)

Checks whether $_SERVER superglobal has certain index

abstract public boolean hasPost (string $name)

Checks whether $_POST superglobal has certain index

abstract public hasPut (unknown $name)

...

abstract public boolean hasQuery (string $name)

Checks whether $_SERVER superglobal has certain index

abstract public mixed hasServer (string $name)

Checks whether $_SERVER superglobal has certain index

abstract public string getHeader (string $header)

Gets HTTP header from request data

abstract public string getScheme ()

Gets HTTP schema (http/https)

850 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public boolean isAjax ()

Checks whether request has been made using ajax. Checks if $_SERVER[’HTTP_X_REQUESTED_WITH’]==’XMLHttpRequest’

abstract public boolean isSoapRequested ()

Checks whether request has been made using SOAP

abstract public boolean isSecureRequest ()

Checks whether request has been made using any secure layer

abstract public string getRawBody ()

Gets HTTP raws request body

abstract public string getServerAddress ()

Gets active server address IP

abstract public string getServerName ()

Gets active server name

abstract public string getHttpHost ()

Gets information about schema, host and port used by the request

abstract public string getClientAddress ([boolean $trustForwardedHeader])

Gets most possibly client IPv4 Address. This methods search in $_SERVER[’REMOTE_ADDR’] and optionally in
$_SERVER[’HTTP_X_FORWARDED_FOR’]

abstract public string getMethod ()

Gets HTTP method which request has been made

abstract public string getUserAgent ()

Gets HTTP user agent used to made the request

abstract public boolean isMethod (string|array $methods)

Check if HTTP method match any of the passed methods

abstract public boolean isPost ()

Checks whether HTTP method is POST. if $_SERVER[’REQUEST_METHOD’]==’POST’

abstract public boolean isGet ()

Checks whether HTTP method is GET. if $_SERVER[’REQUEST_METHOD’]==’GET’

abstract public boolean isPut ()

Checks whether HTTP method is PUT. if $_SERVER[’REQUEST_METHOD’]==’PUT’

abstract public boolean isHead ()

Checks whether HTTP method is HEAD. if $_SERVER[’REQUEST_METHOD’]==’HEAD’

abstract public boolean isDelete ()

Checks whether HTTP method is DELETE. if $_SERVER[’REQUEST_METHOD’]==’DELETE’

abstract public boolean isOptions ()

Checks whether HTTP method is OPTIONS. if $_SERVER[’REQUEST_METHOD’]==’OPTIONS’

abstract public boolean hasFiles ([boolean $notErrored])

2.54. API Indice 851



Phalcon PHP Framework Documentation, Release 1.3.0

Checks whether request include attached files

abstract public Phalcon\Http\Request\FileInterface [] getUploadedFiles ([boolean $notErrored])

Gets attached files as Phalcon\Http\Request\FileInterface compatible instances

abstract public string getHTTPReferer ()

Gets web page that refers active request. ie: http://www.google.com

abstract public array getAcceptableContent ()

Gets array with mime/types and their quality accepted by the browser/client from $_SERVER[’HTTP_ACCEPT’]

abstract public array getBestAccept ()

Gets best mime/type accepted by the browser/client from $_SERVER[’HTTP_ACCEPT’]

abstract public array getClientCharsets ()

Gets charsets array and their quality accepted by the browser/client from $_SERVER[’HTTP_ACCEPT_CHARSET’]

abstract public string getBestCharset ()

Gets best charset accepted by the browser/client from $_SERVER[’HTTP_ACCEPT_CHARSET’]

abstract public array getLanguages ()

Gets languages array and their quality accepted by the browser/client from
$_SERVER[’HTTP_ACCEPT_LANGUAGE’]

abstract public string getBestLanguage ()

Gets best language accepted by the browser/client from $_SERVER[’HTTP_ACCEPT_LANGUAGE’]

2.54.277 Interface Phalcon\Http\Request\FileInterface

Phalcon\Http\Request\FileInterface initializer

Methods

abstract public int getSize ()

Returns the file size of the uploaded file

abstract public string getName ()

Returns the real name of the uploaded file

abstract public string getTempName ()

Returns the temporal name of the uploaded file

abstract public string getType ()

Returns the mime type reported by the browser This mime type is not completely secure, use getRealType() instead

abstract public string getRealType ()

Gets the real mime type of the upload file using finfo

abstract public boolean moveTo (string $destination)

Move the temporary file to a destination

852 Chapter 2. Table of Contents

http://www.google.com


Phalcon PHP Framework Documentation, Release 1.3.0

2.54.278 Interface Phalcon\Http\ResponseInterface

Phalcon\Http\ResponseInterface initializer

Methods

abstract public Phalcon\Http\ResponseInterface setStatusCode (int $code, string $message)

Sets the HTTP response code

abstract public Phalcon\Http\Response\Headers getHeaders ()

Returns headers set by the user

abstract public Phalcon\Http\ResponseInterface setHeader (string $name, string $value)

Overwrites a header in the response

abstract public Phalcon\Http\ResponseInterface setRawHeader (string $header)

Send a raw header to the response

abstract public Phalcon\Http\ResponseInterface resetHeaders ()

Resets all the stablished headers

abstract public Phalcon\Http\ResponseInterface setExpires (DateTime $datetime)

Sets output expire time header

abstract public Phalcon\Http\ResponseInterface setNotModified ()

Sends a Not-Modified response

abstract public Phalcon\Http\ResponseInterface setContentType (string $contentType, [string $charset])

Sets the response content-type mime, optionally the charset

abstract public Phalcon\Http\ResponseInterface redirect ([string $location], [boolean $externalRedirect], [int $status-
Code])

Redirect by HTTP to another action or URL

abstract public Phalcon\Http\ResponseInterface setContent (string $content)

Sets HTTP response body

abstract public Phalcon\Http\ResponseInterface setJsonContent (string $content)

Sets HTTP response body. The parameter is automatically converted to JSON

<?php

$response->setJsonContent(array("status" => "OK"));

abstract public Phalcon\Http\ResponseInterface appendContent (string $content)

Appends a string to the HTTP response body

abstract public string getContent ()

Gets the HTTP response body

abstract public Phalcon\Http\ResponseInterface sendHeaders ()

Sends headers to the client

2.54. API Indice 853



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public Phalcon\Http\ResponseInterface sendCookies ()

Sends cookies to the client

abstract public Phalcon\Http\ResponseInterface send ()

Prints out HTTP response to the client

abstract public setFileToSend (string $filePath, [string $attachmentName])

Sets an attached file to be sent at the end of the request

2.54.279 Interface Phalcon\Http\Response\CookiesInterface

Phalcon\Http\Response\CookiesInterface initializer

Methods

abstract public Phalcon\Http\Response\CookiesInterface useEncryption (boolean $useEncryption)

Set if cookies in the bag must be automatically encrypted/decrypted

abstract public boolean isUsingEncryption ()

Returns if the bag is automatically encrypting/decrypting cookies

abstract public Phalcon\Http\Response\CookiesInterface set (string $name, [mixed $value], [int $expire], [string
$path], [boolean $secure], [string $domain], [boolean $httpOnly])

Sets a cookie to be sent at the end of the request

abstract public Phalcon\Http\Cookie get (string $name)

Gets a cookie from the bag

abstract public boolean has (string $name)

Check if a cookie is defined in the bag or exists in the $_COOKIE superglobal

abstract public boolean delete (string $name)

Deletes a cookie by its name This method does not removes cookies from the $_COOKIE superglobal

abstract public boolean send ()

Sends the cookies to the client

abstract public Phalcon\Http\Response\CookiesInterface reset ()

Reset set cookies

2.54.280 Interface Phalcon\Http\Response\HeadersInterface

Phalcon\Http\Response\HeadersInterface initializer

854 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public set (string $name, string $value)

Sets a header to be sent at the end of the request

abstract public string get (string $name)

Gets a header value from the internal bag

abstract public setRaw (string $header)

Sets a raw header to be sent at the end of the request

abstract public boolean send ()

Sends the headers to the client

abstract public reset ()

Reset set headers

abstract public array toArray ()

Returns the current headers as an array

2.54.281 Interface Phalcon\Image\AdapterInterface

Phalcon\Image\AdapterInterface initializer

Methods

abstract public Phalcon\Image\Adapter resize ([unknown $width], [unknown $height], [unknown $master])

Resize the image to the given size. Either the width or the height can be omitted and the image will be resized
proportionally.

abstract public liquidRescale (unknown $width, unknown $height, [unknown $delta_x], [unknown $rigidity])

...

abstract public Phalcon\Image\Adapter crop (unknown $width, unknown $height, [unknown $offset_x], [unknown
$offset_y])

Crop an image to the given size. Either the width or the height can be omitted and the current width or height will be
used.

abstract public Phalcon\Image\Adapter rotate (unknown $degrees)

Rotate the image by a given amount.

abstract public Phalcon\Image\Adapter flip (unknown $direction)

Flip the image along the horizontal or vertical axis.

abstract public Phalcon\Image\Adapter sharpen (unknown $amount)

Sharpen the image by a given amount.

abstract public Phalcon\Image\Adapter reflection ([unknown $height], [unknown $opacity], [unknown $fade_in])

Add a reflection to an image. The most opaque part of the reflection will be equal to the opacity setting and fade out
to full transparent. Alpha transparency is preserved.

2.54. API Indice 855



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public Phalcon\Image\Adapter watermark (unknown $watermark, [unknown $offset_x], [unknown $off-
set_y], [unknown $opacity])

Add a watermark to an image with a specified opacity. Alpha transparency will be preserved.

abstract public text (unknown $text, [unknown $offset_x], [unknown $offset_y], [unknown $opacity], [unknown
$color], [unknown $size], [unknown $fontfile])

...

abstract public mask (unknown $mask)

...

abstract public Phalcon\Image\Adapter background (unknown $color, [unknown $quality])

Set the background color of an image. This is only useful for images with alpha transparency.

abstract public blur ([unknown $radius])

...

abstract public pixelate ([unknown $amount])

...

abstract public Phalcon\Image\Adapter save ([unknown $file], [unknown $quality])

Save the image. If the filename is omitted, the original image will be overwritten.

abstract public Phalcon\Image\Adapter render ([unknown $type], [unknown $quality])

Render the image and return the binary string.

2.54.282 Interface Phalcon\Logger\AdapterInterface

Phalcon\Logger\AdapterInterface initializer

Methods

abstract public Phalcon\Logger\Adapter setFormatter (Phalcon\Logger\FormatterInterface $formatter)

Sets the message formatter

abstract public Phalcon\Logger\FormatterInterface getFormatter ()

Returns the internal formatter

abstract public Phalcon\Logger\Adapter setLogLevel (int $level)

Filters the logs sent to the handlers to be greater or equals than a specific level

abstract public int getLogLevel ()

Returns the current log level

abstract public Phalcon\Logger\Adapter begin ()

Starts a transaction

abstract public Phalcon\Logger\Adapter commit ()

Commits the internal transaction

abstract public Phalcon\Logger\Adapter rollback ()

856 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Rollbacks the internal transaction

abstract public boolean close ()

Closes the logger

abstract public Phalcon\Logger\AdapterInterface log (int|string $type, string $message, [array $context])

Sends/Writes messages to the file log

abstract public Phalcon\Logger\AdapterInterface debug (string $message, [array $context])

Sends/Writes a debug message to the log

abstract public Phalcon\Logger\AdapterInterface info (string $message, [array $context])

Sends/Writes an info message to the log

abstract public Phalcon\Logger\AdapterInterface notice (string $message, [unknown $context])

Sends/Writes a notice message to the log

abstract public Phalcon\Logger\AdapterInterface warning (string $message, [array $context])

Sends/Writes a warning message to the log

abstract public Phalcon\Logger\AdapterInterface error (string $message, [array $context])

Sends/Writes an error message to the log

abstract public Phalcon\Logger\AdapterInterface critical (string $message, [array $context])

Sends/Writes a critical message to the log

abstract public Phalcon\Logger\AdapterInterface alert (string $message, [array $context])

Sends/Writes an alert message to the log

abstract public Phalcon\Logger\AdapterInterface emergency (string $message, [array $context])

Sends/Writes an emergency message to the log

2.54.283 Interface Phalcon\Logger\FormatterInterface

Phalcon\Logger\FormatterInterface initializer

Methods

abstract public format (string $message, int $type, int $timestamp, array $context)

Applies a format to a message before sent it to the internal log

2.54.284 Interface Phalcon\Mvc\CollectionInterface

Phalcon\Mvc\CollectionInterface initializer

2.54. API Indice 857



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public setId (mixed $id)

Sets a value for the _id propery, creates a MongoId object if needed

abstract public MongoId getId ()

Returns the value of the _id property

abstract public array getReservedAttributes ()

Returns an array with reserved properties that cannot be part of the insert/update

abstract public string getSource ()

Returns collection name mapped in the model

abstract public setConnectionService (string $connectionService)

Sets a service in the services container that returns the Mongo database

abstract public MongoDb getConnection ()

Retrieves a database connection

abstract public mixed readAttribute (string $attribute)

Reads an attribute value by its name

abstract public writeAttribute (string $attribute, mixed $value)

Writes an attribute value by its name

abstract public static Phalcon\Mvc\Collection cloneResult (Phalcon\Mvc\Collection $collection, array $document)

Returns a cloned collection

abstract public boolean fireEvent (string $eventName)

Fires an event, implicitly calls behaviors and listeners in the events manager are notified

abstract public boolean fireEventCancel (string $eventName)

Fires an event, implicitly listeners in the events manager are notified This method stops if one of the callbacks/listeners
returns boolean false

abstract public boolean validationHasFailed ()

Check whether validation process has generated any messages

abstract public Phalcon\Mvc\Model\MessageInterface [] getMessages ()

Returns all the validation messages

abstract public appendMessage (Phalcon\Mvc\Model\MessageInterface $message)

Appends a customized message on the validation process

abstract public boolean save ()

Creates/Updates a collection based on the values in the atributes

abstract public static Phalcon\Mvc\Collection findById (string $id)

Find a document by its id

abstract public static array findFirst ([array $parameters])

Allows to query the first record that match the specified conditions

858 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public static array find ([array $parameters])

Allows to query a set of records that match the specified conditions

abstract public static array count ([array $parameters])

Perform a count over a collection

abstract public boolean delete ()

Deletes a model instance. Returning true on success or false otherwise

2.54.285 Interface Phalcon\Mvc\Collection\ManagerInterface

Phalcon\Mvc\Collection\ManagerInterface initializer

Methods

abstract public setCustomEventsManager (Phalcon\Mvc\CollectionInterface $model, Phal-
con\Events\ManagerInterface $eventsManager)

Sets a custom events manager for a specific model

abstract public Phalcon\Events\ManagerInterface getCustomEventsManager (Phalcon\Mvc\CollectionInterface
$model)

Returns a custom events manager related to a model

abstract public initialize (Phalcon\Mvc\CollectionInterface $model)

Initializes a model in the models manager

abstract public bool isInitialized (string $modelName)

Check whether a model is already initialized

abstract public Phalcon\Mvc\CollectionInterface getLastInitialized ()

Get the latest initialized model

abstract public setConnectionService (Phalcon\Mvc\CollectionInterface $model, string $connectionService)

Sets a connection service for a specific model

abstract public useImplicitObjectIds (Phalcon\Mvc\CollectionInterface $model, boolean $useImplicitObjectIds)

Sets if a model must use implicit objects ids

abstract public boolean isUsingImplicitObjectIds (Phalcon\Mvc\CollectionInterface $model)

Checks if a model is using implicit object ids

abstract public Phalcon\Db\AdapterInterface getConnection (Phalcon\Mvc\CollectionInterface $model)

Returns the connection related to a model

abstract public notifyEvent (string $eventName, Phalcon\Mvc\CollectionInterface $model)

Receives events generated in the models and dispatches them to a events-manager if available Notify the behaviors
that are listening in the model

2.54.286 Interface Phalcon\Mvc\ControllerInterface

Phalcon\Mvc\ControllerInterface initializer

2.54. API Indice 859



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.287 Interface Phalcon\Mvc\DispatcherInterface

extends PhalconDispatcherInterface

Phalcon\Mvc\DispatcherInterface initializer

Methods

abstract public setControllerSuffix (string $controllerSuffix)

Sets the default controller suffix

abstract public setDefaultController (string $controllerName)

Sets the default controller name

abstract public setControllerName (string $controllerName, [unknown $isExact])

Sets the controller name to be dispatched

abstract public string getControllerName ()

Gets last dispatched controller name

abstract public Phalcon\Mvc\ControllerInterface getLastController ()

Returns the lastest dispatched controller

abstract public Phalcon\Mvc\ControllerInterface getActiveController ()

Returns the active controller in the dispatcher

abstract public setActionSuffix (string $actionSuffix) inherited from Phalcon\DispatcherInterface

Sets the default action suffix

abstract public setDefaultNamespace (string $namespace) inherited from Phalcon\DispatcherInterface

Sets the default namespace

abstract public setDefaultAction (string $actionName) inherited from Phalcon\DispatcherInterface

Sets the default action name

abstract public setActionName (string $actionName) inherited from Phalcon\DispatcherInterface

Sets the action name to be dispatched

abstract public string getActionName () inherited from Phalcon\DispatcherInterface

Gets last dispatched action name

abstract public setParams (array $params) inherited from Phalcon\DispatcherInterface

Sets action params to be dispatched

abstract public array getParams () inherited from Phalcon\DispatcherInterface

Gets action params

abstract public setParam (mixed $param, mixed $value) inherited from Phalcon\DispatcherInterface

Set a param by its name or numeric index

abstract public mixed getParam (mixed $param, [string|array $filters]) inherited from Phalcon\DispatcherInterface

Gets a param by its name or numeric index

abstract public boolean isFinished () inherited from Phalcon\DispatcherInterface

860 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Checks if the dispatch loop is finished or has more pendent controllers/tasks to disptach

abstract public mixed getReturnedValue () inherited from Phalcon\DispatcherInterface

Returns value returned by the lastest dispatched action

abstract public object dispatch () inherited from Phalcon\DispatcherInterface

Dispatches a handle action taking into account the routing parameters

abstract public forward (array $forward) inherited from Phalcon\DispatcherInterface

Forwards the execution flow to another controller/action

2.54.288 Interface Phalcon\Mvc\Micro\CollectionInterface

Phalcon\Mvc\Micro\CollectionInterface initializer

Methods

abstract public Phalcon\Mvc\Micro\Collection setPrefix (string $prefix)

Sets a prefix for all routes added to the collection

abstract public string getPrefix ()

Returns the collection prefix if any

abstract public array getHandlers ()

Returns the registered handlers

abstract public Phalcon\Mvc\Micro\Collection setHandler (mixed $handler, [boolean $lazy])

Sets the main handler

abstract public Phalcon\Mvc\Micro\Collection setLazy (boolean $lazy)

Sets if the main handler must be lazy loaded

abstract public boolean isLazy ()

Returns if the main handler must be lazy loaded

abstract public mixed getHandler ()

Returns the main handler

abstract public Phalcon\Mvc\Router\RouteInterface map (string $routePattern, callable $handler)

Maps a route to a handler

abstract public Phalcon\Mvc\Router\RouteInterface get (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is GET

abstract public Phalcon\Mvc\Router\RouteInterface post (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is POST

abstract public Phalcon\Mvc\Router\RouteInterface put (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is PUT

abstract public Phalcon\Mvc\Router\RouteInterface patch (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is PATCH

2.54. API Indice 861



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public Phalcon\Mvc\Router\RouteInterface head (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is HEAD

abstract public Phalcon\Mvc\Router\RouteInterface delete (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is DELETE

abstract public Phalcon\Mvc\Router\RouteInterface options (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is OPTIONS

2.54.289 Interface Phalcon\Mvc\Micro\MiddlewareInterface

Phalcon\Mvc\Micro\MiddlewareInterface initializer

Methods

abstract public call (Phalcon\Mvc\Micro $application)

Calls the middleware

2.54.290 Interface Phalcon\Mvc\ModelInterface

Phalcon\Mvc\ModelInterface initializer

Methods

abstract public Phalcon\Mvc\ModelInterface setTransaction (Phalcon\Mvc\Model\TransactionInterface $transaction)

Sets a transaction related to the Model instance

abstract public string getSource ()

Returns table name mapped in the model

abstract public string getSchema ()

Returns schema name where table mapped is located

abstract public setConnectionService (string $connectionService)

Sets both read/write connection services

abstract public setWriteConnectionService (string $connectionService)

Sets the DependencyInjection connection service used to write data

abstract public setReadConnectionService (string $connectionService)

Sets the DependencyInjection connection service used to read data

abstract public string getReadConnectionService ()

Returns DependencyInjection connection service used to read data

abstract public string getWriteConnectionService ()

Returns DependencyInjection connection service used to write data

abstract public Phalcon\Db\AdapterInterface getReadConnection ()

862 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Gets internal database connection

abstract public Phalcon\Db\AdapterInterface getWriteConnection ()

Gets internal database connection

abstract public Phalcon\Mvc\Model assign (array $data, [array $columnMap])

Assigns values to a model from an array

abstract public static Phalcon\Mvc\Model $result cloneResultMap (Phalcon\Mvc\Model $base, array $data, array
$columnMap, [int $dirtyState], [boolean $keepSnapshots])

Assigns values to a model from an array returning a new model

abstract public static Phalcon\Mvc\Model cloneResult (Phalcon\Mvc\Model $base, array $data, [int $dirtyState])

Assigns values to a model from an array returning a new model

abstract public static cloneResultMapHydrate (array $data, array $columnMap, int $hydrationMode)

Returns an hydrated result based on the data and the column map

abstract public static Phalcon\Mvc\Model\ResultsetInterface find ([array $parameters])

Allows to query a set of records that match the specified conditions

abstract public static Phalcon\Mvc\ModelInterface findFirst ([array $parameters])

Allows to query the first record that match the specified conditions

abstract public static Phalcon\Mvc\Model\CriteriaInterface query ([Phalcon\DiInterface $dependencyInjector])

Create a criteria for a especific model

abstract public static int count ([array $parameters])

Allows to count how many records match the specified conditions

abstract public static double sum ([array $parameters])

Allows to calculate a summatory on a column that match the specified conditions

abstract public static mixed maximum ([array $parameters])

Allows to get the maximum value of a column that match the specified conditions

abstract public static mixed minimum ([array $parameters])

Allows to get the minimum value of a column that match the specified conditions

abstract public static double average ([array $parameters])

Allows to calculate the average value on a column matching the specified conditions

abstract public boolean fireEvent (string $eventName)

Fires an event, implicitly calls behaviors and listeners in the events manager are notified

abstract public boolean fireEventCancel (string $eventName)

Fires an event, implicitly calls behaviors and listeners in the events manager are notified This method stops if one of
the callbacks/listeners returns boolean false

abstract public appendMessage (Phalcon\Mvc\Model\MessageInterface $message)

Appends a customized message on the validation process

abstract public boolean validationHasFailed ()

Check whether validation process has generated any messages

2.54. API Indice 863



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public Phalcon\Mvc\Model\MessageInterface [] getMessages ([unknown $filter])

Returns all the validation messages

abstract public boolean save ([array $data], [array $whiteList])

Inserts or updates a model instance. Returning true on success or false otherwise.

abstract public boolean create ([array $data], [array $whiteList])

Inserts a model instance. If the instance already exists in the persistance it will throw an exception Returning true on
success or false otherwise.

abstract public boolean update ([array $data], [array $whiteList])

Updates a model instance. If the instance doesn’t exist in the persistance it will throw an exception Returning true on
success or false otherwise.

abstract public boolean delete ()

Deletes a model instance. Returning true on success or false otherwise.

abstract public int getOperationMade ()

Returns the type of the latest operation performed by the ORM Returns one of the OP_* class constants

abstract public refresh ()

Refreshes the model attributes re-querying the record from the database

abstract public mixed readAttribute (string $attribute)

Reads an attribute value by its name

abstract public writeAttribute (string $attribute, mixed $value)

Writes an attribute value by its name

abstract public Phalcon\Mvc\Model\ResultsetInterface getRelated (string $alias, [array $arguments])

Returns related records based on defined relations

2.54.291 Interface Phalcon\Mvc\Model\BehaviorInterface

Phalcon\Mvc\Model\BehaviorInterface initializer

Methods

abstract public notify (string $type, Phalcon\Mvc\ModelInterface $model)

This method receives the notifications from the EventsManager

abstract public missingMethod (Phalcon\Mvc\ModelInterface $model, string $method, [array $arguments])

Calls a method when it’s missing in the model

2.54.292 Interface Phalcon\Mvc\Model\CriteriaInterface

Phalcon\Mvc\Model\CriteriaInterface initializer

864 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public Phalcon\Mvc\Model\CriteriaInterface setModelName (string $modelName)

Set a model on which the query will be executed

abstract public string getModelName ()

Returns an internal model name on which the criteria will be applied

abstract public Phalcon\Mvc\Model\CriteriaInterface bind (string $bindParams)

Adds the bind parameter to the criteria

abstract public Phalcon\Mvc\Model\Criteria bindTypes (string $bindTypes)

Sets the bind types in the criteria This method replaces all previously set bound parameters

abstract public Phalcon\Mvc\Model\CriteriaInterface columns (string|array $columns)

Sets the columns to be queried

<?php

$criteria->columns(array('id', 'name'));

abstract public Phalcon\Mvc\Model\CriteriaInterface join (string $model, [string $conditions], [string $alias], [string
$type])

Adds a join to the query

<?php

$criteria->join('Robots');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id', 'r');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id', 'r', 'LEFT');

abstract public Phalcon\Mvc\Model\CriteriaInterface where (string $conditions)

Adds the conditions parameter to the criteria

abstract public Phalcon\Mvc\Model\CriteriaInterface conditions (string $conditions)

Adds the conditions parameter to the criteria

abstract public Phalcon\Mvc\Model\CriteriaInterface orderBy (string $orderColumns)

Adds the order-by parameter to the criteria

abstract public Phalcon\Mvc\Model\CriteriaInterface limit (int $limit, [int $offset])

Sets the limit parameter to the criteria

abstract public Phalcon\Mvc\Model\CriteriaInterface forUpdate ([boolean $forUpdate])

Sets the “for_update” parameter to the criteria

abstract public Phalcon\Mvc\Model\Criteria sharedLock ([boolean $sharedLock])

Sets the “shared_lock” parameter to the criteria

abstract public Phalcon\Mvc\Model\Criteria andWhere (string $conditions, [array $bindParams], [array $bind-
Types])

Appends a condition to the current conditions using an AND operator

abstract public Phalcon\Mvc\Model\Criteria orWhere (string $conditions, [array $bindParams], [array $bindTypes])

2.54. API Indice 865



Phalcon PHP Framework Documentation, Release 1.3.0

Appends a condition to the current conditions using an OR operator

abstract public Phalcon\Mvc\Model\Query\Builder betweenWhere (string $expr, mixed $minimum, mixed $maxi-
mum)

Appends a BETWEEN condition to the current conditions

<?php

$criteria->betweenWhere('price', 100.25, 200.50);

abstract public Phalcon\Mvc\Model\Query\Builder notBetweenWhere (string $expr, mixed $minimum, mixed $max-
imum)

Appends a NOT BETWEEN condition to the current conditions

<?php

$criteria->notBetweenWhere('price', 100.25, 200.50);

abstract public Phalcon\Mvc\Model\Query\Builder inWhere (string $expr, array $values)

Appends an IN condition to the current conditions

<?php

$criteria->inWhere('id', [1, 2, 3]);

abstract public Phalcon\Mvc\Model\Query\Builder notInWhere (string $expr, array $values)

Appends a NOT IN condition to the current conditions

<?php

$criteria->notInWhere('id', [1, 2, 3]);

abstract public string getWhere ()

Returns the conditions parameter in the criteria

abstract public string getConditions ()

Returns the conditions parameter in the criteria

abstract public string getLimit ()

Returns the limit parameter in the criteria

abstract public string getOrder ()

Returns the order parameter in the criteria

abstract public string getParams ()

Returns all the parameters defined in the criteria

abstract public static static fromInput (Phalcon\DiInterface $dependencyInjector, string $modelName, array $data)

Builds a Phalcon\Mvc\Model\Criteria based on an input array like $_POST

abstract public Phalcon\Mvc\Model\ResultsetInterface execute ()

Executes a find using the parameters built with the criteria

866 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.293 Interface Phalcon\Mvc\Model\ManagerInterface

Phalcon\Mvc\Model\ManagerInterface initializer

Methods

abstract public initialize (Phalcon\Mvc\ModelInterface $model)

Initializes a model in the model manager

abstract public boolean isInitialized (string $modelName)

Check of a model is already initialized

abstract public Phalcon\Mvc\ModelInterface getLastInitialized ()

Get last initialized model

abstract public Phalcon\Mvc\ModelInterface load (string $modelName, boolean $newInstance)

Loads a model throwing an exception if it doesn’t exist

abstract public Phalcon\Mvc\Model\RelationInterface addHasOne (Phalcon\Mvc\ModelInterface $model, mixed
$fields, string $referencedModel, mixed $referencedFields, [array $options])

Setup a 1-1 relation between two models

abstract public Phalcon\Mvc\Model\RelationInterface addBelongsTo (Phalcon\Mvc\ModelInterface $model, mixed
$fields, string $referencedModel, mixed $referencedFields, [array $options])

Setup a relation reverse 1-1 between two models

abstract public Phalcon\Mvc\Model\RelationInterface addHasMany (Phalcon\Mvc\ModelInterface $model, mixed
$fields, string $referencedModel, mixed $referencedFields, [array $options])

Setup a relation 1-n between two models

abstract public boolean existsBelongsTo (string $modelName, string $modelRelation)

Checks whether a model has a belongsTo relation with another model

abstract public boolean existsHasMany (string $modelName, string $modelRelation)

Checks whether a model has a hasMany relation with another model

abstract public boolean existsHasOne (string $modelName, string $modelRelation)

Checks whether a model has a hasOne relation with another model

abstract public Phalcon\Mvc\Model\ResultsetInterface getBelongsToRecords (string $method, string $modelName,
string $modelRelation, Phalcon\Mvc\Model $record, [array $parameters])

Gets belongsTo related records from a model

abstract public Phalcon\Mvc\Model\ResultsetInterface getHasManyRecords (string $method, string $modelName,
string $modelRelation, Phalcon\Mvc\Model $record, [array $parameters])

Gets hasMany related records from a model

abstract public Phalcon\Mvc\Model\ResultsetInterface getHasOneRecords (string $method, string $modelName,
string $modelRelation, Phalcon\Mvc\Model $record, [array $parameters])

Gets belongsTo related records from a model

abstract public array getBelongsTo (Phalcon\Mvc\ModelInterface $model)

Gets belongsTo relations defined on a model

2.54. API Indice 867



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public array getHasMany (Phalcon\Mvc\ModelInterface $model)

Gets hasMany relations defined on a model

abstract public array getHasOne (Phalcon\Mvc\ModelInterface $model)

Gets hasOne relations defined on a model

abstract public array getHasOneAndHasMany (Phalcon\Mvc\ModelInterface $model)

Gets hasOne relations defined on a model

abstract public Phalcon\Mvc\Model\RelationInterface [] getRelations (string $modelName)

Query all the relationships defined on a model

abstract public array getRelationsBetween (string $first, string $second)

Query the relations between two models

abstract public Phalcon\Mvc\Model\QueryInterface createQuery (string $phql)

Creates a Phalcon\Mvc\Model\Query without execute it

abstract public Phalcon\Mvc\Model\QueryInterface executeQuery (string $phql, [array $placeholders])

Creates a Phalcon\Mvc\Model\Query and execute it

abstract public Phalcon\Mvc\Model\Query\BuilderInterface createBuilder ([string $params])

Creates a Phalcon\Mvc\Model\Query\Builder

abstract public addBehavior (Phalcon\Mvc\ModelInterface $model, Phalcon\Mvc\Model\BehaviorInterface $behav-
ior)

Binds a behavior to a model

abstract public notifyEvent (string $eventName, Phalcon\Mvc\ModelInterface $model)

Receives events generated in the models and dispatches them to a events-manager if available Notify the behaviors
that are listening in the model

abstract public boolean missingMethod (Phalcon\Mvc\ModelInterface $model, string $eventName, array $data)

Dispatch a event to the listeners and behaviors This method expects that the endpoint listeners/behaviors returns true
meaning that a least one is implemented

abstract public Phalcon\Mvc\Model\QueryInterface getLastQuery ()

Returns the last query created or executed in the

2.54.294 Interface Phalcon\Mvc\Model\MessageInterface

Phalcon\Mvc\Model\MessageInterface initializer

Methods

abstract public setType (string $type)

Sets message type

abstract public string getType ()

Returns message type

abstract public setMessage (string $message)

868 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Sets verbose message

abstract public string getMessage ()

Returns verbose message

abstract public setField (string $field)

Sets field name related to message

abstract public string getField ()

Returns field name related to message

2.54.295 Interface Phalcon\Mvc\Model\MetaDataInterface

Phalcon\Mvc\Model\MetaDataInterface initializer

Methods

abstract public setStrategy (Phalcon\Mvc\Model\MetaData\Strategy\Introspection $strategy)

Set the meta-data extraction strategy

abstract public Phalcon\Mvc\Model\MetaData\Strategy\Introspection getStrategy ()

Return the strategy to obtain the meta-data

abstract public array readMetaData (Phalcon\Mvc\ModelInterface $model)

Reads meta-data for certain model

abstract public mixed readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, int $index)

Reads meta-data for certain model using a MODEL_* constant

abstract public writeMetaDataIndex (Phalcon\Mvc\Model $model, int $index, mixed $data, unknown $replace)

Writes meta-data for certain model using a MODEL_* constant

abstract public array readColumnMap (Phalcon\Mvc\ModelInterface $model)

Reads the ordered/reversed column map for certain model

abstract public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, int $index)

Reads column-map information for certain model using a MODEL_* constant

abstract public array getAttributes (Phalcon\Mvc\ModelInterface $model)

Returns table attributes names (fields)

abstract public array getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an array of fields which are part of the primary key

abstract public array getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an arrau of fields which are not part of the primary key

abstract public array getNotNullAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an array of not null attributes

abstract public array getDataTypes (Phalcon\Mvc\ModelInterface $model)

Returns attributes and their data types

2.54. API Indice 869



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public array getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model)

Returns attributes which types are numerical

abstract public string getIdentityField (Phalcon\Mvc\ModelInterface $model)

Returns the name of identity field (if one is present)

abstract public array getBindTypes (Phalcon\Mvc\ModelInterface $model)

Returns attributes and their bind data types

abstract public array getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model)

Returns attributes that must be ignored from the INSERT SQL generation

abstract public array getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model)

Returns attributes that must be ignored from the UPDATE SQL generation

abstract public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown
$replace)

Set the attributes that must be ignored from the INSERT SQL generation

abstract public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes, unknown
$replace)

Set the attributes that must be ignored from the UPDATE SQL generation

abstract public array getColumnMap (Phalcon\Mvc\ModelInterface $model)

Returns the column map if any

abstract public array getReverseColumnMap (Phalcon\Mvc\ModelInterface $model)

Returns the reverse column map if any

abstract public boolean hasAttribute (Phalcon\Mvc\ModelInterface $model, string $attribute)

Check if a model has certain attribute

abstract public boolean isEmpty ()

Checks if the internal meta-data container is empty

abstract public reset ()

Resets internal meta-data in order to regenerate it

abstract public array read (string $key)

Reads meta-data from the adapter

abstract public write (string $key, array $data)

Writes meta-data to the adapter

2.54.296 Interface Phalcon\Mvc\Model\QueryInterface

Phalcon\Mvc\Model\QueryInterface initializer

870 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public array parse ()

Parses the intermediate code produced by Phalcon\Mvc\Model\Query\Lang generating another intermediate represen-
tation that could be executed by Phalcon\Mvc\Model\Query

abstract public mixed execute ([array $bindParams], [array $bindTypes])

Executes a parsed PHQL statement

2.54.297 Interface Phalcon\Mvc\Model\Query\BuilderInterface

Phalcon\Mvc\Model\Query\BuilderInterface initializer

Methods

abstract public distinct (unknown $distinct)

...

abstract public getDistinct ()

...

abstract public Phalcon\Mvc\Model\Query\BuilderInterface columns (string|array $columns)

Sets the columns to be queried

abstract public string|array getColumns ()

Return the columns to be queried

abstract public Phalcon\Mvc\Model\Query\BuilderInterface from (string|array $models)

Sets the models who makes part of the query

abstract public Phalcon\Mvc\Model\Query\BuilderInterface addFrom (string $model, [string $alias])

Add a model to take part of the query

abstract public string|array getFrom ()

Return the models who makes part of the query

abstract public Phalcon\Mvc\Model\Query\BuilderInterface join (string $model, [string $conditions], [string $alias])

Adds a INNER join to the query

abstract public Phalcon\Mvc\Model\Query\Builder innerJoin (string $model, [string $conditions], [string $alias])

Adds a INNER join to the query

abstract public Phalcon\Mvc\Model\Query\Builder leftJoin (string $model, [string $conditions], [string $alias])

Adds a LEFT join to the query

abstract public Phalcon\Mvc\Model\Query\Builder rightJoin (string $model, [string $conditions], [string $alias])

Adds a RIGHT join to the query

abstract public Phalcon\Mvc\Model\Query\BuilderInterface where (string $conditions, [array $bindParams], [array
$bindTypes])

Sets conditions for the query

2.54. API Indice 871



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public Phalcon\Mvc\Model\Query\Builder andWhere (string $conditions, [array $bindParams], [array
$bindTypes])

Appends a condition to the current conditions using a AND operator

abstract public Phalcon\Mvc\Model\Query\Builder orWhere (string $conditions, [array $bindParams], [array $bind-
Types])

Appends a condition to the current conditions using a OR operator

abstract public Phalcon\Mvc\Model\Query\Builder betweenWhere (string $expr, mixed $minimum, mixed $maxi-
mum)

Appends a BETWEEN condition to the current conditions

abstract public Phalcon\Mvc\Model\Query\Builder notBetweenWhere (string $expr, mixed $minimum, mixed $max-
imum)

Appends a NOT BETWEEN condition to the current conditions

<?php

$builder->notBetweenWhere('price', 100.25, 200.50);

abstract public Phalcon\Mvc\Model\Query\Builder inWhere (string $expr, array $values)

Appends an IN condition to the current conditions

abstract public Phalcon\Mvc\Model\Query\Builder notInWhere (string $expr, array $values)

Appends a NOT IN condition to the current conditions

abstract public string|array getWhere ()

Return the conditions for the query

abstract public Phalcon\Mvc\Model\Query\BuilderInterface orderBy (string $orderBy)

Sets a ORDER BY condition clause

abstract public string|array getOrderBy ()

Return the set ORDER BY clause

abstract public Phalcon\Mvc\Model\Query\BuilderInterface having (string $having)

Sets a HAVING condition clause

abstract public string|array getHaving ()

Returns the HAVING condition clause

abstract public Phalcon\Mvc\Model\Query\BuilderInterface limit (int $limit, [int $offset])

Sets a LIMIT clause

abstract public string|array getLimit ()

Returns the current LIMIT clause

abstract public Phalcon\Mvc\Model\Query\BuilderInterface groupBy (string $group)

Sets a LIMIT clause

abstract public string getGroupBy ()

Returns the GROUP BY clause

abstract public string getPhql ()

872 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Returns a PHQL statement built based on the builder parameters

abstract public Phalcon\Mvc\Model\QueryInterface getQuery ()

Returns the query built

2.54.298 Interface Phalcon\Mvc\Model\Query\StatusInterface

Phalcon\Mvc\Model\Query\StatusInterface initializer

Methods

abstract public Phalcon\Mvc\ModelInterface getModel ()

Returns the model which executed the action

abstract public Phalcon\Mvc\Model\MessageInterface [] getMessages ()

Returns the messages produced by a operation failed

abstract public boolean success ()

Allows to check if the executed operation was successful

2.54.299 Interface Phalcon\Mvc\Model\RelationInterface

Phalcon\Mvc\Model\RelationInterface initializer

Methods

abstract public setIntermediateRelation (string|array $intermediateFields, string $intermediateModel, string $inter-
mediateReferencedFields)

Sets the intermediate model dat for has-*-through relations

abstract public int getType ()

Returns the relations type

abstract public string getReferencedModel ()

Returns the referenced model

abstract public string|array getFields ()

Returns the fields

abstract public string|array getReferencedFields ()

Returns the referenced fields

abstract public string|array getOptions ()

Returns the options

abstract public string|array isForeignKey ()

Check whether the relation act as a foreign key

abstract public string|array getForeignKey ()

Returns the foreign key configuration

2.54. API Indice 873



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public boolean isThrough ()

Check whether the relation is a ‘many-to-many’ relation or not

abstract public string|array getIntermediateFields ()

Gets the intermediate fields for has-*-through relations

abstract public string getIntermediateModel ()

Gets the intermediate model for has-*-through relations

abstract public string|array getIntermediateReferencedFields ()

Gets the intermediate referenced fields for has-*-through relations

2.54.300 Interface Phalcon\Mvc\Model\ResultInterface

Phalcon\Mvc\Model\ResultInterface initializer

Methods

abstract public setDirtyState (boolean $dirtyState)

Sets the object’s state

2.54.301 Interface Phalcon\Mvc\Model\ResultsetInterface

Phalcon\Mvc\Model\ResultsetInterface initializer

Methods

abstract public int getType ()

Returns the internal type of data retrieval that the resultset is using

abstract public Phalcon\Mvc\ModelInterface getFirst ()

Get first row in the resultset

abstract public Phalcon\Mvc\ModelInterface getLast ()

Get last row in the resultset

abstract public setIsFresh (boolean $isFresh)

Set if the resultset is fresh or an old one cached

abstract public boolean isFresh ()

Tell if the resultset if fresh or an old one cached

abstract public Phalcon\Cache\BackendInterface getCache ()

Returns the associated cache for the resultset

abstract public array toArray ()

Returns a complete resultset as an array, if the resultset has a big number of rows it could consume more memory than
currently it does.

874 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

2.54.302 Interface Phalcon\Mvc\Model\TransactionInterface

Phalcon\Mvc\Model\TransactionInterface initializer

Methods

abstract public setTransactionManager (Phalcon\Mvc\Model\Transaction\ManagerInterface $manager)

Sets transaction manager related to the transaction

abstract public boolean begin ()

Starts the transaction

abstract public boolean commit ()

Commits the transaction

abstract public boolean rollback ([string $rollbackMessage], [Phalcon\Mvc\ModelInterface $rollbackRecord])

Rollbacks the transaction

abstract public string getConnection ()

Returns connection related to transaction

abstract public setIsNewTransaction (boolean $isNew)

Sets if is a reused transaction or new once

abstract public setRollbackOnAbort (boolean $rollbackOnAbort)

Sets flag to rollback on abort the HTTP connection

abstract public boolean isManaged ()

Checks whether transaction is managed by a transaction manager

abstract public array getMessages ()

Returns validations messages from last save try

abstract public boolean isValid ()

Checks whether internal connection is under an active transaction

abstract public setRollbackedRecord (Phalcon\Mvc\ModelInterface $record)

Sets object which generates rollback action

2.54.303 Interface Phalcon\Mvc\Model\Transaction\ManagerInterface

Phalcon\Mvc\Model\Transaction\ManagerInterface initializer

Methods

abstract public boolean has ()

Checks whether manager has an active transaction

abstract public Phalcon\Mvc\Model\TransactionInterface get ([boolean $autoBegin])

Returns a new Phalcon\Mvc\Model\Transaction or an already created once

2.54. API Indice 875



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public rollbackPendent ()

Rollbacks active transactions within the manager

abstract public commit ()

Commmits active transactions within the manager

abstract public rollback ([boolean $collect])

Rollbacks active transactions within the manager Collect will remove transaction from the manager

abstract public notifyRollback (Phalcon\Mvc\Model\TransactionInterface $transaction)

Notifies the manager about a rollbacked transaction

abstract public notifyCommit (Phalcon\Mvc\Model\TransactionInterface $transaction)

Notifies the manager about a commited transaction

abstract public collectTransactions ()

Remove all the transactions from the manager

2.54.304 Interface Phalcon\Mvc\Model\ValidatorInterface

Phalcon\Mvc\Model\ValidatorInterface initializer

Methods

abstract public array getMessages ()

Returns messages generated by the validator

abstract public boolean validate (Phalcon\Mvc\ModelInterface $record)

Executes the validator

2.54.305 Interface Phalcon\Mvc\ModuleDefinitionInterface

Phalcon\Mvc\ModuleDefinitionInterface initializer

Methods

abstract public registerAutoloaders ()

Registers an autoloader related to the module

abstract public registerServices (Phalcon\DiInterface $dependencyInjector)

Registers services related to the module

2.54.306 Interface Phalcon\Mvc\RouterInterface

Phalcon\Mvc\RouterInterface initializer

876 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public setDefaultModule (string $moduleName)

Sets the name of the default module

abstract public setDefaultController (string $controllerName)

Sets the default controller name

abstract public setDefaultAction (string $actionName)

Sets the default action name

abstract public setDefaults (array $defaults)

Sets an array of default paths

abstract public handle ([string $uri])

Handles routing information received from the rewrite engine

abstract public Phalcon\Mvc\Router\RouteInterface add (string $pattern, [string/array $paths], [string $httpMethods])

Adds a route to the router on any HTTP method

abstract public Phalcon\Mvc\Router\RouteInterface addGet (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is GET

abstract public Phalcon\Mvc\Router\RouteInterface addPost (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is POST

abstract public Phalcon\Mvc\Router\RouteInterface addPut (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is PUT

abstract public Phalcon\Mvc\Router\RouteInterface addDelete (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is DELETE

abstract public Phalcon\Mvc\Router\RouteInterface addOptions (string $pattern, [string/array $paths])

Add a route to the router that only match if the HTTP method is OPTIONS

abstract public Phalcon\Mvc\Router\RouteInterface addPatch (string $pattern, [string/array $paths])

Add a route to the router that only match if the HTTP method is PATCH

abstract public Phalcon\Mvc\Router\RouteInterface addHead (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is HEAD

abstract public clear ()

Removes all the defined routes

abstract public string getModuleName ()

Returns processed module name

abstract public string getControllerName ()

Returns processed controller name

abstract public string getActionName ()

Returns processed action name

abstract public array getParams ()

2.54. API Indice 877



Phalcon PHP Framework Documentation, Release 1.3.0

Returns processed extra params

abstract public Phalcon\Mvc\Router\RouteInterface getMatchedRoute ()

Returns the route that matchs the handled URI

abstract public array getMatches ()

Return the sub expressions in the regular expression matched

abstract public bool wasMatched ()

Check if the router macthes any of the defined routes

abstract public Phalcon\Mvc\Router\RouteInterface [] getRoutes ()

Return all the routes defined in the router

abstract public Phalcon\Mvc\Router\RouteInterface getRouteById (string $id)

Returns a route object by its id

abstract public Phalcon\Mvc\Router\RouteInterface getRouteByName (string $name)

Returns a route object by its name

abstract public bool isExactControllerName ()

Returns whether controller name should not be mangled

2.54.307 Interface Phalcon\Mvc\Router\RouteInterface

Phalcon\Mvc\Router\RouteInterface initializer

Methods

abstract public string compilePattern (string $pattern)

Replaces placeholders from pattern returning a valid PCRE regular expression

abstract public via (string|array $httpMethods)

Set one or more HTTP methods that constraint the matching of the route

abstract public reConfigure (string $pattern, [array $paths])

Reconfigure the route adding a new pattern and a set of paths

abstract public string getName ()

Returns the route’s name

abstract public setName (string $name)

Sets the route’s name

abstract public setHttpMethods (string|array $httpMethods)

Sets a set of HTTP methods that constraint the matching of the route

abstract public string getRouteId ()

Returns the route’s id

abstract public string getPattern ()

Returns the route’s pattern

878 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public string getCompiledPattern ()

Returns the route’s pattern

abstract public array getPaths ()

Returns the paths

abstract public string|array getHttpMethods ()

Returns the HTTP methods that constraint matching the route

abstract public static reset ()

Resets the internal route id generator

2.54.308 Interface Phalcon\Mvc\UrlInterface

Phalcon\Mvc\UrlInterface initializer

Methods

abstract public setBaseUri (string $baseUri)

Sets a prefix to all the urls generated

abstract public string getBaseUri ()

Returns the prefix for all the generated urls. By default /

abstract public setBasePath (string $basePath)

Sets a base paths for all the generated paths

abstract public string getBasePath ()

Returns a base path

abstract public string get ([string|array $uri], [unknown $args])

Generates a URL

abstract public string path ([string $path])

Generates a local path

2.54.309 Interface Phalcon\Mvc\ViewInterface

Phalcon\Mvc\ViewInterface initializer

Methods

abstract public setViewsDir (string $viewsDir)

Sets views directory. Depending of your platform, always add a trailing slash or backslash

abstract public string getViewsDir ()

Gets views directory

abstract public setLayoutsDir (string $layoutsDir)

2.54. API Indice 879



Phalcon PHP Framework Documentation, Release 1.3.0

Sets the layouts sub-directory. Must be a directory under the views directory. Depending of your platform, always add
a trailing slash or backslash

abstract public string getLayoutsDir ()

Gets the current layouts sub-directory

abstract public setPartialsDir (string $partialsDir)

Sets a partials sub-directory. Must be a directory under the views directory. Depending of your platform, always add
a trailing slash or backslash

abstract public string getPartialsDir ()

Gets the current partials sub-directory

abstract public setBasePath (string $basePath)

Sets base path. Depending of your platform, always add a trailing slash or backslash

abstract public string getCurrentRenderLevel ()

Gets the current render level

abstract public string getRenderLevel ()

Gets the render level for the view

abstract public setRenderLevel (string $level)

Sets the render level for the view

abstract public setMainView (string $viewPath)

Sets default view name. Must be a file without extension in the views directory

abstract public string getMainView ()

Returns the name of the main view

abstract public setLayout (string $layout)

Change the layout to be used instead of using the name of the latest controller name

abstract public string getLayout ()

Returns the name of the main view

abstract public setTemplateBefore (string|array $templateBefore)

Appends template before controller layout

abstract public cleanTemplateBefore ()

Resets any template before layouts

abstract public setTemplateAfter (string|array $templateAfter)

Appends template after controller layout

abstract public cleanTemplateAfter ()

Resets any template before layouts

abstract public setParamToView (string $key, mixed $value)

Adds parameters to views (alias of setVar)

abstract public setVar (string $key, mixed $value)

Adds parameters to views

880 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public array getParamsToView ()

Returns parameters to views

abstract public string getControllerName ()

Gets the name of the controller rendered

abstract public string getActionName ()

Gets the name of the action rendered

abstract public array getParams ()

Gets extra parameters of the action rendered

abstract public start ()

Starts rendering process enabling the output buffering

abstract public registerEngines (array $engines)

Register templating engines

abstract public render (string $controllerName, string $actionName, [array $params])

Executes render process from dispatching data

abstract public pick (string $renderView)

Choose a view different to render than last-controller/last-action

abstract public string partial (string $partialPath)

Renders a partial view

abstract public finish ()

Finishes the render process by stopping the output buffering

abstract public Phalcon\Cache\BackendInterface getCache ()

Returns the cache instance used to cache

abstract public cache ([boolean|array $options])

Cache the actual view render to certain level

abstract public setContent (string $content)

Externally sets the view content

abstract public string getContent ()

Returns cached ouput from another view stage

abstract public string getActiveRenderPath ()

Returns the path of the view that is currently rendered

abstract public disable ()

Disables the auto-rendering process

abstract public enable ()

Enables the auto-rendering process

abstract public reset ()

Resets the view component to its factory default values

2.54. API Indice 881



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public bool isDisabled ()

Whether the automatic rendering is disabled

2.54.310 Interface Phalcon\Mvc\View\EngineInterface

Phalcon\Mvc\View\EngineInterface initializer

Methods

abstract public array getContent ()

Returns cached ouput on another view stage

abstract public string partial (string $partialPath)

Renders a partial inside another view

abstract public render (string $path, array $params, [boolean $mustClean])

Renders a view using the template engine

2.54.311 Interface Phalcon\Paginator\AdapterInterface

Phalcon\Paginator\AdapterInterface initializer

Methods

abstract public setCurrentPage (int $page)

Set the current page number

abstract public stdClass getPaginate ()

Returns a slice of the resultset to show in the pagination

2.54.312 Interface Phalcon\Session\AdapterInterface

Phalcon\Session\AdapterInterface initializer

Methods

abstract public start ()

Starts session, optionally using an adapter

abstract public setOptions (array $options)

Sets session options

abstract public array getOptions ()

Get internal options

abstract public mixed get (string $index, [mixed $defaultValue])

Gets a session variable from an application context

882 Chapter 2. Table of Contents



Phalcon PHP Framework Documentation, Release 1.3.0

abstract public set (string $index, string $value)

Sets a session variable in an application context

abstract public boolean has (string $index)

Check whether a session variable is set in an application context

abstract public remove (string $index)

Removes a session variable from an application context

abstract public string getId ()

Returns active session id

abstract public boolean isStarted ()

Check whether the session has been started

abstract public boolean destroy ([unknown $session_id])

Destroys the active session

2.54.313 Interface Phalcon\Session\BagInterface

Phalcon\Session\BagInterface initializer

Methods

abstract public initialize ()

Initializes the session bag. This method must not be called directly, the class calls it when its internal data is accesed

abstract public destroy ()

Destroyes the session bag

abstract public set (string $property, string $value)

Setter of values

abstract public mixed get (string $property, [mixed $defaultValue])

Getter of values

abstract public boolean has (string $property)

Isset property

abstract public remove (string $property)

Unset property

2.54.314 Interface Phalcon\Translate\AdapterInterface

Phalcon\Translate\AdapterInterface initializer

2.54. API Indice 883



Phalcon PHP Framework Documentation, Release 1.3.0

Methods

abstract public string query (string $index, [array $placeholders])

Returns the translation related to the given key

abstract public bool exists (string $index)

Check whether is defined a translation key in the internal array

2.54.315 Interface Phalcon\Validation\ValidatorInterface

Phalcon\Validation\ValidatorInterface initializer

Methods

abstract public mixed isSetOption (string $key)

Checks if an option is defined

abstract public mixed getOption (string $key)

Returns an option in the validator’s options Returns null if the option hasn’t been set

abstract public setOption (string $key, mixed $value)

Sets the validator’s option

abstract public Phalcon\Validation\Message\Group validate (Phalcon\Validator $validator, string $attribute)

Executes the validation

2.55 License

Phalcon is brought to you by the Phalcon Team! [Twitter - Google Plus - Github]

The Phalcon PHP Framework is released under the new BSD license. Except where otherwise noted, content on this
site is licensed under the Creative Commons Attribution 3.0 License.

If you love Phalcon please return something to the community! :)

884 Chapter 2. Table of Contents

https://twitter.com/#!/phalconphp
https://plus.google.com/u/0/102376109340560896457/posts
https://github.com/phalcon
https://github.com/phalcon/cphalcon/blob/master/docs/LICENSE.md
http://creativecommons.org/licenses/by/3.0/


CHAPTER 3

Other formats

• PDF

• HTML in one Zip

• ePub

885

http://media.readthedocs.org/pdf/phalcon-php-framework-documentation/latest/phalcon-php-framework-documentation.pdf
http://media.readthedocs.org/htmlzip/phalcon-php-framework-documentation/latest/phalcon-php-framework-documentation.zip
http://media.readthedocs.org/epub/phalcon-php-framework-documentation/latest/phalcon-php-framework-documentation.epub

	What is Phalcon?
	Table of Contents
	Our motivation
	Framework Benchmarks
	Installation
	Tutorial 1: Let's learn by example
	Tutorial 2: Explaining INVO
	Tutorial 3: Creating a Simple REST API
	List of examples
	Dependency Injection/Service Location
	The MVC Architecture
	Using Controllers
	Working with Models
	Phalcon Query Language (PHQL)
	Caching in the ORM
	ODM (Object-Document Mapper)
	Using Views
	View Helpers
	Assets Management
	Volt: Template Engine
	MVC Applications
	Routing
	Dispatching Controllers
	Micro Applications
	Working with Namespaces
	Events Manager
	Request Environment
	Returning Responses
	Cookies Management
	Generating URLs and Paths
	Flashing Messages
	Storing data in Session
	Filtering and Sanitizing
	Contextual Escaping
	Validation
	Forms
	Reading Configurations
	Pagination
	Improving Performance with Cache
	Security
	Encryption/Decryption
	Access Control Lists ACL
	Multi-lingual Support
	Universal Class Loader
	Logging
	Annotations Parser
	Command Line Applications
	Queueing
	Database Abstraction Layer
	Internationalization
	Database Migrations
	Debugging Applications
	Phalcon Developer Tools
	Increasing Performance: What's next?
	Unit testing
	API Indice
	License

	Other formats

